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Another Source of Individual Differences:
Strategy Adaptivity to Changing Rates of Success
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This article explores an alternative approach to the study of individual differences of cognitive function—
that people may have the same strategies but differential ability to adaptively select among them in
response to success and failure feedback from the environment. Three studies involving the complex and
dynamic Kanfer-Ackerman Air Traffic Control Task (P. L. Ackerman & R. Kanfer, 1994) demonstrate
(a) that individuals do differ systematically along this strategy adaptivity dimension, (b) that those
differences have important consequences for overall task performance, and (c) that the differences are
primarily associated with reasoning ability and working-memory capacity.

From an information-processing perspective, there are two pop-
ular approaches to the study of individual differences of cognitive
function construed broadly (i.e., including studies of child devel-
opment, giftedness, aging, intelligence, brain damage, schizophre-
nia, expertise, and adult individual differences). The first is the
parameter approach. This approach assumes that individuals vary
in performance because of differences in some fundamental apti-
tude or parameter of the cognitive architecture. Although many
different parameters have been proposed, there are two especially
popular parameters: processing speed and working-memory capac-
ity. For example, in terms of processing speed differences, re-
searchers have argued that older children think faster than younger
children (Fry & Hale, 1996; Kail, 1988), that older adults think
slower than younger adults (Salthouse, 1994), that gifted children
think faster than average children (Saccuzzo, Johnson, & Guertin,
1994), and that people with schizophrenia think slower than people
without schizophrenia (Schooler, Neumann, Caplan, & Roberts,
1997). In terms of working-memory capacity, researchers have
argued that people with aphasia have reduced working memory
capacity (Miyake, Carpenter, & Just, 1995), that children have
higher working memory capacity (Case, 1985; Fry & Hale, 1996),
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and that general intelligence differences depend heavily on
working-memory capacity differences (Just & Carpenter, 1992).
Although this parameter approach most naturally describes the
analyses of information-processing psychologists (e.g., Daily,
Lovett, & Reder, in press; Hunt, Joslyn, & Sanquist, 1996; Just &
Carpenter, 1992; Lovett, Reder, & Lebiere, 1996, 1999; Sternberg,
1977), it can also be viewed as the information-processing take on
the psychometric approach to individual differences (e.g., Acker-
man, 1989; Snow, Kylionen, & Marshalek, 1984; Spearman,
1904).

The second general approach is the strategies approach. A
strategy is a method used for solving a problem. This approach
assumes that there are many different strategies that can be used to
solve any given problem and that individuals vary in the strategies
they use. For example, researchers have argued that older children
use different strategies than younger children in a wide variety of
domains (Siegler, 1983), that older adults use different strategies
than younger adults (Reder, Wible, & Martin, 1986; Shapira &
Kushnir, 1985), that good students self-explain and poor students
do not (Chi, Bassok, Lewis, Reimann, & Glaser, 1989), that
experts use different strategies than novices (Chi, Feltovich, &
Glaser, 1981; Ericsson & Polson, 1988; Larkin, McDermott, Si-
mon, & Simon, 1980), that optimists use different strategies than
pessimists (Carver & Scheier, 1992), and that individuals from
different cultures use different strategies (Greenfield & Lave,
1982; Wagner, 1978). A variant of the strategies approach is the
styles approach, in which individuals are thought to vary in terms
of their general cognitive styles or their typical modes of process-
ing information (see Sternberg & Grigorenko, 1997, for a review).

Although many researchers tend to emphasize one approach
over the other—in fact, they frequently design their experiments to
minimize the influence of the other factor—the strategies approach
and the parameters approach need not be mutually exclusive. It has
been argued, moreover, that groups select different strategies to
compensate for parameter differences. For example, it has been
argued that older adults rely more heavily on plausible-reasoning
strategies because their exact memory retrievals are more effortful
than those of younger adults (e.g., Reder, Wible, & Martin, 1986).
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Later research has shown that the simple form of the strategies
approach was incorrect: Almost everyone uses multiple strategies,
and the different groups of people shared many if not most strat-
egies. This result was first described by Reder (1982, 1987, 1988)
and has been found to be true of almost every domain in which it
has been studied (see Siegler, 1996, for a review). The newer form
of the strategies approach is that groups vary in their distribution
of use of strategies (i.e., when each strategy is used). For example,
both older and younger children do simple addition problems using
retrieval and counting. The way they vary is that older children use
retrieval more often, especially on difficult problems.

A third, less popular approach to individual differences is the
strategy adaptivity approach. This strategy builds on the multiple-
strategies approach and assumes that people vary in how adaptive
their strategy selections are. That is, although two individuals may
have the same set of strategies, they may differ in their abilities to
select the best strategy for a given situation. One reason for the
lack of popularity of this approach is the currently popular assumption
of the multiple-strategies approach that everyone is adaptive in their
strategy selections (e.g., Anderson, 1990; Lovett & Anderson, 1996;
Reder, 1987; Siegler & Shipley, 1995). That is, it is assumed that each
individual selects the best strategy for them on the particular problem
and that individuals may vary because of learning in the domain and,
perhaps, process parameter differences that change with strategies are
most adaptive for them. For example, young children choose to count
for difficult addition problems because they have not leamed answers
sufficiently well and are likely to make an error if they try to retrieve.
By contrast, older children know the answer and use retrieval because
it is less effortful.

When various groups were compared on the adaptivity of their
strategy selections, the groups were typically found to be equally
adaptive. That is, all groups were equally able to select the most
appropriate strategy for them. For example, Siegler and Lemaire
(1997) found that young adults and the aged made equally adaptive
strategy selections. Similarly, Kerkman and Siegler (1993) found
that middie-income and lower-income children were equally adap-
tive. In only one case did people vary in their adaptiveness:
adaptiveness improved with practice in a domain (Adolph, 1995;
Lemaire & Siegler, 1995).! However, even at the beginning of
practice, strategy selections were still quite adaptive.

This is in contrast to the metacognitive view (e.g., Case, 1985;
Flavell, 1979; Kuhn, 1988; Sternberg, 1985), which postulates that
some individuals use less sophisticated strategies because they
have poor metacognitive knowledge of why and when different
strategies are effective. Although this view seems quite plausible,
empirical research has found that there is at best a weak relation-
ship between metacognitive knowledge and the adaptiveness of
strategy selections (e.g., Cavanaugh & Perlmutter, 1982; Schnei-
der & Pressley, 1989). Instead, it has been argued that the people
who use less sophisticated strategies are selecting appropriately
because those strategies are best ones for them—either because the
more sophisticated strategies are too effortful or because those
strategies are too error prone because of lack of practice.

In this article, we explore a variant of the third approach—that
individuals vary in their strategy adaptivity. In particular, we
explore the proposal made by Reder and Schunn (1999) that
individuals vary in their ability to adapt strategies to changing rates
of success. That is, some people may be slow to change their
strategy selections as the relative successfulness of the strategies
change over time. Reder and Schunn’s proposal is not that these

participants suffer from lack of metacognitive knowledge of the
particular strategies; rather, the proposal is that the participants
vary in their general ability to detect and make use of changing
rates of strategy success.

To understand this proposal, one must first understand how
adaptivity in strategy choice relates to strategy rates of success.
Many factors influence strategy choice (cf. Lovett & Anderson,
1996; Reder, 1987; Siegler & Shipley, 1995). One of these factors
is the strategy’s rate of success. For example, Reder (1987) found
that participants’ strategy preferences were influenced by the pro-
portion of trials for which a given strategy had been working in the
recent past. In Reder’s experiments, participants were to answer
true—false questions based on short stories they had read. Two
strategies were especially common: directly retrieving the answer
(a close match to the query) from memory and judging the plau-
sibility of the statement. Participants adjusted their tendency to
adopt the plausibility strategy over the direct retrieval strategy as
a function of the proportion of questions in the experiment for
which a given strategy would work (i.e., proportion of trials in
which the statement to be judged or its exact contradiction had
been explicitly stated as part of the story). This proportion was
varied across blocks of the experiment, and participants adjusted
their use of the two strategies accordingly. This basic finding of
participants adapting to shifting proportions of features of the
experiment has now been seen in a number of other contexts, such
as arithmetic verification (Lemaire & Reder, 1999) and in a
problem-solving task (Lovett & Anderson, 1996).

There are several reasons why sensitivity to success rates is an
important skill. First, many tasks in the world change dramatically
independently of the actions of the individual, and in such dynamic
tasks, the ability to shift strategies is crucial. To provide a few
examples, one must change driving habits when it begins to rain,
change hitting strategies as the tennis ball becomes soft, change
walking strategies when the sidewalk is icy or when one is wearing
high-heeled shoes, and change negotiating straiegies when the
opponent becomes irate. Second, even in tasks in which the struc-
ture of the task stays constant, the individual must shift strategy
use as he or she becomes increasingly expert at the task (Adolph,
1995). For example, skiers begin with a snowplow strategy and
only much later attempt parallel turns. Similarly, an algebra stu-
dent shifts from implementing all the steps in an algorithm to
skipping or combining simple steps (Blessing, 1996; Blessing &
Anderson, 1996).

Are all individuals roughly equally sensitive to success rates,
and do they all change strategies equally quickly? This article
seeks to investigate whether there are systematic differences
among adults in their ability to adapt strategies using success-rate
information. Two related questions that will also be addressed are
the following: (a) Is adapting or shifting strategies based on the
success of the strategies indeed optimal (i.e., does increased strat-
egy shifting produce higher levels of task performance)? and (b)
What cognitive abilities underlie this strategy adaptivity?

Sensitivity to success rates can be measured at two levels: micro
and global. At the microlevel, there is sensitivity to the success-

! An interesting related phenomenon is the case in which children start
using a new strategy that will become the more effective strategy but
temporarily is more effortful and more error prone (e.g., Miller & Seier,
1994).
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fulness of a strategy on the immediately preceding attempt at using
that strategy. For example, if one attempts to run on an icy surface
and falls, one should be less likely to attempt to run on such a
surface the next time. If the attempt is successful, one should be
more likely to attempt to run the next time. This is similar to
simple operant conditioning. Sensitivity to rates of success at the
global level refers to changing strategy use in response to changes
in the frequency of success defined over many of the past strategy
attempts. For example, if a student first experiences 50% failure rates
with a strategy for solving algebra problems and then later experi-
ences 5% failure rates once some level of expertise has been reached,
then that student should begin to use the strategy more often.

