
PROGRAMMING C#
IN VISUAL STUDIO

Week 9, Oct 22 2009
Parametric Modeling with BIM

Thursday, October 22, 2009

C# OVERVIEW

using System;
using System.Collections.Generic;
using System.Text;
using System.Diagnostics;

namespace Hello_World
{
 class Program
 {
 static void Main(string[] args)
 {
 // Comment for the Hello World!
 Console.WriteLine("Hello World!");
 Console.ReadLine();
 }
 }
}

namespace

class

Function Main()

 namspace
 class1
 class2

 class
 function
 function

Comment

Keywords

Thursday, October 22, 2009

C#: KEYWORDS

• Keywords are the character string tokens used to define the
C# language.

>> Keywords cannot be used as variable names or any
other form of identifier, unless prefaced with the @
character.

>> All C# keywords consist entirely of lowercase letters.

Thursday, October 22, 2009

C#: KEYWORDS LIST

abstract const extern int out short typeof
as continue false interface override sizeof uint
base decimal finally internal params stackalloc ulong
bool default fixed is private static unchecked
break delegate float lock protected string unsafe
byte do for long public struct ushort
case double foreach namespace readonly switch using
catch else goto new ref this virtual
char enum if null return throw void
checked event implicit object sbyte true volatile
class explicit in operator sealed try while

Thursday, October 22, 2009

C#: DOT OPERATOR(.)
using System;
using System.Collections.Generic;
using System.Text;
using System.Diagnostics;

namespace Hello_World
{
 class Program
 {
 static void Main(string[] args)
 {
 // Comment for the Hello World!
 Console.WriteLine("Hello World!");
 Console.ReadLine();
 }
 }
}

DOT OPERATOR(.)

Thursday, October 22, 2009

Annotating the Code:

> Single-line comment

> Delimited comment

> Documentation comment

C#: COMMENTS

The text from the beginning marker to the end of the current line is ignored by
the compiler.

The text between the start and end markers is ignored by the compiler.

Comments of this type contain XML text that is meant to be used by a tool to
produce program documentation.

Thursday, October 22, 2009

Single-line comment

example:

Delimited comment

example:

C#: COMMENTS

// Single-line comment

/*
This text is ignored by the compiler.
Unlike single-line comments, delimited comments like this
one can span several lines.
*/

>> The beginning marker: //

>> The start marker: /*
>> The end marker: */

Thursday, October 22, 2009

Documentation comment

Comments of this type contain XML text that is meant to be used by a tool to produce
program documentation.

example:

C#: COMMENTS

/// <summary>
/// This class does...
/// </summary>
class Program
{
...

>> The beginning marker: ///

Thursday, October 22, 2009

Documentation comment

C#: COMMENTS

<c>
<para>
<see>*
<code>
<param>*
<seealso>*
<example>
<paramref>
<summary>

<exception>*
<permission>*
<typeparam>*
<include>*
<remarks>
<typeparamref>
<list>
<returns>
<value>

Tags:
/// <summary>

 /// Enter description for method bb.
 /// </summary>
 /// <param name="s">Describe parameter.</param>
 /// <param name="y">Describe parameter.</param>
 /// <param name="z">Describe parameter.</param>
 /// <returns>Describe return value.</returns>
 public int bb(string s, ref int y, void* z)
 {

 return 1;
 }

Example:

