
Computation and creativity should be mutually
supportive in the design process. For this to be
possible, computation must be understood in a
broad sense, encompassing both the narrow, digital
kind of computation and the more general kind of
computation in which objects may only have digital
approximations. It is this broad approach that we
have adopted.

The aspects of computation considered here are
representation and process. Representation has to do
with the way the objects in a computation are
described. Process has to do with the computation
itself and the rules that are used to carry it out. Both
of these aspects have been approached in alternative
ways – either classically or non-classically. These
divisions are not hard and fast ones, but soft ones
that are blurred at the boundaries.

We apply the classical/non-classical distinction
because it provides a useful taxonomy both to see
what is going on in computation, and to suggest
areas for future investigation of importance in
design. Certainly, as it is worked out below, the
classical/non-classical split in process is already
widely appreciated, even if it is not really discrete but
more of a continuum. In representation, though, the
split is more profound, even if much less
appreciated. We are all used to computation in the
classical mode – this is what is taught in school – and
it takes some shifting of gears to see how
computation can be more successfully used in design
when representation is non-classical. For this reason,
our main emphasis will be on non-classical
representation. Any imbalance in presentation,

however, is not to reflect importance. All of the
categories identified in our taxonomy provide
valuable insights in design and computation.

Representation
Representation is usually divided into the verbal
kind and the visual kind. The verbal kind is logical
and scientific. Verbal representation is the very stuff
of computation in the way most people think about
it. It depends on a fixed set of primitives, and careful
definitions that say how primitives are combined to
do meaningful things and to make meaningful
objects. Representation that is verbal is classical
representation.

By contrast, visual representation is traditionally
the stuff of creativity and the arts. It is characterized
by its lack of primitives, and sometimes by a
corresponding vagueness in presentation that leaves
open exactly what is there. Visual representation is
non-classical, at least from the computational point of
view. However, this verbal/visual division is not
categorical. In the end, both kinds of representations
are interrelated.

Figure 1 shows an assortment of examples of
classical and non-classical representations. The
classical representations – that is, the verbal ones –
are familiar to all of us. They are the kinds of things
we learn to use in school. They include numbers,
words, and symbols. They might include points and
lines that are individually distinguished and
invariant when they are combined, things like
graphs and arrows. Then there are the non-classical
representations – that is, the visual ones. These

information technology arq . vol 5 . no 4 . 2001 355

Computers have come to play an important role in architectural
practice. Nonetheless, the promise of computation as a creative
partner in practice, and a means to better understand and support
the design process has yet to be realized. This article considers
aspects of computation, and alternative ways that these have been
approached in order to make computation useful in architecture
and other areas of spatial design.

Classical and non-classical
computation

Terry Knight and
George Stiny

Authors’ address
Department of Architecture
Massachusetts Institute of Technology
Cambridge, MA, USA
tknight@MIT.EDU
stiny@MIT.EDU

information technology

usually involve shapes made out of lines and planes
and solids, things like boxes, curves, and triangles.
They might come in different colours, and have
different textures or other qualities. They can be seen
in a variety of ways without being right or wrong.

Consider a classical representation, the sentence: ‘I
wish I were lying on a beach in Maui’. This is an
example of the kind of representation used to write
this paper. It is the kind of representation we use all
the time to communicate to each other and to
computers, and to conduct most of the affairs of the
day. The sentence is divided into units – words – that
are divided into smaller primitives – letters. And as
will be shown shortly, the words can be composed
into larger constituents, and these into still larger
ones to get at the meaning of the whole sentence.