What is the relationship between micro and global sensitivity to
success rates? Logically, if an individual is consistently sensitive at
the microlevel, then the individual must be sensitive at the global
level—the incremental sensitivity sums to at least some level of
global sensitivity (although even greater levels of global sensitivity
are possible). However, the reverse is not necessarily true. An
individual may be sensitive at the global level but insensitive at the
microlevel. For example, it may be that only large changes in
success base rates measured over many trials result in changes in
strategy use. Thus, this article will measure sensitivity at both the
microlevel and global level to assess whether there are individual
differences at both levels.

In this article, data from three studies are presented; the first two
studies focused on microlevel sensitivity and the third study fo-
cused on global sensitivity. All three studies involved a particular
dynamic task, the Kanfer-Ackerman Air Traffic Controller Task
(KA-ATC; Ackerman & Kanfer, 1994), chosen because dynamic
tasks bring to the forefront the importance of ability to adapt to
changing success rates. Moreover, individual differences in this
task have been studied before, both from a parameter-differences
approach and from a strategy-differences approach. Coming from
the parameter-differences approach, Ackerman (1988, 1989) found
that what predicts individual differences in performance in this
task is moderated by time in training: Early in training, reasoning
ability best predicts performance; later in training, perceptual-
speed ability best predicts performance; and by the end of training,
simple reaction-time ability best predicts performance. By con-
trast, coming from the strategy-differences approach, Lee, Ander-
son, and Matessa (1995; Lee & Anderson, 1997) found that strat-
egy differences predict individual differences in performance in
the KA-ATC task at all points of training. Thus, the KA-ATC task
is a good task for contrasting the strategy-adaptivity approach with
the strategy-differences and parameter approaches. Before present-
ing the studies, the next section presents an overview of the task.

The Kanfer—Ackerman Air Traffic Controller Task

The KA-ATC; (Ackerman & Kanfer, 1994; Kanfer & Ackerman,
1989) was designed to simulate dynamic aspects of real air traffic
control (e.g., weather conditions change, planes lose fuel in real time,
certain types of planes require longer runways than others).”

The object of the KA~-ATC task is to accumulate as many points
as possible. Points are earned by landing planes (+50 points) and
are lost by rule violations (—10 points) or plane crashes (—100
points). Crashes occur when a plane is allowed to run out of fuel
before it is landed. In the KA-ATC task, participants must monitor
a variety of elements that are displayed on the screen (see Figure
1): (a) 12 hold-pattern positions that are divided into three altitude

levels; (b) four runways—two short and two long, one of each
running north-south and the other running east-west; (c) a queue
of planes waiting to enter into the hold positions (each queued
plane is a dot); (d) two message windows (not shown), one
indicating changes in runway conditions (dry, wet, or icy), wind
speed (0-20, 20-40, 40—60 knots) and direction (N, S, E, or W)
and one providing error feedback; and (e) the current score and
penalty points. A weather change occurs approximately every 25 s;
planes enter the queue every 7 s.

There are six rules governing this task. First, planes must land
into the wind (e.g., use a north—south runway rather than an
east-west runway if the wind is coming from the north or south).
Second, planes can only land from Hold Level 1 (the lowest level).
Third, planes can move down only one hold level at a time and
only into an unoccupied position. Fourth, the current weather
conditions and wind speed determine the runway length required
by different plane types (747s always require long runways, DC-
10s can use short runways if runways are not icy and the wind
speed is less than 40 knots, 727s can use short runways only when
the runways are dry or wind speed is 0-20 knots, and propeller
planes (PROPs) can always use short runways). Fifth, planes with
less than 3 min of fuel remaining must be landed immediately—
points are subtracted even if the plane does not crash. Sixth, only
one plane at a time can occupy a runway. Each violation of any of
these rules produces a 10-point penalty.

The task consists of a sequence of 10-min trials, with the total
number of trials varying from study to study. Each trial begins with
planes already in various hold positions and other planes in the
queue (as in Figure 1). The number of minutes of fuel left for each
plane is indicated at all times and decreases in real time. At the end
of each trial, the participant is given a short, self-timed break. The
next trial begins with a new screen display and the cursor at the top
of the screen.

The primary data for the KA-ATC task are taken from the
keystroke protocol produced by the computer interface. The set of
possible keystrokes on the computer keyboard includes up-arrow,
down-arrow, F1, enter, and the number keys 1-6. The up-arrow
and down-arrow keys move the cursor up and down (respectively)
between the different hold positions and runways to indicate where
planes are to be moved or landed. The F1 key accepts the planes
from the queue into a holding pattern. The Enter key serves one of
three functions, which is determined by the context: (a) it selects
the plane in the hold corresponding to the current location of the
cursor; (b) it moves a selected plane (either from the queue or from
another hold position) into an empty hold position, indicated by the
current location of the cursor; or (c) it lands a plane on the runway,
if the cursor is next to one of the runways. The six number keys
each display one of the six rules described earlier. These rules can
be displayed at any time.

At the beginning of the task, before the first 10-min trial, the
participants are given step-by-step instructions for the task. Once the
task begins, the participants cannot refer back to the instructions and
must rely on their memory or use the rule keys to display the six rules.

The KA-ATC task involves three primary subtasks: (a) accept-
ing a plane from the queue into a hold position; (b) moving planes
within the hold positions; and (c) landing planes. Although previ-

2The following description of the KA-ATC task is an abbreviated
paraphrasing of the task description found in Ackerman & Kanfer (1994).
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Figure 1.

ous researchers studying strategy use in the KA-ATC task have
focused on the first subtask (e.g., John & Lallement, 1997; Lee &
Anderson, 1997; Lee, Anderson, & Matessa, 1995), this article
focuses on the third subtask. In particular, the focus is on the
strategy decision of landing a selected plane on the short or long
runways when both are open.

This runway-allocation decision is a strategic decision that involves
a general tradeoff of physical and cognitive resources. There are
several advantages to selecting the long runway. First, the long
runways are always legal for all plane types. Thus, the probability of
making an error is lower. Second, the current wind speed and runway
conditions need not be consulted before landing the plane (although
wind direction must always be consulted). Third, the rules for landing
a plane on the runways need not be retrieved. Fourth, the long
runways are closer to the hold positions than the short ranways and so
require fewer keystrokes. The advantage of using the short runway
(when it is legal) is that it keeps the long runway open for the planes
that can only land on the long runway under the current wind speed
and runway conditions. Because the planes require 15 s to land on a
runway and only one plane can be landed on a runway at a time,
participants must maximize the use of both runways to maximize the
total number of planes landed. In other words, the long runway is a
scarce resource that should be used sparingly.

We analyzed data from three studies involving the KA-ATC
task with the general goal of investigating individual differences in
strategy adaptivity in a complex task. The first two studies were
conducted by Ackerman, and the data were taken from the Kanfer—
Ackerman CD-ROM Database (Ackerman & Kanfer, 1994). The
first study (Study 1, PA-ATC on the CD) contains previously
unreported data, and the second study (Study 2, ATC-SPR on the
CD) contains data reported in Ackerman (1988). Because these
two studies did not manipulate strategy success rates, the analyses
of these studies focused on microlevel strategy adaptivity. The
third study reports data from a new experiment that manipulated
strategy success rates and thus focused on global-level strategy
adaptivity. The analysis of all three studies addresses four basic
questions: (a) Are people generally adaptive in their strategy use in
the complex KA-ATC task?; (b) If they are, do people vary
systematically in their adaptivity?; (c) Do those systematic differ-
ences relate to overall task performance?; and (d) What cognitive
abilities are associated with strategy adaptivity?

Score : 38¢
Landing Pts:
Runways : DRY
Wind @ - 20 knots from NORTH

480 Penalty Pts: 20

Flts in Queue:..
<F1> to accept

The main screen of the Kanfer-Ackerman Air Traffic Controller Task.

Studies

Study 1 (Ackerman, 1994): Strategy Adaptivity While
Learning a Complex Task

Method

Participants. The participants of Ackerman’s Study 1 were 57 University
of Minnesota undergraduates taking part for course credit and money.

Procedure. Patticipants were given a total of 27 10-min trials. After
every three trials, they were given several ability tests. Nine trials were
completed in a day.

Dependent measures. The data on the CD-ROM consisted of the
following: (a) KA-ATC task computer protocols that were used to infer
keystroke rates, strategy use, number of planes landed, and number of
planes crashed and (b) scores from 22 ability tests that were centered
around six factors (perceptual speed, movement speed, memory, verbal,
reasoning, and psychomotor factors). The tests are listed in Appendix A.
See Ackerman (1988) for a more compiete description of these ability tests.

The primary strategy measure of interest that we used in our reanalysis
of Ackerman’s data is OpShort, which is the proportion of times that a
participant opted to land a plane on the short ranway of all the times that
a plane was landed and both runways were open. This ratio is computed
only for DC~10s—747s can never land on the short runway, PROPs can
always land on the short runway, and 727s provide too few failure oppor-
tunities to evaluate individual differences in adaptivity.>

Results and Discussion

Overall adaptivity. We focused on the strategy decision of
deciding whether to use the short or long runway when both are
open, as measured by OpShort. To examine whether participants
were adaptive in their OpShort use at the microlevel, we analyzed
the OpShort data as a function of whether the previous attempt to
land that plane type on the short inway had been successful (i.e.,
had not resulted in an error). If participants were adaptive, then
they should have reduced their tendency to use the short runway
when that landing attempt had resulted in an error previously, and
they should have increased their tendency to use the short runway
for that plane type when that action was previously successful.