Thursday, October 22, 2009

http://msdn.microsoft.com/en-us/library/te6h7cxs.aspx
http://msdn.microsoft.com/en-us/library/te6h7cxs.aspx
http://msdn.microsoft.com/en-us/library/x640hcd2.aspx
http://msdn.microsoft.com/en-us/library/x640hcd2.aspx
http://msdn.microsoft.com/en-us/library/acd0tfbe.aspx
http://msdn.microsoft.com/en-us/library/acd0tfbe.aspx
http://msdn.microsoft.com/en-us/library/f8hahtxf.aspx
http://msdn.microsoft.com/en-us/library/f8hahtxf.aspx
http://msdn.microsoft.com/en-us/library/8cw818w8.aspx
http://msdn.microsoft.com/en-us/library/8cw818w8.aspx
http://msdn.microsoft.com/en-us/library/xhd7ehkk.aspx
http://msdn.microsoft.com/en-us/library/xhd7ehkk.aspx
http://msdn.microsoft.com/en-us/library/9w4cf933.aspx
http://msdn.microsoft.com/en-us/library/9w4cf933.aspx
http://msdn.microsoft.com/en-us/library/wb7x2fhw.aspx
http://msdn.microsoft.com/en-us/library/wb7x2fhw.aspx
http://msdn.microsoft.com/en-us/library/2d6dt3kf.aspx
http://msdn.microsoft.com/en-us/library/2d6dt3kf.aspx
http://msdn.microsoft.com/en-us/library/w1htk11d.aspx
http://msdn.microsoft.com/en-us/library/w1htk11d.aspx
http://msdn.microsoft.com/en-us/library/h9df2kfb.aspx
http://msdn.microsoft.com/en-us/library/h9df2kfb.aspx
http://msdn.microsoft.com/en-us/library/ms173191.aspx
http://msdn.microsoft.com/en-us/library/ms173191.aspx
http://msdn.microsoft.com/en-us/library/9h8dy30z.aspx
http://msdn.microsoft.com/en-us/library/9h8dy30z.aspx
http://msdn.microsoft.com/en-us/library/3zw4z1ys.aspx
http://msdn.microsoft.com/en-us/library/3zw4z1ys.aspx
http://msdn.microsoft.com/en-us/library/ms173192.aspx
http://msdn.microsoft.com/en-us/library/ms173192.aspx
http://msdn.microsoft.com/en-us/library/y3ww3c7e.aspx
http://msdn.microsoft.com/en-us/library/y3ww3c7e.aspx
http://msdn.microsoft.com/en-us/library/4dcfdeds.aspx
http://msdn.microsoft.com/en-us/library/4dcfdeds.aspx
http://msdn.microsoft.com/en-us/library/azda5z79.aspx
http://msdn.microsoft.com/en-us/library/azda5z79.aspx

C#: TYPES

A Type is a Template.
Some types, such as short, int, and long, are called simple types, and can only store a single data
item. Other types can store multiple data items. An array, for example, is a type that can store
multiple items of the same type.

A type is defined by the following elements:

• A name

• A data structure to contain its data members

• Behaviors and constraints (function members)

Thursday, October 22, 2009

C#: TYPES

Predefined Types
C# provides 15 predefined types and there include 13 simple types and 2 non-simple types.
The names of all the predefined types consist of all lowercase characters. The predefined simple
types include the following:

Eleven numeric types, including
– Various lengths of signed and unsigned integer types.
– Floating point types—float and double.
– A high-precision decimal type called decimal. Unlike float and double, type decimal can
represent decimal fractional numbers exactly. It is often used for monetary calculations.

A Unicode character type, called char.

A Boolean type, called bool. Type bool represents Boolean values and must be one of two
values—either true or false.

Thursday, October 22, 2009

C#: TYPES

Predefined Types
 Various lengths of signed and unsigned integer types.

Type Range Size

sbyte (SByte) -128 to 127 Signed 8-bit integer

byte (Byte) 0 to 255 Unsigned 8-bit integer

short (Int16) -32,768 to 32,767 Signed 16-bit integer

ushort (UInt16) 0 to 65,535 Unsigned 16-bit integer

int (Int32) -2,147,483,648 to 2,147,483,647 Signed 32-bit integer

uint (UInt32) 0 to 4,294,967,295 Unsigned 32-bit integer

long (Int64) -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 Signed 64-bit integer

ulong(UInt64) 0 to 18,446,744,073,709,551,615 Unsigned 64-bit integer

If the value represented by an integer literal exceeds the range of ulong, a compilation error will occur.

Thursday, October 22, 2009

C#: TYPES

User-Defined Types
Besides the 15 predefined types provide by C#, you can also create your own user-defined
types. There are six kinds of types you can create:

• class types
• struct types
• array types
• enum types
• delegate types
• interface types

Types are created using a type declaration, which includes the following information:

• The kind of type you are creating
• The name of the new type
• A declaration (name and specification) of each of the type’s members—except for array
and delegate types, which do not have named members.