Despite its ubiquity, classical representation does
not go unchallenged. Fifty years ago, Susan Langer
(1982) argued for the advantages of presentational or
non-classical representation over discursive or
classical representation in the arts. And today, there
are even reasons to believe that the sciences could
profit from a non-classical approach. Hilary Putnam
(1987), a philosopher of science, finds this possibility
striking and convincing. He writes:

Since the end of the nineteenth century, science itself has
begun to take on a ‘non-classical’ – that is, a non-
seventeenth-century – appearance … That there are ways
of describing what are (in some way) the ‘same facts’
which are (in some way) ‘equivalent’ but also (in some
way) ‘incompatible’ is a strikingly non-classical
phenomenon. (p.29)

Now, the best that can be said about a non-classical
phenomenon such as the shape in Figure 2a is to
point to it. However, it is also possible to turn it into a
classical representation by describing it verbally or
by giving it a name. A verbal description of the shape
would have to be a very complicated one to describe
even a few of the many equivalent, possibly
incompatible, facts about the shape. For example,
the shape can be described as two squares, one
inscribed in the other as in Figure 2b. But the shape
is much more than this description or any other can
convey. In fact, no finite description says everything

there is to say about the shape. The shape is also four
triangles [Fig. 2c] and two envelopes, or two blunt
arrows, or two pencil points [Fig. 2d]. Indeed, the
shape is anything you want it to be that stays in the
lines – such as two Ls and two overlapping Us [Fig. 2e].
Or the shape can be divided arbitrarily, in any way
whatsoever. For example, it can be divided by
drawing a crazy curve through it so that pieces on
one side are one part, and pieces on the other side
are another part [Fig. 2f].

In sum, representations come in two kinds: the
non-classical ones made with things like lines and
planes and solids in shapes, and the classical ones
made with things like numbers, words, and symbols.
Now how does the classical/non-classical distinction
work for process?

Process
We can think about a computational process in
terms of explanation and results. If a computational
process explains what is happening, if it provides the
rules of the game and these are meant to be
understandable, then the process is classical. But if
what is of most interest is the result of a
computation, and if there is little concern with
understanding how a result is achieved, then the
process is a non-classical one. Computation is
indifferent to this distinction. Both kinds of process
are equally computational.

The classical notion of classical process comes
from the linguists – Noam Chomsky and others – and
their friends, the cognitive scientists. The founding
idea of a grammar in linguistics is its explanatory
value. A grammar is judged by what the rules explain
about a language and its structure, what the rules say
about how sentences work. The MIT Encyclopedia of
Cognitive Science (1999) is very clear about this:

The motivating idea of generative grammar is that we can
gain insight into human language through the
construction of explicit grammars. A language is taken to
be a collection of structured symbolic expressions, and a
generative grammar is simply an explicit theoretical
account of one such collection.

The non-classical notion of process, on the other

arq . vol 5 . no 4 . 2001 information technology356

Terry Knight and George Stiny Classical and non-classical computation

1

1 Assorted classical
and non-classical
representations.
Verbal and numerical
ones are familiar –
and classical. Visual
ones are non-
classical

2 A non-classical
phenomenon
explored
a This shape is
difficult to describe

verbally …
b … it can be
described as two
squares, one in the
other or …
c … as four triangles
…
d … or two
envelopes or …
e … two Ls and two
overlapping Us and
…
f … it can be divided
arbitrarily

hand, is exemplified by evolutionary or genetic
computation, heuristic search, and optimization
techniques. In these techniques, the emphasis shifts
from rules to results. And these results are made
possible only through the speed and power of
current computers. Daniel Hillis (1998), a pioneer of
massively parallel computing, and the inventor of
the Connection Machine, talks about one of his
experiments with evolving computer programs for
sorting numbers. He doesn’t know how his programs
work, but he is absolutely confident that they
produce the kinds of results he wants. Indeed, they
have done it so many times in the course of their
evolution that there is little doubt that they will
continue doing it for ever. However, where Hillis is
non-classical about process, he is classical about
representation. To understand something is to
describe it in a hierarchy of primitive parts that need
no further explanation. He writes:

One of the interesting things about the sorting programs
that evolved in my experiment is that I do not understand
how they work. I have carefully examined their instruction
sequences, but I do not understand them: I have no
simpler explanation of how the programs work than the
instruction sequences themselves. It may be that the
programs are not understandable – that there is no way to
break the operation of the program into a hierarchy of
understandable parts. (pp.146–147)