3In a few cases, there were sufficient numbers to evaluate OpShort
adaptivity with 727s, and the results were always very similar to those
found with DC-10s.
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Only data from the first nine trials were used because error rates
were very low after the ninth trial. Moreover, some participants
only completed nine trials. Because different participants have
different OpShort rates and different error rates, it was important
to do this analysis by participant to avoid participant—strategy
confounds. However, some participants landed few planes, and
some participants made very few errors. This resulted in few
opportunities to evaluate OpShort adaptiveness for these partici-
pants. To reduce noise levels due to low numbers, we removed all
participants with minimum Ns of less than 3, where the minimum
N for each participant was defined as the minimum of two num-
bers: (a) the total number of OpShort opportunities after a success
and (b) the total number of OpShort opportunities after an error. As
expected, participants were more likely to use OpShort when the
previous attempt was successful than when it was unsuccessful
(mean Opshort of .32 vs. .24, F(1, 46) = 22.4, MSE = 0.008, p <
.0001). Thus, people were generally sensitive to the successfulness
of their previous attempts.

Because error rates decreased over time and OpShort use in-
creased over time, the preceding analyses may have confounded
adaptivity with time-based change—OpShort increases and errors
decrease simply as participants learn the rules, and the OpShort
increases may be unrelated to the decrease in error rates. More-
over, strategy use may have become less flexible with increased
experience in the task, and strategy successes and failures may
have had weaker or no effect in later trials. To investigate these
issues, we reanalyzed the data separating the first four trials from
the later five trials—in the first four trials, error rates are above
50% for short landings; in the later five trials, error rates are well
below 50%. As Figure 2 shows, participants appeared just as adaptive
in the later trials as in the early trials. The analysis of variance
(ANOVA) confirmed this assessment—the effect of success was
significant, F(1, 38) = 25.8, MSE = 0.015, p < .0001, and effects of
early or late and the interaction were nonexistent F(1, 38) < 1. Thus,
the observed adaptivity was not a result of a time-based confound, and
participants continued to show strong strategy adaptivity to success
information in later trials (i.e., there was no evidence for a reduction
in strategy choice adaptivity over time).

The previous analyses collapsed across situations in which the
short runway was legal for the selected plane type and those in
which it was illegal—the definition of OpShort required only that

0.4+
Trials 5¢9

E )
£ 0.3 Trials 1-4
=%
=]

0.2 T ~—T

Unsuccessful Successful

Previous attempt

Figure 2. Ackerman Study 1, mean OpShort for early trials (1-4) and
later trials (5-9) as a function of the success of the previous attempt to land
that plane type.

the two runways were open. Thus, the observed adaptivity may
have reflected several types of strategy shifts. It may have led
participants to learn the rules more completely after an unsuccess-
ful attempt and then be less likely to use the short runway in illegal
situations. Alternatively, it may have reflected a simple shift in
tendency to use the short runway that would have had equal impact
in legal and illegal sitnations. Figure 3 suggests that this second
alternative is what occurred, and ANOVA results supported this
view: There were main effects of legality, F(1, 42) = 76.2,
MSE = 0.05, p < .0001, and success of the previous attempt, F(1,
42) = 20.2, MSE = 0.01, p < .0001, but no hint of an interaction,
F(1,42) < 1.

In sum, we have found evidence for a general adaptivity to the
success of previous attempts that biases participants in their use of
the short runway. These results are in agreement with those found
in previous research on strategy selection in simple problem-
solving tasks (e.g., Lovett & Anderson, 1996; Reder, 1987). Of
interest here is that participants were able to demonstrate this
strategy adaptivity in the context of performing in a complex,
dynamic task.

Individual differences in adaptivity. Now that we have estab-
lished that there is strategy adaptivity for OpShort, we can examine
evidence for individual differences in strategy adaptivity. Because
individuals varied in how quickly their failures dropped over time,
averaging performance over many trials results in differential
weighting of early versus later trials across individuals for strategy
use after successes and failures. Change in strategy use over trials
also varied across participants. Therefore, averaging over many
trials to produce estimates of individual strategy sensitivity to
successes and failures may produce spurious individual differ-
ences. To reduce such artifactual individual differences, we fo-
cused on adaptivity in the first four trials. To reduce differences
due to noise, participants were required to have a minimum N of
greater than 5 to be included in this analysis. Using this thresh-
old, 34 of the 57 participants were included. Figure 4 presents a
histogram of the OpShort adaptivity measure—the difference be-
tween OpShort use after successes and OpShort use after failures.
The histogram reveals that there was indeed a large range of
sensitivity in adaptivity. The modal adaptivity level (—0.05 to
+0.05) did not include the mean adaptivity level across all par-
ticipants (0.13). One quarter of the participants showed adaptivity
levels that were three or more times as high as the mean, and
almost 40% showed no adaptivity at all. Each individual’s adap-
tivity was tested against zero using a z-score approximation. Using
a strict p < .05 criterion, 3 of the 34 participants showed strategy
adaptivity. Using a very lax p < .5 criterion, only 17 of the 34
participants showed significant strategy adaptivity. Thus, some
participants showed very strong evidence of strategy adaptivity to
success rates, whereas many participants showed no evidence of
strategy adaptivity to success rates.

How do these individual differences in strategy adaptivity relate
to performance in the task? Because the primary goal of the
KA-ATC task is to land planes, we correlated DC10 OpShort
adaptivity against the number of planes landed. Because individual
differences in OpShort adaptivity were measured using Trials 1-4,
we used the mean number of planes landed in Trials 1-4. Over this
range, OpShort adaptivity correlated positively with planes landed,
r = 40, p < .02. By contrast, of the 22 individual difference tests
administered by Ackerman, the four best predictors of planes
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landed correlated in the 44 to .47 range.* OpShort adaptivity
continued to correlate significantly with performance even when
each of the best individual test predictors was included first in a
hierarchical multiple regression with OpShort (ps < .05). The
predictiveness of the psychometric battery was not curtailed be-
cause of restricted-range issues from removing so many partici-
pants from the analyses—correlations between performance and
the top-predicting psychometric tests were lower when all partic-
ipants were included. Moreover, when a factor analysis (principal-
factor extraction using varimax rotation, extracting orthogonal
factors with roots greater than 1) was conducted on the 22 indi-
vidual difference tests, the six resulting factors were poorer pre-
dictors of performance than OpShort (rs < .2, ns). Taken together,
these analyses suggest that adaptivity correlates with performance
directly and not through indirect correlations with other determi-
nants of performance. Thus, we have the first piece of evidence
that individual differences in adaptivity may be an important factor
in performance.

However, it is possible that these individual differences are due
to floor and ceiling effect artifacts—in other words, perhaps some
participants did not adapt because they cither never used OpShort
or always used OpShort. To investigate this possibility, strategy
adaptivity was regressed against OpShort use after failures. If there
was such an artifact, then there should be a strong negative
quadratic relationship, such that there should be much weaker
sensitivity at the extreme levels of OpShort after failure. Although
the quadratic is negative, the relationship is not significant, 1(31) =
~1.5, p < .2. Moreover, as Figure 5 reveals, the quadratic is
driven primarily by two outliers—one with sensitivity more
than 0.5 and the other with OpShort after failure more than 0.5.
When these two outliers are removed, the quadratic relationship
disappears entirely, and yet the remaining participants show the
full continuum of sensitivity.

Another issue is the high attrition rate from all the preceding
analyses. Of the original 57 participants, only 34 were evaluated
for individual differences on OpShort adaptivity. The remaining 23
participants were removed because there were too few opportuni-
ties to evaluate whether they were adaptive or not—either because
they selected the short runway too few times (N = 19) or because
they made too few errors (N = 4). Did these excluded participants
systematically differ from the included participants? To investigate
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Figure 3. Ackerman Study 1, mean OpShort for legal and illegal short
runway opportunities as a function of the success of the previous attempt
to land that plane type.
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Figure 4. Ackerman Study 1, histogram of individual OpShort adaptivity
to the success of the previous short runway landing attempt (OpShort after
successes — OpShort after failures). Each range runs from the lower value
(inclusively) to the upper value (exclusively).

this issue and to further investigate the issue of floor and ceiling
effects, the participants were divided into five groups: excluded
(OpShort minimum Ns = 5), adaptive (OpShort adaptive-
ness > 0.05),° unadaptive high (OpShort after failure > 0.5),
unadaptive low (OpShort after success < 0.1), and unadaptive
other (remaining unadaptive participants). The unadaptive high
group (N = 1) represented participants who chose a uniformly
high level of OpShort. The unadaptive low group (¥ = 4) repre-
sented participants who chose a uniformly low level of OpShort.
These two groups may have been unadaptive because of floor and
ceiling effects in OpShort use. The unadaptive other group (N = 8)
represented participants who had intermediate OpShort levels yet
were unadaptive nonetheless.

Table 1 presents group means along several performance mea-
sures. The groups differed marginally in terms of number of planes
landed, F(4, 52) = 2.1, MSE = 37.1, p < .1, with the adaptive
participants landing more planes than those in all other groups. The
groups did not differ significantly in the number of errors made,
F(4,52) = 1.3, MSE = 42.2, p > .3, the number of planes crashed,
F(4, 52) < 1, MSE = 1.6, or the number of keypresses F(4,
52) < 1, MSE = 59,900. There were differences in terms of the
number of calls to Rule IV—the rule for when each plane type may
be landed—in that the unadaptive other group called Rule IV more
often than did the other groups, F(4, 52) = 3.0, MSE = 44,p <
.05, but this difference was driven entirely by one outlier in the
unadaptive other group. There were also marginal differences in
the Ravens progressive matrices scores—the best measure of g in

“ Because 4 of the participants were missing some of the psychometric
test scores, the number for these correlations was 30. Using only these
participants, OpShort Adaptivity correlated at r = .50 with planes landed.