Thursday, October 22, 2009

C#: TYPES

Value Types and Reference Types
The type of a data item defines how much memory is required to store it, the data
members that comprise it, and the functions that it is able to execute. The type also
determines where an object is stored in memory—the stack or the heap. Types are divided
into two categories: value types and reference types. Objects of these types are stored
differently in memory.

• Value types require only a single segment of memory—which stores the actual data.

• Reference types require two segments of memory:

 – The first contains the actual data—and is always located in the heap.

 – The second is a reference that points to where in the heap the data is stored.

Thursday, October 22, 2009

C#: TYPES

Value Types and Reference Types

Stack

Data

Stack

Reference

Heap

Data

Value Type Data
-The data is stored
on the stack.

Reference Type Data
-The data is stored in the heap.
-The reference is stored on the stack.

Thursday, October 22, 2009

C#: STORAGE_STACK
The stack is an array of memory that acts as a last-in, first-
out (LIFO) data structure. It stores several types of data:
• The values of certain types of variables

• The program’s current execution environment

• Parameters passed to methods

512
15213

Stack

1000
512

15213

Stack

Stored Data

Free Memory

Pushing an integer(e.g. 1000) onto the Stack

Top

Top
Push Pop

Data items are pushed onto the top of Stack
and popped from the top of the stack.

Thursday, October 22, 2009

C#: STORAGE_HEAP
The heap is an area where chunks of memory can be
allocated to store certain kinds of data. Unlike the stack,
memory can be stored and removed from the heap in any
order. Figure below shows a program that has stored four
items in the heap.

Heap

Item 01
Item 02

Item 03
Item 04

Program

Thursday, October 22, 2009

C#: TYPES SUMMARY

Value Types and Reference Types in C#

Value TypesValue Types Reference Types

Predefined Types sbyte byte float short object

ushort double int uint string

char long ulong decimal

bool

User-Defined Types struct class

 enum interface

delegate

array

Thursday, October 22, 2009

C#: VARIABLES

A general-purpose programming language must allow a program to store
and retrieve data. A variable is a name that represents data stored in
memory during program execution.

Variable Declarations

A variable must be declared before it can be used. The variable declaration
defines the variable, and accomplishes two things:

 • It gives the variable a name and associates a type with it.
 • It allows the compiler to allocate memory for it.

Thursday, October 22, 2009

C#: VARIABLES

example:

Multiple-Variable declaration:

class Program
{

int num = 5;

.......
}

int : Type

num : Variable name

// Variable declarations--some with initializers,
//some without
int var3 = 7, var4, var5 = 3;
double var6, var7 = 6.52;

Thursday, October 22, 2009

C#: OPERATORS

Assignment Operator(=)

Mathematical Operators(+, -, *, /, %)

Increment/Decrement Operators (+=, -=, *=, /=(?))

Prefix/Postfix Operators (++, --)

Rational Operators(==, !=, >, >=, <, <=)

Logical Operators(&&, ||, !)

Thursday, October 22, 2009

C#: OPERATORS

The Conditional Operator (? :)

The conditional operator is a powerful and succinct way of returning one of two values, based
on the result of a condition.

< Syntax > Condition ? value01 : value02

 int intVar ;

 if (x < y)
 intVar = 5;
 else
 intVar = 10;

int intVar ;

intVar = x < y ? 5 : 10;

if..else operator consitional operator

Thursday, October 22, 2009

C#: OPERATOR_IS
The is Operator
The is operator can be used to check whether a conversion would complete successfully. The
syntax of the is operator is the following, where Expr is the source expression:

Expr is TargetType

Returns a bool

 class Employee : Person { }
 class Person
 {
 public string Name = "Anonymous";
 public int Age = 25;
 }
 class Program
 {
 static void Main()
 {
 Employee bill = new Employee();
 Person p;
 if(bill is Person) // Check if variable bill can be converted to type Person
 {
 p = bill;
 Console.WriteLine("Person Info: {0}, {1}", p.Name, p.Age);
 }
 }
 }

Thursday, October 22, 2009

C#: OPERATOR_AS
The as Operator
The as operator is like the cast operator, except that it does not raise an exception. If the
conversion fails, rather than raising an exception, it sets the target reference to null. The syntax
of the as operator is the following, where

• Expr is the source expression.
• TargetType is the target type,
 which must be a reference type.