But not everyone is happy about this lack of
explanation. John McCarthy (1996), who with Marvin
Minsky started the field of artificial intelligence or
AI, recognizes the non-classical approach to process.
But he finds it all a little odd. He says:

Logic-based AI … proposes to understand the common
sense world … Anything based on neural nets, for example,
hopes that a net can be made to learn human-level
capability without the people who design the original net
knowing much about the world in which their creation
learns. Maybe this will work, but then they may have an
intelligent machine and still not understand how it works.
This prospect seems to appeal to some people.
(pp.144–145)

Ronald Graham (quoted in Horgen, 1993), a
mathematician at Bell Labs, finds the prospect of
non-classical process possible, but perhaps
discouraging. Here, he talks about mathematical
proofs, an important kind of computation:

It would be very discouraging if somewhere down the line
you could ask a computer if the Riemann hypothesis is
correct and it said, ‘Yes, it is true, but you won’t be able to
understand the proof’. (p.103)

In summary, the two aspects of computation laid out
above, and the two approaches to each, divide
computation into a matrix of four categories [Fig. 3].
These are:

•classical representation and classical process

•classical representation and non-classical process

•non-classical representation and classical process

•non-classical representation and non-classical
process

Classical/classical computation
Computation that is classical in both representation
and process is classical/classical computation as in

information technology arq . vol 5 . no 4 . 2001 357

Classical and non-classical computation Terry Knight and George Stiny

2a

2b

2c

2d

2e

2f

Figure 4. The paradigm for classical/classical
computation comes from linguistics and, in
particular, from Chomsky’s (1957) phrase structure
grammar. A phrase structure grammar is based on a
finite number of symbols specified in advance. It has
a start symbol and finitely many rules that say how
to put symbols together to make sentences, or more
accurately, sentences and their structural
descriptions. The seven rules shown in Figure 5a are
applied recursively, beginning with the start symbol,
to generate the sentence ‘The architect met an
engineer’. The derivation, or computation, of the
sentence provides an explanatory description of the
sentence relative to the rules.

Figure 5b is a ‘tree’ (the linguistic concept behind
Daniel Hillis’s notion of hierarchy) that recapitulates
the application of the rules in the computation. The
sentence and its parts are clearly – that is, classically
– laid out in the course of applying rules. The
representation, too, is classical, because all of the
parts are combinations of antecedently specified
symbols. There are no other possibilities. This view of
computation is incredibly compelling, and almost
impossible to shake. It goes back at least to Thomas

Hobbes in the seventeenth century. It is still the
dominant view of computation today. In fact, the
idea is tried usefully in other domains outside
linguistics, including architecture.

Figure 5c is another kind of phrase structure
grammar that incorporates architectural
components (window elements and pediments)
represented classically with symbols and combined
in a classical, explanatory process. Symmetrical
window patterns are generated by the rules and
given a structural description in the course of rule
applications. The first rule of the grammar S → aSa
shows clearly the bilateral symmetry of the patterns
produced. The structural description of each pattern
generated is a tree in which the pattern and its
equally symmetric parts are distinguished. For
example, Figure 5d is the tree description for the
pattern aabaa. This is the kind of description that
makes further explanation unnecessary. We know
how to get the pattern, how to distinguish its
architecturally relevant parts, and how everything
hangs together.