5 The .05 threshold for being included in the adaptive group was simply
taken from the histogram analysis of adaptivity. Also, adaptivity levels
below .05 were well within noise levels of zero adaptivity.
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Figure 5. Ackerman Study 1, scatterplot of OpShort adaptivity (suc-
cess — failure) against OpShort use after failure.

the individual differences battery—in that unadaptive low partic-
ipants had the lowest scores, F(4, 52) = 1.9, MSE = 44.0,p < .15.
Overall, the three unadaptive groups were quite similar to one
another, and the excluded participants were more similar to the
unadaptive participants (especially the unadapt other participants)
than to the adaptive participants. These trends are consistent with
the view that excluded participants were unadaptive in their be-
havior and made extreme behavioral choices relating to OpShort,
which resulted in their being excluded. Thus, these measures of
strategy adaptivity may have underestimated the proportion of
unadaptive participants.

What predicts adaptivity? Another issue of interest is whether
adaptivity can be predicted from the psychometric ability tests.
Only 3 of the 22 psychometric scores were significantly correlated
with OpShort adaptivity (Trials 1-4, minimum N > 5): Letter
Sets, r = 45, p < .02, Simple RT, r = .42, p < .02, and 2-Choice
RT, r = 41, p < .02. The first test is a measure of reasoning
ability, and the other tests are measures of psychomotor ability.
The N (30) is too low in this analysis for us to be sure which
factors are really the best predictors, especially given the collinear-
ity among several of the psychometric tests. Across the three
studies reported here, it should become clearer which factors
consistently predict adaptivity. However, these correlations do
provide another piece of evidence that the individual differences in
adaptivity were not simply due to chance variation.

Study 2 (Ackerman, 1988):
Adaptivity During Environment Change

Study 1 found that people could adapt their strategy use to
microlevel success and failure feedback, that people varied in how
much they adapted, and that these individual differences were
predictive of performance in the task. The analyses of Study 2
attempt to replicate these findings in a slightly different situation.
Study 1 focused on adaptivity to success and failure feedback as
people were just learning a complex task. By contrast, Study 2
focuses on adaptivity to success and failure feedback as people
encounter a change in the task after having mastered many aspects
of the task already. It may be that once people have settled on a
particular strategy, they will be less adaptive in response to success
and failure feedback. Also, if people are adaptive in this case, the

individual differences in adaptivity may disappear because the
working-memory demands of the task are lower in later stages of
training.

Method

Participants. The participants of Ackerman’s Study 2 (also reported in
Ackerman, 1988) were 63 University of Minnesota undergraduates who
participated for course credit and $25.°

Procedure. As in Study 1, Ackerman’s participants were given 27
10-min trials. The participants were also given the same 22 ability tests as
in Study 1. The primary difference from Study 1 was that the participants
experienced only good weather (low wind speed and dry runways) for 18
trials, followed by 9 trials using the full weather conditions as in Study
1—a mixture of good and bad weather. The participants were not told in
advance that the first trials would only involve good weather nor that this
would change on Trial 19.

Results and Discussion

Overall adaptivity. As with Ackerman’s Study 1, we analyzed
the OpShort data as a function of whether the previous attempt to
land that plane type on the short runway had been successful (i.e.,
had not resulted in an error). However, because the first 18 trials
did not involve bad weather (and thus there could be no errors in
landing on the short runway for the DC-10s), we used data from
the first four foul-weather trials (i.e., Trials 19-22). As in overall
adaptivity analyses of Study 1, we removed all participants with
minimum numbers of less than 3 in any condition.” The mean
OpShort rates after a successful landing attempt were significantly
higher than those after an unsuccessful landing attempt, mean
OpShort of .41 vs. .28, F(1, 46) = 18.4, MSE = 0.022, p < .0001.
Thus, people were sensitive to the successfulness of their previous
attempts even when they were well practiced with other aspects of
the task.

As with Study 1, the effects of success of the previous attempt
on OpShort rates were divided into legal and illegal cases. There
was a main effect of success, F(1, 39) = 6.07, MSE = 0.040,p <
.02, a main effect of legality, F(1, 39) = 174.1, MSE = 0.034,p <
.0001, and no hint of an interaction, F(1, 39) < 1, MSE = .026,
with approximately 8% more OpShort selections when the prior
landing attempt was successful, regardless of whether the current
situation was legal or not. Thus, once again, the impact of previous
successes and failures appears to be a bias in strategy use rather
than learning the rules for runway applicability.

Individual differences in adaptivity. After considerable train-
ing with the task, were participants just as variable in their adap-
tivity? As with Study 1, to reduce individual differences due to
noise, participants had to have a minimum number of greater
than 5 to be included in the individual differences analyses. Using
this threshold, 45 of the 54 participants were included. Surpris-
ingly, there was approximately the same level of individual dif-
ferences in both Study 1 and Study 2 in the adaptivity measure of
the difference between OpShort use after successes and OpShort
use after failures. The standard deviation in individual adaptivity
was the same in both studies (0.18), and the range in values was

S The original Ackerman study had 65 participants. However, data
from 2 of the participants could not be extracted from the CD-ROM.

7 The number of participants removed varied by analysis—the Ns can be
inferred from the degrees of freedom in the ANOVAs.
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Table 1
Means and Standard Errors for Each Group Over the First Four Trials for Measures in Study 1 (Ackerman, 1 994)
Group
Unadaptive
Excluded Adaptive high Unadaptive low Unadaptive
(n=23) n =21 n=10 n=4) other (n = 8)
Measure M SE M SE M SE M SE M SE

OpShort adaptivity — — 23 03 -.14 .00 -07 04 -.02 02
Planes landed 25.0 12 30.5 12 243 0.0 246 0.7 257 33
Errors 10.1 1.6 129 14 4.8 0.0 13.3 3.0 8.3 31
Crashes 14 03 12 0.2 0.3 0.0 1.1 03 1.9 0.7
Key presses 993 49 1054 60 929 0 991 103 914 7
Calls of Rule IV 0.2 0.1 0.4 0.3 0.0 0.0 04 0.2 3.0 1.8
Ravens Progressive Matrices score 33.0 1.6 34.6 1.3 39.0 0.0 252 5.2 320 22

quite similar (0.81 for Study 1 and 0.88 for Study 2). Figure 6
presents a histogram of OpShort adaptivity in Study 2. In this case,
the modal group (0.05 to 0.15) did include the mean adaptivity
level across all participants (0.14). However, one third of the
participants showed adaptivity levels that were two or more times
as high as the mean, and over 30% of the participants showed no
adaptivity at all.

Again, we can ask how well these individual differences in
strategy adaptivity correlate with performance in the task. We used
the mean number of planes landed per trial over Trials 19-22 (the
range over which adaptivity was assessed) as the measure of
performance. OpShort adaptivity correlated positively with planes
landed (r = .52, p < .001)® at even higher levels than in Study 1.
As in Study 1, adaptivity is a somewhat weaker predictor of
performance than the best individual difference battery mea-
sures—the four best predictors correlated in the .62 to .65 range.
The top eight predictors (all with rs > .44, ps < .01) involve a mix
of perceptual speed, psychomotor ability, and reasoning ability. If
one enters OpShort adaptivity and these eight psychomotor tests
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Figure 6. Ackerman Study 2, histogram of individual OpShort adaptivity
to the success of the previous short-runway landing attempt. Each range
runs from the lower value (inclusively) to the upper value (exclusively).

into a hierarchical multiple regression (with the eight psychomotor
tests entered first) predicting planes landed, OpShort continues to
have a significant contribution (partial r = .41, p < .01). As with
Study 1, there were no restriction of range issues: The individual
difference battery measures correlated no better with performance
in the full data set than in the reduced data set for which there were
minimum numbers of 5. Thus, both in early training and later in
training after changes in the environment, adaptivity appears to
correlate with performance directly and not through indirect cor-
relations with other determinants of performance—because the
direct correlations were larger than correlations along the indirect
path.

What predicts adaptivity? To examine whether adaptivity was
again associated with performance on the psychometric ability
tests, the 22 psychometric scores were correlated with OpShort
adaptivity (minimum N > 5). Only two tests produced significant
correlations: Patterns (r = .39, p < .03) and Letter—Number
Substitution (r = .35, p < .05). Although both of these tests are
supposed to be measures of perceptual speed, when a factor
analysis (principal-factor extraction with varimax orthogonal ro-
tation) is conducted, they both load either primarily or heavily on
reasoning and memory factors. Once again, the numbers are too
low to be sure that these factors and not others are really the best
predictors. Yet across Studies 1 and 2, the evidence suggests that
some aspect of reasoning ability and possibly psychomotor ability
or perceptual speed may be associated with adaptivity. This issue,
among others, is explored further in Study 3.

Study 3: Strategy Adaptivity to Manipulated Base Rates

The analyses of Studies 1 and 2 suggest that people are
generally adaptive in their strategy use and that there are
important individual differences in this strategy adaptivity to
success rates, both early in training and later on. However, the
measure of strategy adaptivity used in those studies had one
very important flaw: It was defined relative to the participants’
self-created successes and failures (i.e., it was a correlational
measure). It is possible that the participants differed in the kinds

8 Because 5 of the participants were missing some of the psychometric
test scores, the number for these correlations was 40. Using only these
participants, OpShort Adaptivity correlated at r = .58 with planes landed.
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of success and failures they produced and not in their strategy
adaptivity. Study 3 provides a more controlled measure of
adaptivity by manipulating the success rates of OpShort and
observing the participant’s adaptivity to these manipulated suc-
cess rates. An additional advantage of manipulating success
rates is that it becomes possible to study separately individual
differences in amount of adaptivity (e.g., high vs. low amounts
of strategy change) and individual differences in rate of adap-
tivity (e.g., fast vs. slow rates of strategy change). Because
global success rates are manipulated, Study 3 also measures
sensitivity to success rates at the global level.

Study 3 manipulated OpShort success rates by varying the
proportion of 747s and PROPs in each 10-min trial. Because 747s
can only land on long runways and PROPs can always land on
either runway, the proportion of 747s and PROPs drastically affect
the importance of using the long runway effectively. When there
are many 747s, it should be adaptive to place the DC-10s and 727s
on the short runway whenever possible. By contrast, when there
are few 747s, there is much less pressure to place the DC~10s and
727s on the short runway. In this situation, it should be more
adaptive to place those planes on the long runway—Ilanding on the
short runway requires making more keystrokes, knowing and
accessing the rules for when the short runway is legal, and check-
ing the current wind and weather conditions. Thus, when there are
many 747s, OpShort rates should be high, and when there are few
747s, OpShort rates should be low.