Expr as TargetType

 class Employee : Person { }
 class Person
 {
 public string Name = "Anonymous";
 public int Age = 25;
 }
 class Program
 {
 static void Main()
 {
 Employee bill = new Employee();
 Person p;
 p = bill as Person;
 if(p != null)
 {
 Console.WriteLine("Person Info: {0}, {1}", p.Name, p.Age);
 }
 }
 }

Returns a Object

Thursday, October 22, 2009

C#: STATEMENTS

conditional branching statements

if
if else
switch
while
do...while
for

 // With a block - Multiple statements
 if(x >= 20)
 { // Block--braces needed
 x = x – 5;
 y = x + z;
 }

If(x <= 10)
 z = x – 1; // Single statement
 else
 { // Multiple statements--block
 x = x – 5;
 y = x + z;
 }

If (TestExpr)
 Statement1
else
 Statement2 if (TestExpr)

 Statement

Thursday, October 22, 2009

C#: STATEMENTS

conditional branching statements

if
if else
switch
while
do...while
for

 int x = 3;
 while(x > 0)
 {
 Console.WriteLine("x: {0}", x);
 x--;
 }
 Console.WriteLine("Out of loop");

Outputx: 3
x: 2
x: 1
Out of loop

Output

 int x = 3;
 do
 {
 Console.WriteLine("x: {0}", x++);

 }while (x<6);
 Console.WriteLine("Out of loop");

x: 3
x: 4
x: 5
Out of loop

do
 Statement
while(TestExpr);

while(TestExpr)
 Statement

Thursday, October 22, 2009

C#: STATEMENTS

conditional branching statements

if
if else
switch
while
do...while
for

for(int x=1; x<6; x++)
 {
 switch(x) // Evaluate the value of variable x.
 {
 case 2: // If x equals 2
 Console.WriteLine("x is {0} -- In Case 2", x);
 break; // Go to end of switch.

 case 5: // If x equals 5
 Console.WriteLine("x is {0} -- In Case 5", x);
 break; // Go to end of switch.

 default: // If x is neither 2 nor 5
 Console.WriteLine("x is {0} -- In Default case", x);
 break;
 }
 }

for(Initializer ; TestExpr ; IterationExpr)
 Statement

Thursday, October 22, 2009

C#: CLASS

• class types
• struct types
• array types
• enum types
• delegate types
• interface types

A class is a data structure that can store data and execute code. It
contains the following:

• Data members, which store data associated with the class or an instance of the
class. Data members generally model the attributes of the real-world object the class
represents.

• Function members, which execute code. Function members generally model the
functions and actions of the real-world object the class represents.

Types of Class Members:

Data Members–Store Data Function Members–Execute CodeFunction Members–Execute Code
Fields Methods Operators

Constants Properties Indexers
Constructors Events

De-constructors

Thursday, October 22, 2009

C#: CLASS

Class Declaration

A class declaration defines the characteristics and members of a new class. It does not create
an instance of the class, but creates the template from which class instances will be created.
The class declaration provides the following:

• The class name

• The members of the class

• The characteristics of the class
 class MyExcellentClass
 {
 MemberDeclarations

......
 }

Type Class Name

Thursday, October 22, 2009

C#: CLASS

Class Declaration: Fields

A field is a variable that belongs to a class. It can be of any type, either predefined or user-
defined. Like all variables, fields store data, and have the following characteristics:

– They can be written to.