Classical computation also extends to non-
linguistic computation, for example, cellular

arq . vol 5 . no 4 . 2001 information technology358

Terry Knight and George Stiny Classical and non-classical computation

3 4

Start symbol: [SENTENCE]

Rules: [SENTENCE] [NOUN PHRASE] [VERB PHRASE]
 [NOUN PHRASE] [ARTICLE] [NOUN]
 [VERB PHRASE] [VERB] [NOUN PHRASE]
 [ARTICLE] an
 [ARTICLE] the
 [NOUN] architect
 [NOUN] engineer
 [VERB] met
 [VERB] sued

Computation:

[ARTICLE] [NOUN] [VERB] [NOUN PHRASE] [ARTICLE] [NOUN] [VERB] [ARTICLE] [NOUN]
[ARTICLE] architect [VERB] [ARTICLE] [NOUN] . . . the architect met an engineer 5a

information technology arq . vol 5 . no 4 . 2001 359

Classical and non-classical computation Terry Knight and George Stiny

automata. The representation for cellular automata
is obviously classical. There are cells – the atomic
units of computation – that are arranged in space.
These cells talk to each other in their own
neighbourhoods, and change in terms of what they
are told. This idea of locally interacting primitives
goes back to Stanislaw Ulam, one of the great
mathematicians of the twentieth century. Today, the
best-known example of a cellular automaton is the
Game of Life invented by the mathematician John
Conway in 1970 (Gardner, 1970) [Fig. 6].

The process of Life is indeed classical. There is
survival, death, and birth. There is perhaps a little
more – maybe some art – but remember this is a

5b

5c 5d

3 Computation can be
divided into a matrix
of four categories

4 Classical
representation and
classical process

5 The paradigm for
classical/classical
computation comes
from phrase
structure grammar.
a This example is
based on simple
sentences in English.
The sentence
derivation provides a
description relative

to the rules
b A ‘tree’
recapitulates the
application of the
rules in the
computation
c Another kind of
phrase structure
grammar uses
architectural
components
represented classically
and combined in a
classical process
d The structural
description for the
patterns in 5c is a tree
– shown here for the
pattern aabaa

mathematician’s explanation. For any configuration
of live cells in the plane, there is a sequence of rule
applications that explains how the pattern evolved
from a starting configuration. But explanation in
this sense may not be all that it is cracked up to be.
Just looking at the rules, it is not always possible to
tell what will happen in the distant future.
Explanation may sometimes entail prediction but
need not always. There are different grades of
explanation.

Cellular automata are used in the classical/classical
sense in other places as well. In work done in the
1980s, Hillier and Hanson (1984) looked at village
settlements in southern France. They observed the
common characteristics of these villages, in
particular the way they form beady rings [Fig. 7a].
Beady ring settlements are encapsulated in rules
[Fig. 7b]. There are closed cells and open cells that
interact locally just like in Conway’s Game of Life.
Interactions respond to certain kinds of adjacency
requirements. These adjacency requirements are
different than those for Life, but good for
settlements. When rules are applied locally, global
beady ring patterns are generated.

The idea of cellular automata can be relaxed a
little, so that cells are not really in a grid, but still
behave like interacting units in conversation and in
response to local rules. A good example is the recent
work of Peter Testa (2001), with what he calls
Emergent Design. Emergent Design develops the

notions of artificial life, itself an outgrowth of
cellular automata. In one of Testa’s studio-directed
projects, housing units are aggregated according to
rules that specify possible spatial relationships. For
example, if a house is three to five units of measure
away from another house, the first house can be
moved one unit of measure closer to the second
[Fig. 8].

Classical/non-classical computation
Testa’s work leads nicely to computation in which
representation is still classical, but in which process,
or the act of computing, is non-classical. This is
classical/non-classical computation [Fig. 9].

In classical/non-classical computation,
explanation is divorced from computation. Typical
of non-classical processes are evolutionary or genetic
algorithms in which a host of outside criteria not
given directly in the rules play a significant role in
the outcomes. Another project [Fig. 10] from Testa’s
Emergent Design work is a good example of the
classical/non-classical mode of computation. In this
project, a genetic algorithm is used to array spaces in
an office building, subject to certain criteria. The
reasons for particular arrangements may be obscure
in the genetic algorithm. With genetic algorithms in
general, rules and constraints may be introduced
simply to see what they do. In the end, there may be
no explanation, but there may be plenty of effective
results.

arq . vol 5 . no 4 . 2001 information technology360

Terry Knight and George Stiny Classical and non-classical computation

Game of Life

Survival

Death

Birth

If an occupied cell has two or three neighbors, it survives.