Another advantage of Study 3 is that it uses participants who
vary more widely in their cognitive abilities than do the typical
university undergraduates. This provides advantages both in terms
of the greater external validity of the findings and greater power
for correlational analyses. Finally, Study 3 also uses a different
battery of individual ability measures. This battery has clearer
information processing underpinnings than the battery used in
Studies 1 and 2 and thus is more likely to provide useful informa-
tion about the cognitive correlates of strategy adaptivity. For
example, we may discover whether working memory is an impor-
tant component of strategy adaptivity.

Finally, in Study 3, we are able to examine both macro- and
microlevel strategy adaptivity, as well as the correlation between
the two. Macrolevel adaptivity will be measured as the changes in
OpShort to the base-rate manipulation. Microlevel adaptivity will
be defined, as in Studies 1 and 2, as the difference between
OpShort use after successful landings and OpShort use after un-
successful landings.

Method

Participants. There were 148 participants, ranging in age from 18
to 31 years (M = 23.1). They were recruited from a temporary-
employment agency and paid for their participation. The study was con-
ducted at the Brooks Air Force Base TRAIN lab as part of a larger study
on individual differences. There were 123 participants in Condition A
and 25 participants in Condition B. Fewer participants were assigned to
Condition B because the focus was on predicting individual differences,
and Condition B was simply a control condition. Approximately 65% of
the participants were men, 5% of participants did not have a high school
diploma, and 21% had at least some college experience.

Procedure. Study 3 used a version of the KA-ATC task that was
reimplemented for the IBM Windows environment. Also, in contrast to
Studies 1 and 2, participants were given only nine 10-min trials. These nine
trials were divided into three blocks of three trials each.

There were two between-subject conditions that manipulated the pro-
portion of 747s (and PROPs) across blocks in different orders. In Condition
A, the proportions of 747s over the three blocks were 25%, 5%, and 50%.
A second condition, Condition B, with a different order was used to ensure
that the results were not peculiar to one particular order, nor simply due to
changes that would have occurred naturally as a function of practice with
the task (i.e., independent of the manipulation). The proportions of 747s for
Condition B were 25%, 50%, and 5% across the three blocks. Because the
strategy adaptivity measure is defined by plane type, one plane type
(DC-10s) was set at a constant high level of 40% across all three blocks to
ensure sufficient numbers for each participant on at least one plane type.
The frequency of PROPs was set to be 55% minus the frequency of 747s
(i.e., 30%, 50%, and 5% in Condition A and 30%, 5%, and 50% in
Condition B), thereby completing the manipulation of the scarcity of the
long runways. The proportion of 727s was held constant at a low level of
5% across the three blocks.

Because the focus of the study was on predicting individual differences,
the remaining structure of the task was held as constant as possible across
blocks and participants while still maintaining the overall dynamic struc-
ture of the task.’

Dependent Measures. As in Studies 1 and 2, the data consisted of the
keystroke information (e.g., strategy use, planes landed, and planes
crashed), and scores from the ability tests. The most important dependent
measure is again OpShort. Because the DC-10 was the only plane type that
occurred with a constant, high frequency in all blocks, the proportion of
OpShort was only calculated for DC—10s.

The individual-ability battery was a subset of the Cognitive Abilities
Measurement (CAM, version 4, Kyllonen, 1993, 1994, 1995) battery. The
CAM battery provides a broad range of tests that are plausibly related to
adaptivity in strategy use and has been used to predict learning and
performance in a large number of training environments (e.g., Shebilske,
Goettl, & Regian, 1998; Shute, 1993). The reason for selecting the CAM
is that it is structured around information-processing concepts (e.g., work-
ing memory, procedural learning, processing speed, etc).

Because the full CAM is quite large and requires several days to
complete, only 11 CAM tests were used. These 11 tests covered the main
information processing constructs—all with plausible possible connections
to adaptivity. The tests included measures of fact (or associative memory)
learning, procedural learning, processing speed, working memory, and
inductive reasoning. For each skill type, there was one test in the verbal
domain and an isomorphic test in the spatial domain {(e.g., word recognition
and figure recognition). The single exception was inductive reasoning, for
which only spatial reasoning tests were available, and so the three available
spatial tests were included, without the complementary verbal tests. Table
2 presents each of the tests that were used (see Appendix B for more
detailed descriptions of the tasks).

Each of the selected measures is a plausible correlate of strategy adap-
tivity. Fact learning may predict OpShort adaptivity because those partic-
ipants who can memorize the rules of the task more readily may be better
able to increase their use of the short runway. Similarly, participants with
better procedural leaming ability may learn the details of the task more
quickly and then been more able to increase their use of the short runway.
Participants with faster processing speed may have more free time to notice
changes in base-rates and then be able to react to them. Participants with
greater working-memory capacity may be better able to retain base-rate
information while performing the task. Moreover, participants with greater
working-memory capacity may have been better able to maintain the rules

® This was implemented by using different scripts for weather changes
that repeated every three trials.
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Table 2

The 11 Cognitive Abilities Measurement Tests Used in Study 3 Classified

by Skill Type and Content Domain

Content domain

Skill type

Verbal

Spatial

Fact learning Word Recognition
Procedure learning
Processing speed
Working memory
Inductive reasoning
Inductive reasoning

Inductive reasoning

Reduction: Future-Past-Present
2-Term Ordering: Furniture/Animals
4-Term Ordering: Furniture/Animals

Figure Recognition
Reduction: Circles
2-Term Ordering: Blocks
4-Term Ordering: Blocks
Figure Sets

Figure Series

Figure Matrices

Note. Verbal reasoning tests were not available for the tests of inductive reasoning.

in memory while doing the task.'® Finally, participants with strong
inductive-reasoning skills may be more likely to notice a change in the
pattern of plane types—indeed, the results from Studies 1 and 2 suggest
that reasoning ability may be related to adaptivity.

Each test produced one score per participant: overall percentage correct
on that measure. The exception to this is Processing Speed, which involved
a median reaction time. Thus, there were 11 ability measures per partici-
pant. Because these ability measures were selected because they map
directly onto information processing concepts, we will use the measures
themselves as predictors rather than factors derived from a factor analysis.
Second, differences in correlations between the spatial and verbal compo-
nent of each ability provide information about what aspect of the task is
being tapped as well as suggestions about possible spuriousness of the
correlations. However, including a large number of possible predictors has
a nontrivial probability of finding spurious correlations. To reduce the
number of variables (and yet retain factors that are meaningful
information-processing constructs), the following procedure was used.
First, a factor analysis was conducted (principal-factors extraction with
varimax orthogonal rotation). This produced five factors, only three with
eigenvalues greater than one. The measures that loaded only on the two
factors with eigenvalues less than one (Fact Learning Verbal and Process-
ing Speed Verbal) were removed, under the argument that these measures
are essentially linear combinations of the other predictors. Then, using only
the three inductive spatial tests, another factor analysis was conducted
using an oblique rotation to extract the general factor underlying the
inductive spatial tests. Thus, predictors were reduced to seven: fact learn-
ing spatial, processing speed spatial, skill learning spatial, skill learning
verbal, working memory spatial, working memory verbal, and inductive
reasoning spatial.

Another obvious source of differences in task performance is the degree
to which participants pay attention to the instructions. To assess and partial
out such differences, reading times were gathered for each of the 61
instruction pages. These timing data were compressed into four variables:
the time spent reading each of the three rules pages (which displayed Rules
I-IIL, IV, and V~VI, respectively) and the median time spent reading each
of the remaining pages.

Results and Discussion

Of the 148 participants, 25 participants (20 in Condition A and 5
in Condition B) were excluded from the analyses. Twenty-four of
these participants performed so badly throughout the task (nega-
tive scores in every block; mean total score per block of —3,419)
and with little sign of improvement) that it is highly likely that they
were not taking the task seriously. Eight of the 25 excluded
participants had too few opportunities (less than three) to exhibit a
preference in one or more of the blocks because they landed almost

no planes. Although one could assume that these 25 participants
were not adaptive, these participants were simply excluded from
the analyses because we wanted to exclude motivational issues
from our analyses of the role that ability plays in performance.

Manipulation check. The goal of the plane-type manipulation
over blocks was to change the adaptiveness of OpShort. That is, it
should be adaptive to use low OpShort when there are few 747s
and high OpShort when there are many 747s. To test whether the
manipulation was successful in this regard, regression analyses
were conducted on the relationship between OpShort use and task
performance within each block. In particular, each participant’s
score for each block was regressed against the proportion of
OpShort for that block, and this was done separately for Blocks 2
and 3, within each condition. Blocks in which the participant had
fewer than three opportunities to select among two available
runways were exclnded. Within Condition A, Block 2 (5% 747s),
OpShort was negatively correlated with score (r = —.35, p <
.001). Within Block 3 of condition A (50% 747s), OpShort was
positively correlated with score (r = .35, p < .001). The regression
results for Condition B were similar, although not as strong be-
cause there were fewer data points. Within Block 3 of Condition B
(5% 747s), OpShort was uncorrelated with score (r = —.12, p >
.5). By contrast, within Block 2 of Condition B (50% 747s),
OpShort was positively correlated with score (r = .55, p < .02).
Thus, the regression analyses indicate that the manipulation was
successful: High OpShort rates were adaptive when there were
many 747s, and low OpShort rates were adaptive when there were
few 747s.

Overall adaptivity. Although the preceding analyses suggest
that participants should have changed their OpShort use across the
blocks, it may have been that participants were too busy with the
demands of the task to be able to adapt their strategy use. To
examine whether participants did adapt, a Condition X Block
mixed ANOVA was conducted on OpShort. The predicted inter-
action was quite strong, F(2, 242) = 16.4, MSE = 0.022, p <
.0001. For Condition A, the participants adapted in the predicted
pattern of medium-low-high (see Figure 7). By contrast, the par-
ticipants in condition B followed the predicted pattern for only

%1n fact, participants with higher verbal working-memory capacity
spent less time reading the instructions (r = —.25, p < .01) and asked to
see the task rules less often during the task (r = —.20, p < .02).
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Figure 7. The mean proportion OpShort with each condition within each
block of three trials in Study 3.