– They can be read from.

 class MyExcellentClass
 {
 int myField;

 }

Type Class Name

Type Field Name

Thursday, October 22, 2009

C#: CLASS

Class Declaration: Methods

A method is a named block of executable code that can be executed from many different
parts of the program, and even from other programs. The minimum syntax for declaring a
method includes the following components:

• Return type: This states the type of value the method returns. If a method does not return
a value, the return type is specified as void.
• Name: This is the name of the method.
• Parameter list: This consists of at least an empty set of matching parentheses. If there are
parameters, they are listed between the parentheses.
• Method body: This consists of a matching set of curly braces, containing the executable code.

Thursday, October 22, 2009

C#: CLASS

Class Declaration: Methods

Return type
Name
Parameter list
Method body

 class MyExcellentClass
 {
 int myField;

 void PrintNums (int n1, int n2)
 {
 Console.WriteLine("{0}", n1);
 Console.WriteLine("{0}", n2);
 }

 }

Type Class Name

return type Parameter list

method body}
name

Thursday, October 22, 2009

C#: CLASS

Class Declaration: Constructor
An instance constructor is a special method that is executed whenever a new instance of a
class is created.

• A constructor is used to initialize the state of the class instance.
• If you want to be able to create instances of your class from outside the class, you need
to declare the constructor public.
• The name of the constructor is the same as the name of the class.
• A constructor cannot have a return value.

 class MyExcellentClass
 {
 DateTime TimeOfInstantiation; // Field
 ...
 public MyClass() // Constructor
 {
 TimeOfInstantiation = DateTime.Now; // Initialize field
 }
 ...
 }

Thursday, October 22, 2009

C#: CLASS

Encapsulating Data with Properties: get and set Accessors

The set and get accessors have
predefined syntax and semantics.
You can think of the set accessor
as a method with a single para-
meter that “sets” the value of the
property. The get accessor has no
parameters and returns a value
from the property.

 class C1
 {
 private int TheRealValue; // Field: memory allocated

 public int MyValue // Property: no memory allocated
 {
 set
 {
 TheRealValue = value;
 }

 get
 {
 return TheRealValue;
 }
 }
 }

Thursday, October 22, 2009

Structs are programmer-defined data types, very similar to classes. They have data members and
function members. Although similar to classes, there are a number of important differences. The
most important ones are the following:

• Classes are reference types and structs are value types.
• Structs are implicitly sealed, which means that they cannot be derived from.

C#: STRUCT

The syntax for declaring a struct is similar
to that of declaring a class.

struct StructName
 {
 MemberDeclarations
 }

 struct Point
 {
 public int X;
 public int Y;
 }

 class Program
 {
 static void Main()
 {
 Point first, second, third;

 first.X = 10; first.Y = 10;
 second.X = 20; second.Y = 20;

 Console.WriteLine("first: {0}, {1}", first.X, first.Y);
 Console.WriteLine("second: {0}, {1}", second.X, second.Y);
 }
 }

A variable of a struct type cannot be null.
Two structs variables cannot refer to the same object.

Thursday, October 22, 2009

C#: ARRAY

An array is a set of uniform data elements, represented by a
single variable name. The individual elements are accessed
using the variable name together with one or more indexes
between square brackets, for example:

// Declare 1-D array.
// Write to element 2 of the array.
// Read from element 2 of the array.

// Declare 2-D array.
// Write to the array.
// Read from the array.

int[] intArr1 = new int[15];
intArr1[2] = 10;
int var1 = intArr1[2];

int[,] intArr2 = new int[5,10];
intArr2[2,3] = 7;
int var2 = intArr2[2,3];

Thursday, October 22, 2009

C#: ENUMERATIONS

An enumeration, or enum, is a programmer-defined type, like a class or a
struct.

• Like structs, enums are value types, and therefore store their data
directly, rather than separately, with a reference and data.