If an occupied cell has four or more neighbors, it dies from overcrowding.
If an occupied cell has one or no neigbors, it dies from isolation.

If an unoccupied cell has exactly three neighbors, it becomes occupied.

. . .

. . .

. . .

. . .

The evolution of four starting configurations

1 2 3 4 5 6 7 8 9

6

information technology arq . vol 5 . no 4 . 2001 361

Classical and non-classical computation Terry Knight and George Stiny

7a

7b

8

6 Classical
computation
extends to non-
linguistic
computation as in
cellular automata.
The Game of Life is a
popular example of a
cellular automaton

7 Cellular automata
are used in the
classical/classical
sense as in this study

by Hillier and
Hanson of village
settlements
a Villages in
southern France
form ‘beady rings’
b Beady ring
settlements can be
encapsulated in
rules

8 The idea of cellular
automata can be
relaxed as in Peter

Testa’s Emergent
Design work. Here,
housing units are
aggregated
according to rules.
The local
organizations of
houses are not
predictable, regular
patterns, but subtle
arrangements,
subject to the
behaviour instilled
in each of the houses

Non-classical/classical computation
Let’s turn now to the inversion of classical/non-
classical computation, to computation that uses
non-classical representation – representation
without units and primitives – in a classical process.
This is non-classical/classical computation [Fig. 11].

Shape grammars
The best example of this kind of computation is
shape grammars. Shape grammars were invented
about 25 years ago by two young engineering
undergrads at MIT, George Stiny and Jim Gips (1972).
Shape grammars were one of the earliest
computational systems for doing design directly
through computations on shapes, rather than
indirectly through computations on text or symbols.
This invention was a purely visual computational
system for designing rather than a verbal, text-based
one.

The representation of visual objects in shape
grammars is strictly non-classical. However, the
original conception of shape grammars and the
many applications of shape grammars that followed
are very classical in terms of process. Figure 12a is a
simple example from Terry Knight’s (1994) book,
Transformations in Design, of what a shape grammar
looks like and how it works. The grammar is based
on a Greek cross, a common scheme for ‘classical’
architectural plans. A Renaissance church design
based on a Greek cross is shown. The plan of the
church can be decomposed into two 2x1 rectangles.
To produce the Greek cross, the shapes are arranged
to form the spatial relation shown.

The rectangles and spatial relation are used to
define the initial, or starting, shape and the rule of
the grammar. The rule says that if (the leftside of the
rule) a 2×1 rectangle can be found in a design in any
orientation or any size, then (the rightside of the rule)
another 2×1 rectangle can be laid on top to form the
Greek cross. The non-classical representation used by
the rule allows it to recognize and to operate on
shapes not explicitly defined or premeditated by
either the author or the user of the grammar. In the
computation shown, the rule applies recursively to
generate a more elaborate Greek cross. Notice how
the rule applies to smaller, ‘emergent’ rectangles.

The rule can be used to compute many other
designs by applying or not applying it to different

rectangles in a computation. Figure 12b shows a few
other designs that can be computed. All of these
designs can be explained and understood in terms of
the original Greek cross spatial relation and rule.

More ambitious grammars
The shape grammar above is very elementary. Over
the past years, many more ambitious and specialized
shape grammars have been developed in response to
a variety of design problems. These problems can be
divided roughly into two kinds: analysis problems
and original design problems. In analysis
applications, shape grammars are applied in the
most classical sense. They are applied to explain
design styles. The first analytic shape grammar was
one for Chinese ice-ray designs written by Stiny (1977)
[Fig. 13]. This grammar set the standards for the
classical, descriptive power of a shape grammar. The
four rules of the grammar (shown in abridged form)
capture the compositional conventions of ice-ray
designs. They even suggest the constructional
conventions that Chinese artisans might have used
to fabricate the designs as window grilles.