Blocks 2 and 3 (high, then low)—their Block 1 was somewhat
lower than expected, perhaps reflecting a lack of knowledge of the
rules at the beginning of experiment.!' However, participants in
general did adapt in response to the manipulation in the expected
directions. Thus, as in Studies 1 and 2, participants overall were
able to adapt their strategy use to changing rates of success in the
context of a complex, dynamic task.

Individual differences in adaptivity. The remaining analyses
focus on whether participants differed in their adaptivity. To
address this issue, the participants were classified into adaptive and
unadaptive groups using two different criteria: a strict criterion
using all three blocks and a lax criterion using only the last two
blocks. These analyses involve participants from both conditions,
but the definitions of adaptivity will be defined in terms of Con-
dition A (i.e., a medium, low, high pattern) to keep things simple
(i.e., the reader can assume that the measures were appropriately
reversed or otherwise modified for participants in Condition B). To
be classified as adaptive using the strict criterion, the participant’s
OpShort for the second block had to be lower than in the first block
and their OpShort had to be higher in the third block than in the
first block (i.e., a medium, low, high pattern). To be classified as
adaptive using the lax criterion, the OpShort for the third block had
to be higher than that of the second block. According to the lax
criterion, 69% (85 of 123) of the participants were adaptive.
According to the strict criterion, only 29% (36 of 123) of the
participants were adaptive. Thus, only a minority of the partici-
pants fully adapted their OpShort use throughout the task, and 31%
of the participants did not meet even the very lax criterion of
adaptivity.

Was it optimal to follow the expected strategy adaptation pat-
terns? Deciding where to land a plane is only one small component
of this complex task. For example, research by others with this task
has shown that the very effective (and legal) strategy of moving
planes from the queue directly to Hold 1 accounts for much of the
performance variance throughout the task (John & Lallement,
1997, Lee et al., 1995). Thus, participants who pay close attention
to where to land their DC-10s may be doing so at the cost of
paying less attention to other important decisions. In other words,
it is possible that OpShort adaptive participants are “penny wise
but pound foolish” (i.e., locally optimal but globally suboptimal).

To examine this issue, adaptivity using the strict criterion was
regressed against mean block score. Those participants classified
as adaptive did indeed have much higher mean block scores than
those classified as unadaptive, 3,480 vs. 2,102, F(1, 121) = 17.1,

MSE = 2.83 X 10% p < .0001. However, it is possible that this
correlation is mediated by some other ability differences. That is,
adaptive participants may have been generally more intelligent and
may have performed at higher levels independent of their strategy
adaptivity.

When adaptivity was placed in competition with the seven CAM
ability measures (or any subset of these seven measures) in a
hierarchical multiple regression (with the ability measures entered
first) predicting score, OpShort adaptivity continued to be a sig-
nificant correlate of score (ps < .05).'? Thus, it appears that the
correlation between adaptivity and performance is not mediated
through indirect correlations with psychometric ability.

Amount and rate of adaptivity. The binary classification of
participants into adaptive and unadaptive does not distinguish
between participants who adapted only slightly and those who
shifted their strategy use a great deal in response to the base-rate
manipulations. To examine whether the adaptive participants dif-
fered in how much they adapted their OpShort use, a measure of
extent of adaptivity was developed: the difference in proportion of
OpShort use between the second and third blocks, between which
was the largest transition in 747 base rates.'®> This measure, as a
difference in proportions, could range from 0 to 1. Only the 85
participants who showed an increase in OpShort use from Block 2
to Block 3 were included. Figure 8 shows that these adaptive
participants varied widely in their extent of adaptivity—40% of
the adaptive participants adapted less than .2, and 20% adapted .4
or more.

Another measure of adaptivity is how fast people adapt. This
was measured as the proportion of an eventual adaptation made
immediately, using the following method, again focusing on the
transition from the second to third blocks for which there was the
biggest base rate change. Eventual adaptation amount was first
calculated—the difference between OpShort on the trial immedi-
ately before the transition (i.e., Trial 6) and the largest OpShort
value on the three trials after the transition (i.e., maximum of
Trials 7, 8, and 9). The amount of immediate adaptation was
calculated as the difference between the OpShort for the last trial
before a transition and the first trial after that transition (i.e.,
Trials 6 to 7). Then the amount of immediate adaptation was
divided by the eventual transition amount, giving a proportion. A
score of 1 reflected adaptation completed entirely immediately,
zero reflected no immediate adaptation, and values in between
reflected intermediate adaptation rates. Participants who adapted in
the wrong direction on the first transition block were assigned a
zero on this measure. As with extent of adaptivity, participants
who did not adapt from the second to third blocks (i.e., were
unadaptive according to the lax criterion) were excluded. Figure 9
shows very large differences in rate of adaptivity (N = 81)—20%

! The difference between conditions in Block 1 was only marginally
significant, F(1, 121) = 1.5, MSE = 0.033, p < .25.

12 The correlations between performance and the psychometric measures
were approximately the same whether or not the excluded participants were
included—thus, there were no problems of restricted range in these anal-
yses.

13 The transition between Blocks 1 and 2 involved a fairly small change
in 747 base rates and therefore presents restricted range problems for
examining individual differences.
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Figure 8. Histogram of adaptive participants’ extent of adaptivity in
Study 3. Each range runs from the lower value (inclusively) to the upper
value (exclusively).

of the adaptive participants made almost no change immediately,
and over 40% adapted almost entirely immediately.

Do these differences in extent and rate of adaptivity relate to
task performance? Because adapting strategy use may require
cognitive resources, performance on other aspects of the task may
suffer. Therefore, it is not necessarily true that differences in
OpShort adaptivity will be related to differences in overall task
performance. As was done with the binary adaptivity measure,
both of these measures were regressed against mean block score.
Extent of adaptivity as measured by the rise in OpShort from
Blocks 2 to 3 (including only those participants who showed an
increase) was significantly correlated with overall score (r = .62,
p < .0001). Rate of adaptivity as measured by the percentage of
immediate change from Blocks 2 to 3 (again including only those
participants who showed an increase) was not significantly corre-
lated with overall score (r = .10, p > .3), but it did correlate with
score in Block 3 (r = .23, p < .05). It may be that the low
correlations of rate with performance are due to higher noise levels
from using trial level rather than block level data in its calculation.

Individual differences among the unadaptive. Why did the
unadaptive participants not adapt their strategy use? One potential
explanation is that the participants may have always or never used
the short runway. In other words, the unadaptive participants did
not appear to adapt because of floor or ceiling effects in strategy
use. Alternatively, these participants may have used both the short
and long runways frequently but were simply unable to adapt their
strategy use to the changing base rates. The unadaptive participants
(using the strict criterion) were classified into three groups corre-
sponding to these alternative explanations: unadapt high, with
OpShort levels above 45% in all three blocks; unadapt low, with
OpShort levels below 15% in all three blocks, and unadapt other,
the remaining unadaptive participants. Table 3 shows that although
there were participants who fell into the unadapt high and unadapt
low groups, the great majority of the unadaptive participants fell
into the unadaptive other group. In other words, the majority of the
unadaptive participants did use the long and short runways fre-
quently but could not adapt their use of them in response to
changing success base rates.

What characterized the various participant groups? The five
groups (excluded, adaptive, unadaptive high, unadaptive low, un-
adaptive other) differed in terms of score, F(4, 143) = 63.2,
MSE = 3.09 X 10°% p < .0001; errors, F(4, 143) = 109, MSE =
5,639, p < .0001; crashes, F(4, 143) = 1004, MSE = 124,p <
.0001; keypresses, F(4, 143) = 4.6, MSE = 9.23 X 10°, p < .001;
time spent studying Rule IV, F(4, 143) = 2.7, MSE = 629, p <
.05; and overall CAM scores, F(4, 143) = 54.8, MSE = 165, p <
0001 (see Table 3). The excluded group had negative scores, a
very large number of errors, very many plane crashes, a low
keypress rate, little time spent studying the rule for when planes
could land, and the lowest overall CAM scores—their performance
was truly abysmal. By contrast, the adaptive group had the highest
scores, had low error rates, had low crash rates, had a high
keypress rate, spent a significant amount of time studying rule IV,
and had the highest CAM scores—their overall performance was
quite strong. How did the unadaptive subgroups compare? The
unadaptive high (high use of the short runway) participants spent
the most amount of time studying Rule IV and thus were able to
use the short runway frequently without incurring more errors. The
unadaptive low participants spent little time reading Rule IV and
thus did well to land the planes infrequently on the short runway
and incurred very few errors (and this difference in errors was
entirely due to having fewer illegal runway selection errors).
However, their scores were still much lower than those of the
adaptive participants. The unadaptive other participants were not
remarkable in any respect—neither strategy floor effects nor ceil-
ing effects nor lack of time spent reading the rules nor motivational
differences could explain their lack of strategy adaptivity.

Predictors of adaptivity. In Studies 1 and 2, reasoning ability
tests correlated with strategy adaptivity, but somewhat inconsis-
tently. In Study 3, the participants were more heterogeneous in
their abilities, and a different set of ability tests was used. Were
these ability tests predictive of adaptivity differences? If one
compares ability test scores of the adaptive and unadaptive partic-
ipants (using the strict criterion), the two groups differ on all but
one (processing speed) of the seven psychometric measures. How-
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Figure 9. Histogram of adaptive participants’ rate of adaptivity in
Study 3. Each range runs from the lower value (inclusively) to the upper
value (exclusively).
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Table 3
Means and Standard Errors for Measures in Study 3
Group
Excluded Adaptive Unadaptive Unadaptive Unadaptive
(n = 25) (n = 36) high (n = 6) low (n = 8) other (n = 73)
Measure M SE M SE M SE M SE M SE

Score -3,419 413 3480 249 2,148 198 2,700 498 2,032 217
Errors 1873 238 69.9 99 90.2 171 456 173 98.7 7.8
Crashes 17.7 1.0 1.1 03 1.8 04 1.7 1.0 3.1 04
Key presses 1,856 153 2902 162 2235 344 2,350 358 2,578 119
Study Rule IV* 28.3 35 39.2 36 64.9 9.4 38.1 47 37.1 34
CAM % correct 53.6 2.1 78.2 1.9 65.8 33 70.9 58 66.8 1.7
Note. CAM = Cognitive Abilities Measurement.