• Enums have only one type of member: named constants with integral
values.

enum TrafficLight {
 Green, ← Comma separated—no semicolons
 Yellow, ← Comma separated—no semicolons
 Red
 }

Thursday, October 22, 2009

C#: ENUMERATIONS

TrafficLight t1 = TrafficLight.Green;
TrafficLight t2 = TrafficLight.Yellow;
TrafficLight t3 = TrafficLight.Red;

Console.WriteLine("{0},\t{1}", t1, (int) t1);
Console.WriteLine("{0},\t{1}", t2, (int) t2);
Console.WriteLine("{0},\t{1}\n", t3, (int) t3);

Output
Green, 0
Yellow, 1
Red, 2

Thursday, October 22, 2009

enum CardSuit
 {
 Hearts,
 Clubs,
 Diamonds,
 Spades,
 MaxSuits
 }

C#: ENUMERATIONS

// 0 - Since this is first
// 1 - One more than the previous one
// 2 - One more than the previous one
// 3 - A common way to assign a constant
// to the number of listed items.

enum FaceCards
 { // Member // Value assigned
 Jack = 11,
 Queen,
 King,
 Ace,
 NumberOfFaceCards = 4,
 SomeOtherValue,
 HighestFaceCard = Ace
 }

// 11 - Explicitly set
// 12 - One more than the previous one
// 13 - One more than the previous one
// 14 - One more than the previous one
// 4 - Explicitly set
// 5 - One more than the previous one
// 14 - Ace is defined above

Thursday, October 22, 2009

DEBUG
How:

Debug.Writeline();
Debug.Print();
.......

Where:
Intermediate Window

> Under Tool->Options->Debugging->General->
CHOOSE REDIRECT ALL OUTPUT WINDOW TEXT TO THE IMMEDIATE WINDOW

> To clean the outputs in the Immediate Window:
✤ type “>cls” in the Intermediate Window, or
✤ Right click on the window and choose “Clear All”

Thursday, October 22, 2009

C#:DEBUG
using System;
using System.Diagnostics;

namespace ConsoleApplication4
{
 class Program
 {
 static void Main(string[] args)
 {
 Debug.WriteLine("\n---------- Start of Print out -------------");
 Debug.WriteLine("\n");
 Debug.Indent();
 Debug.WriteLine("Programming C# 2009 Oct");
 Debug.Print("\nLet's print out in the Immediate Widnow!!!\n");
 Debug.Unindent();
 Debug.WriteLine("---------- End of Print out ---------------");
 }
 }
}

Thursday, October 22, 2009

C#:DEBUG

How to use immediate windows to work with values :

When you enter commands in the Immediate window, they’re executed in the same context (or scope) as
the application that’s running. That means that you can’t display the value of a variable that’s out of scope.

The commands that you enter into the Immediate window remain there until you exit from Visual Studio or
explicitly delete them using the Clear All command in the shortcut menu for the window.

To retrieve/change values or using function
> Enter a question mark (?) followed by the expression whose value you want to display.

>To assign a different value to a variable, property, or object, enter an assignment statement in the Immediate window.
Then, press the Enter key.

>To execute a user-defined method from the Immediate window, enter its name and any arguments it requires. Then,
press the Enter key. If you want to display the value that’s returned by a method, precede the method call with a question
mark.

Thursday, October 22, 2009

C#:THE FORMAT STRING

• The general form of the Write() and WriteLine() statements
takes more than a single parameter.

>> If there is more than a single parameter, the parameters are separated by
commas.
>>The first parameter must always be a string, and is called the format
string.
>>The format string can contain substitution markers. A substitution
marker marks the position in the format string where a value should be
substituted in the output string.It consists of an integer enclosed in a set of
matching curly braces. The integer is the numeric position of the substitution
value to be used.
>>The parameters following the format string are called substitution values.
These substitution values are numbered, starting at 0.

Thursday, October 22, 2009

C#:THE FORMAT STRING

Console.WriteLine(FormatString, SubVal0, SubVal1, SubVal2, ...);

example:

Console.WriteLine("Two sample integers are {0} and {1}.", 3, 6);

 Two sample integers are 3 and 6.

The syntax is as follows:

Format string Substitute values

Output

Thursday, October 22, 2009

VISUAL STUDIO UI

A. B.

C. D.

A. Coding Environment
B.Object Navigation Panel
C.Transaction
D.Object Properties

Thursday, October 22, 2009