Many more analytic grammars followed from the
ice-ray grammar. The first architectural shape
grammar was one for Palladian villa plans (Stiny and
Mitchell, 1978). Designs generated by the grammar

arq . vol 5 . no 4 . 2001 information technology362

Terry Knight and George Stiny Classical and non-classical computation

9

10

information technology arq . vol 5 . no 4 . 2001 363

Classical and non-classical computation Terry Knight and George Stiny

11

12a

12b

9 Classical
representation and
non-classical
process

10 Evolutionary or
genetic algorithms
are typical of
classical/non-
classical
computation as in
the work of Peter
Testa. Here, spatial
arrangements are
explored with a
genetic algorithm,
RhizomeGA (by
Doug Ricket). The
algorithm starts
with a random

population of
arrangements and
sequentially refines
the population
using the best
members of the
population to create
a new generation

11 Non-classical
representation and
classical
computation

12 Shape grammar
representation is
non-classical but the
original conception
and many
subsequent

applications are
very classical in
terms of process
a An example of
what a shape
grammar looks like
and how it works.
The grammar is
based on a
Renaissance church
in the form of a
Greek cross
b The rule in 12a can
be used to compute
many other designs
– all of which can be
understood in terms
of the original Greek
cross

include original Palladian designs and new,
hypothetical ones in Palladio’s style [Fig. 14]. The first
analytic three-dimensional shape grammar was a
grammar for Frank Lloyd Wright’s prairie houses
(Koning and Eizenberg, 1981). Figure 15 shows some
original and hypothetical houses computed by the
grammar. Analysis work continues today, and
continues to broaden in scope, with important new
work coming from engineering and product design.

What about original design applications? These
originate with George Stiny’s (1980) work on abstract,
kindergarten grammars using the Froebel blocks
[Fig. 16]. Taken into graduate design studios,
grammars like this have been the impetus for a
remarkable series of design projects. These include
projects for different building types, different sites,
and different programmes. Figures 17a–f show some
examples of design projects, completed in courses
taught by Terry Knight at UCLA and MIT beginning in
1990. In all of these projects, the simple, visual rules
used to develop designs are meant to explain, in the
classical sense, how the designs come about. But is
explanation as critical to design problems as it is to
analysis problems like the ones shown earlier?

Design work with grammars has also raised
questions of design process and design methodology.
For example, what kind of methodology can be used
to develop or design a grammar itself? To help
answer this question, an MIT student recorded a
protocol analysis of herself designing a housing
complex with grammars. The different stages of
grammatical design that were documented are given
in Figure 18a. The end product of that design process
is shown in Figure 18b.

Emergence
What are the properties of shape grammars that
have made all of this work possible? The non-
classical representation employed by shape
grammars is closely tied to a computational term
popular in recent years: emergence. This is a term used
today in many different ways. Often, it refers to the
global, unexpected behaviour or outcomes that
emerge from decentralized, local rules. Emergence is
central to shape grammars. Shape grammars give
rise to emergent forms and behaviours in the same
way that other computational systems do. But there
is more – as the example in Figure 19a shows. The
rule in this Figure concatenates squares. After two
steps in a computation, the rule produces an
emergent shape, an L shape – not unexpected, but
emergent nonetheless. This much happens in most
computational systems. But with shape grammars
we can do more than just recognize emergent forms
like this one. We can use emergent forms themselves
as input for further computations. We can use them
actively. We can do things with, and do things to,
emergent forms in an ongoing computation. For
example, a new rule can be added to the one just
shown that does something with the emergent L, for
instance, shifts it diagonally and continues with the
computation shown in Figure 19b.