* Mean time in seconds spent reading Rule IV during the instruction phase.

ever, because all of the CAM scores are positively correlated, it is
unclear which of these measures are actual independent predictors
of adaptivity.

To assess which measures were independent predictors of adap-
tivity (as a binary outcome using the strict criterion), an all-
possible-regressions procedure (with C,, as the selection criterion)
was used including all seven CAM scores and the four measures of
instruction-reading time. The overall best model involved only two
predictors (R* = .30): inductive reasoning (partial r = .31, p <
.001) and skill learning spatial (partial r = .30, p < .001). All the
best models involved those two factors. Once again, reasoning
ability appears to be related to adaptivity.

Was this relationship between reasoning and adaptivity deriva-
tive of some other relationship between inductive reasoning and
overall OpShort use? For example, perhaps inductive reasoning
was predictive of the ability to learn and use the landing rules and
not specifically adaptivity in runway use. In other words, perhaps
the adaptive participants were simply better able to learn the rules.
If this were true, then one would expect that predictors of OpShort
adaptivity would also predict overall OpShort use (i.e., the overall
absolute levels). However, none of the seven CAM scores were
significantly related to overall OpShort use (mean across all
blocks). The best predictor of overall OpShort use was the time
spent reading Rule IV during the instructions (r = .16, p < .07),
such that participants who spent more time reading that rule used
the short runway more often. Inductive reasoning was not at all
associated with overall OpShort use (r = .01). Thus, raw OpShort
use was a function of degree of rule learning, whereas adaptivity
(differential use of the short runway in response to the manipula-
tion) was related to inductive reasoning and not simple rule
learning.

A further possible confound is that the CAM tests may have
differed in their reliabilities, and the tests that were more predictive
were simply the ones that were most reliable. Table 4 presents the
even—odd reliabilities for each of the tests. As we see, the most
predictive were not the ones with the highest even—odd reliability.
Because even—odd reliability is a mixture of both internal consis-
tency and item homogeneity, one might argue that the inductive
spatial tests have the lowest item homogeneity and for this reason
have the highest predictive power. However, an examination of the
items in these particular inductive tests makes this argument un-
likely: the items are all fairly similar, and the low even—odd

reliability scores are more likely attributable to the relatively small
number of items in those tests. Thus, it is unlikely that the high
predictiveness of the inductive reasoning tasks is due to relatively
higher internal consistency or to relatively lower item
homogeneity.

As discussed earlier, many of the tested participants were ex-
cluded from the adaptivity analyses. Although there were impor-
tant reasons for excluding these participants, it is possible that
excluding them has biased or misrepresented what factors are
associated more generally with adaptivity. The analyses were
reconducted including all the participants for whom adaptivity
could be defined (i.e., no longer excluding those with extremely
poor performance levels). With these 139 participants, the same
two predictors were associated with adaptivity (multiple r* = .39):
inductive reasoning (partial r = .35, p < .001) and skill learning
spatial (partial » = .34, p < .001). Thus, the conclusions regarding
the associates of adaptivity did not appear to be influenced by
problems of restricted range.

Predicting extent and rate of adaptivity. What factors predict
extent of adaptivity? An all-possible-regressions procedure was
conducted again, focusing on the OpShort change from Block 2 to
Block 3 and including only those participants who showed an
increase. The best model included the top three correlates (multiple
7* = .35) in order of predictiveness: working memory spatial (r =
49, p < .0001), inductive reasoning (r = .49, p < .0001), and fact

Table 4
The Even—0dd Reliability for Each Cognitive Abilities
Measurement (CAM) Ability Measure in Study 3

CAM measure Spatial Verbal
Fact learning a7 67
Processing speed (% correct) 77 .89
Processing speed (median reaction time) 91 87
Procedural learning .88 .96
Working memory 74 .86
Inductive reasoning: Figure Sets .15
Inductive reasoning: Figure Series 43
Inductive reasoning: Figure Matrices 43
Note. Verbal reasoning tests were not available for the tests of inductive
reasoning.
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learning spatial (r = .47, p < .0001). All the best models included
these three predictors. Thus, although inductive reasoning does
enter into extent of adaptivity, working memory and fact learning
also seem to play an important role.

Do the same factors predict rate of adaptivity? A similar all-
possible-regressions procedure was conducted using as a depen-
dent measure the amount of immediate adaptation described ear-
lier, again including only those participants who showed a positive
increase in OpShort use. The best model included the top two
correlates (multiple 7 = .19): skill learning spatial (r = .37, p <
.001) and processing speed spatial RT ( = —.31, p < .01). For
this measure, inductive reasoning was a very poor predictor (r =
.09, p > .4). Thus, rate of adaptivity appears to depend on different
factors. Of course, it is important to note that none of the psycho-
metric measures were particularly good predictors of rate of adap-
tivity. Once again, these weak correlations with rate of adaptivity
may be due to higher noise levels from using trial level rather than
block level data in its calculation.

Micro- versus macroadaptivity. Up to this point, the analyses
of Study 3 have focused on the macrolevel adaptivity to the
base-rate manipulation. What about the microlevel adaptivity that
was examined in Studies 1 and 2? As in Studies 1 and 2, partic-
ipants were also sensitive to local feedback: They were more likely
to select the short runway after a successful landing attempt than
after an unsuccessful landing attempt (mean OpShort of 42 vs.
33, F(1, 113) = 32.4, MSE = 0.015, p < .0001, for DC-10s, for
Trials 1-9). To examine individual differences, micro-OpShort
adaptivity was calculated as in Studies 1 and 2: the difference
between the proportion of OpShort after successful landing at-
tempts and the proportion of OpShort after unsuccessful landing
attempts. This measure had a mean of .09 and a standard deviation
of .17. Twenty-six percent of the participants showed no adaptivity
at all on this measure.

There was a modest but significant correlation between this
microlevel adaptivity and macrolevel adaptivity, as defined as
adapting OpShort at all (r = .19, p < .05) or as defined as the
extent of adaptivity from the second to the third block (r = .17,
p < .06). There was also a small but significant correlation
between microlevel adaptivity and performance in the task (r =
.23, p < .02). This correlation of microlevel adaptivity and per-
formance is much lower than that found in Studies 1 and 2. This
finding may indicate either that (a) microlevel adaptivity is less
important over the course of shifting base-rates manipulations or
(b) that we have not adequately measured microlevel adaptivity in
this shifting base-rate situation. Because this measure of micro-
level adaptivity has an even lower correlation with performance in
the first block in which no base-rate manipulation had yet occurred
(r = .17, p < .1), the first alternative seems unlikely. Thus, the
weak correlations with microlevel adaptivity are more likely to
reflect some bias or extra noise in its measurement in this partic-
ular study.

General Discussion

This article has further explored a new conception of individual
differences: differences in strategy adaptivity, specifically adap-
tivity to changing success base rates (see also Reder & Schunn,
1999; Schunn & Reder, 1998). The three studies found evidence
for significant individual differences in sensitivity to success rates,
both at a microievel (all three studies) and at a global level (Study

3). These individual differences were not attributable to chance
variation because they were strongly associated with performance
and because they could be predicted using cognitive-ability test
batteries—most commonly predicted by reasoning ability. Study 3
also found evidence that individuals differ in terms of whether they
adapt, the extent to which they adapt, and the rate at which they
adapt. The differences did not seem attributable to differentiat
knowledge of the task or to general intelligence differences.

How do our findings compare with other investigations of
individual differences in the KA-ATC task? Lee, Anderson, and
Matessa (1995; Lee & Anderson, 1997) found that differences in
overall strategy use accounted for a large proportion of perfor-
mance differences in the task.' This raises the question of whether
the adaptive participants had more complex strategies rather than
selecting among the same set of strategies more adaptively. For
example, the adaptive participants may have had different explicit
strategies for the different plane ratios (e.g., if the ratio of 747s is
high, then use the short runway whenever possible). This alterna-
tive interpretation would make the observed differences consistent
with the strategy-differences view of individual differences. How-
ever, it is important to note that the adaptive participants never
shifted their OpShort levels in a binary fashion (e.g., from always
using the short runway to never using the short runway). Instead,
the participants merely changed the degree of short runway use.
This kind of continuous shift is much more consistent with chang-
ing ratios of strategy use than is shifting from one strategy to
another. Moreover, the participants also differed in terms of extent
of adaptivity and rate of adaptivity, which is difficult to explain
using just different strategies. One might ask whether the strategy
differences observed by Lee et al. were in fact due to adaptivity
differences. Perhaps more adaptive participants were better able to
select appropriate strategies. Whatever the answer, the adaptivity-
and strategy-differences approaches are complementary in that
both emphasize the importance of strategies in the analysis of
performance (Reder, 1982, 1987, 1988).

Coming from a parameter-differences approach, Ackerman
(1988, 1989, 1990) focused on the relationship between predictors
of performance and extent of training within the KA-ATC task. He
found that different factors predicted performance at different
phases of training: first reasoning ability, then perceptual speed,
and finally reaction-time ability. Our studies also found that rea-
soning ability and processing speed were important components of
performance. One potential contribution of this article is to provide
an explanation for the relationships between the cognitive-skills
assessment battery and task performance: The relationship is
strongly mediated by differences in strategy adaptivity. Thus, the
adaptivity-differences approach provides a link between the
parameter- and strategy-differences approaches: Different strate-
gies are selected because of different strategy adaptivity, which is
related to parameter differences. Strategy selection is a process and
as such may be affected by parameter differences in the cognitive
architecture—differences in reasoning ability, working memory
capacity, and processing speed.

In addition to the theoretical importance of understanding the
nature of individual differences and the mechanisms underlying

14 They focused on a strategy relating to moving planes from the queue
to the hold patterns rather than on the strategies in this paper—runway use
strategies.
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strategy selection, there is practical importance to the findings of
this paper. In particular, because individuals appear to differ in
how well they adapt their strategy use to changes in the task
environment, it might be advantageous to select adaptive individ-
uvals for tasks in which the task environment frequently and rapidly
cﬁanges (e.g., air traffic controllers). Performance in the KA-ATC
task was strongly related to strategy adaptiveness—adaptive par-
ticipants had much higher scores. These studies also suggest which
factors may be good predictors of adaptiveness: Inductive reason-
ing and skill learning predicted whether people adapted; working
memory, inductive reasoning, and fact learning predicted how
much people adapted; and skill learning and processing speed
predicted how quickly people adapted. Future studies should be
directed at determining exactly which factors prove to be the best
predictors across a variety of tasks and situations.

Assuming, however, that the correlates of adaptivity found in
these studies prove to be the best predictor of adaptiveness, what
possible mechanisms could explain these relationships? Inductive
reasoning could play a role in adaptiveness in at least two ways.
First, inductive-reasoning skill may be related to being able to
notice shifting patterns in the environment. In the case of Study 3,
this possibility seems unlikely because the base-rate manipulation
was so heavy handed that it seems unlikely that any participants
were unaware of the manipulation (at least among the nonexcluded
participants). Moreover, Schunn and Reder (1998) found that
noticing base-rate manipulations did not influence whether people
adapted; instead, it was related to how much people adapted,
assuming they adapted.

Second, inductive reasoning might be related to being able to
quickly understand the relationship between a strategy and its
effect or to being able to diagnose when a strategy is no longer
appropriate. In a series of computational simulations of participant
performance in these studies using the Adaptive Control of
Thought-Rational framework (ACT-R, Anderson & Lebiere,
1998), Best, Schunn, and Reder (1998) found that developing an
appropriate representation of the goal hierarchy for the landing
task was key to being adaptive to the base-rate manipulation. In
particular, it was necessary to set a goal to fill both runways (rather
than simply a goal to land planes). If the participants did not induce
this goal hierarchy, the model would predict that they would be
insensitive to base-rate manipulations. Skill-learning ability might
play a similar role here as well: How likely are people to adopt the
correct skill decomposition for a task?

The role of working-memory capacity in extent of adaptation
also has several possible causal chains. Presumably it involves an
increased ability to keep information in mind while simultaneously
performing the task, specifically base-rate information. In a related
fashion, processing speed could be related to adaptation rate by
allowing dual tasking: keeping track of outcomes while working at
the basic task. Under this account, ability to retain the recent set of
outcomes would predict how quickly the pattern of change can be
detected and hence how fast one could adapt. Reasoning ability, in
contrast, would predict whether given a pattern, the individual
understood what strategy to adopt for best performance with the
new pattern.

How generalizable are the findings from these studies? Analyses
of individual differences in question-answering and simple
problem-solving tasks (Schunn & Reder, 1998) suggest that exis-
tence of individual differences in strategy adaptivity is a quite
general phenomenon. An open question is whether the strategy

adaptivity approach might be applied fruitfully to other areas of
individual differences (e.g., child development, aging, expertise,
etc.). If the groups differ in reasoning ability, working-memory
capacity, or speed of processing, then the results from this paper
suggest there should be adaptivity differences across those other
groups as well. Yet Siegler and Lemaire (1997) found no group
differences in strategy adaptivity in their older—younger adult
comparisons for which previous research suggests that there are
processing speed or working-memory capacity differences.

One possible explanation of the lack of effect in the Siegler and
Lemaire study is that Siegler and Lemaire looked at adaptivity in
a static domain, mathematics. Base rates were not manipulated,
and significant learning did not occur over the course of the
experiment. Thus, although participants may have exhibited a
crystallized strategy adaptivity in which they chose strategies
appropriately based on features of the problem, they did not need
to exhibit a fluid strategy adaptivity in which they chose strategies
using feedback from (possibly changing) base rates of success. :
This analysis suggests that if Siegler and Lemaire had included a’
base-rate manipulation, they might have found group differences.!

There are many conceptions of adaptivity. The preceding para-
graph raised the possibility of static versus fluid adaptivity. The
bulk of this article has focused on adaptivity in strategy use, in
particular adaptivity to changing base rates of strategy success. It
is an open question as to how base-rate-strategy adaptiveness
might relate to other kinds of adaptiveness. For example, it may bg
correlated with individual differences in the ability to adapt to
instructions (Reder, 1987; Shebilske, Goettl, & Regian, 1999), in
the ability to select and change representations (Lovett & Schunn,
1999; Schunn & Klahr, 1996; Schunn & Lovett, 1996), or in the
ability to adaptively control attention (Gopher, 1982, 1996; Go-
pher & Kahneman, 1973).

In conclusion, this article has provided evidence for a new kind
of individual difference: differences in strategy adaptivity. The
article has also described new methods for assessing, validating, and
predicting such individual differences. There are several advan-
tages to the strategy-adaptivity approach to individual differencgs.
First, this approach builds on the strengths of the parameter-difference
and strategy-difference approaches to individual differences. Be-
cause it analyzes the strategies underlying tasks as the strategy
approach does, the strategy-adaptivity approach can provide a
detailed account of performance on any particular task. Because it
searches for predictive features relating to the individual outside of
the details of the particular domain, as the parameter approach
does, the strategy-adaptivity approach should be able to account
for correlated performance differences across many tasks and
domains. Finally, the strategy-adaptivity approach promises to
provide new insights into the mechanisms underlying strategy
selection and the nature of individual differences.
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Appendix A

Ability Tests Used in Ackerman Studies 1 and 2

Test

Factor

Patterns

Number Series
Circle Tapping
Name Comparison
Object-Number
Analogies

Scattered x’s

CA-2

Letter Sets

Picture Number
Vocabulary

Raven’s Progressive Matrices
Word Beginnings
Square Marking
Perceptual Speed
First & Last Names
Figure Classification
Pursuit Aiming
Letter/Number Substitution II
Simple RT
2-Choice RT
4-Choice RT

Perceptual Speed

Reasoning

Movement Speed/Psychomotor
Perception Speed

Memory

Verbal, Reasoning

Perceptual Speed

Perceptual Speed

Reasoning

Memory

Verbal

Verbal Reasoning

Verbal

Movement Speed/Psychomotor
Perceptual Speed

Memory

Reasoning

Movement Speed/Psychomotor
Perceptual Speed
Psychomotor

Psychomotor

Psychomotor

(Appendixes continue)
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Appendix B

Description of Ability Measures Used in Study 3

The verbal and spatial test of each factor were isomorphic, with
differences only in the items presented on the screen (i.e., words
vs. stick figures). Therefore, only descriptions of either the spatial
or verbal test are included here.

Working-Memory Capacity Verbal: Four-Term Ordering

This test requires participants to produce the order of four items
from three statements presenting partial information regarding the
order of the items. The four items are divided into two categories
of two items each. One statement describes the relative ordering of
the two categories. The second and third statements describe the
order of the items with each category. For example,

The ANIMALS come after the FURNITURE.
The cow does not come before the bird.
The chair does not come after the lamp.

After the three statements are presented, participants are given 15 s
to select the correct order from eight numbered alternatives ap-
pearing on the screen. The correct response for this example is
chair lamp bird cow. Participants are given feedback for incorrect
responses and are allowed to review the three sentences and
alternative answers. This test contains 24 items.

Processing Speed Verbal: Two-Term Ordering

Participants must decide as quickly as possible whether two
presented words conform to the order specified in a sentence at the
top of the screen. The sentences are presented first and either state
that Word A will be before Word B or that Word A will be after
word B (e.g., The bird comes before the cow). The two words are
then presented in the middle of the screen. Participants are to
respond as quickly as possible by typing L if the word order
matches the sentence and D if it does not. This test contains 12
items.

Fact Learning Spatial: Figures Recognition

Participants are required to memorize 12 geometrical figures in
a 3 X 4 matrix and then to determine whether individually pre-
sented figures were in that matrix. Participants are given 60 s to
study the figures. During a practice test, participants are given the
hint to try to make associations with what the figures may resem-
ble (e.g., a leiter, a flag). Immediately after study, participants are
shown individual figures and asked whether each was one studied.
There are two sets of figure matrices, with 26 recognition test
items per set.

Procedural Learning Spatial: Reduction of Circles

Participants are presented two circles that must be combined to
form one circle, using the following rules:

Rule 1

If both circles are solid (i.e., each are either entirely white or
entirely black), then the combined circle will keep the black parts
of both circles. For example, if one circle is solid block and the
other is solid white, then the result is a solid black circle.

Rule 2

If either circle is a mix, then the combined circle will keep the
white parts of both circles. For example, if one circle is solid black
and the other is black on the left half and white on the right half,
the result is a circle with the right half white. Participants choose
the answer from four numbered alternatives presented at the bot-
tom of the screen. This contains 96 items.

Inductive Reasoning Spatial
Figure Sets

Participants are presented with three sets of figures. Two of the
sets will be related according to various themes. Participants must
determine which set is the odd set. Some of the various patterns
include the following: figures formed with straight lines as op-
posed to curved lines, internal shading versus no shading, and so
on. There are 10 items that must be solved within a 5-min period.

Figure Series

Participants are shown a series of shapes at the top of the screen
and must choose the next shape occurring in the series from three
numbered alternatives. For example, if the series was /*//_, the
answer would be **. There are 10 problems that must be solved
within a 5-min period.

Figure Matrices

Participants are shown a 3 X 3 matrix in which a figure is
contained in all but one of the cells. There are patterns or rules that
apply across and down the figures that must be induced to decide
what figure belongs in the empty cell. The matrix and eight
alternatives responses are shown on the screen simultaneously.
Some of the rules and patterns used are as follows: gradual shading
of figures, successive additions or deletions to figures, rotation of
figures, and so on. There are nine problems that must be solved
within a 10-min period.
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