Three kinds of emergence in a shape grammar can
be distinguished: anticipated, possible, and

unanticipated.
With anticipated emergence (an oxymoron!), the

author of a grammar writes rules and knows, by
looking at the rules, that certain shapes will emerge.
In anticipation of these emergent shapes, rules that
operate on them are included in the grammar. With
possible emergence, the author of a grammar writes
rules and thinks that, perhaps, certain shapes might
emerge. But this isn’t known for sure. Contingency
plans are then made for these shapes by writing rules
that apply to them just in case they occur. With
unanticipated emergence, the author writes rules
and computes with the rules. Shapes emerge that
were not anticipated or premeditated in any way. In
order to compute with these shapes, the grammar
needs to be updated with new rules. These rules are
not easy to include at the outset because the shapes

arq . vol 5 . no 4 . 2001 information technology364

Terry Knight and George Stiny Classical and non-classical computation

13

14

information technology arq . vol 5 . no 4 . 2001 365

Classical and non-classical computation Terry Knight and George Stiny

16

15

13 Many specialized
shape grammars
have been
developed including
this one for Chinese
ice-ray designs. The
grammar suggests
the conventions for
constructing the
designs as window
grilles

14 The first
architectural shape
grammar – for
Palladian villa plans,
by Stiny and
Mitchell, 1978

15 The first analytic
three-dimensional
shape grammar was
for Frank Lloyd
Wright’s prairie
houses, by Koning
and Eizenberg, 1981

16 An original shape
grammar design
application – an
abstract grammar
using Froebel
blocks, by Stiny,
1980

arq . vol 5 . no 4 . 2001 information technology366

Terry Knight and George Stiny Classical and non-classical computation

17a

17b

17c

17d

17e

17f

17 Examples of shape
grammars applied
in undergraduate
projects
a Cultural history
museum in Italy
(Randy Brown,
UCLA, 1990)
b Elementary school
in Los Angeles
(Michael Brown,
UCLA, 1994)
c Fine arts museum
complex in Taipei
(Wei-Cheng Chang,
UCLA, 1992)
d Apartment
complex in
Manhattan (Murat
Sanal, UCLA, 1995)

e Cultural history
museum in Los
Angeles (Jin-Ho
Park, UCLA, 1993)
f Underground
memorial to miners
(Michael Wilcox,
MIT, 2000)

18 The use of shape
grammars raises
questions of design
process and
methodology
a Student analysis
of her process using
shape grammars for
the design of a
complex housing
project and …

b … the end product
of the grammatical
design process

19 Shape grammars
give rise to
emergent forms
that can be used for
input for further
computations
a An example in
which an emergent
form is produced
after two
computation steps
and, …
b … with a new,
emergent rule
added, continues to
develop

to which they apply were not expected.
Figure 20a is an example of anticipated emergence.

The first rule of the grammar concatenates
equilateral triangles. Knowing something about
equilateral triangles, it is easy to predict that the rule
will apply to create an emergent hexagon. In
anticipation of emergent hexagons, a rule that picks
out or does something to a hexagon is included in
the grammar. This is the second rule – a hexagon
finding rule. Anticipated emergence such as this is
key to analysis applications of shape grammars. In
analysis, emergence is necessary but must be
anticipated, so that only a limited range of designs is
computed.

Figure 20b is an example of possible emergence.
The first rule overlaps a triangle on top of an existing
triangle. Some experimentation with this rule
reveals an emergent fish. It comes up in the fourth
design computed. Knowing how this fish emerges
from the triangles, it is easy to predict that an
infinite number of such fish will emerge in
computations. In fact, a much smaller fish emerges
near the end of the computation. A rule that picks
out emergent fish is included in the grammar. This is
the second rule. It is applied in the fourth step and in
the last step of the computation. The first, triangle
rule generates a kind of triangular grid. A number of
other creatures besides fish might emerge from this

information technology arq . vol 5 . no 4 . 2001 367

Classical and non-classical computation Terry Knight and George Stiny

18a 18b

19a 19b

arq . vol 5 . no 4 . 2001 information technology368

Terry Knight and George Stiny Classical and non-classical computation

20a

20b

grid. Perhaps a swan, perhaps a cat. Just in case these
creatures emerge, two other rules are included in the
grammar. But will these rules ever apply?

Figure 20c – a fragment of Figure 20b – is an
unanticipated emergence. Two overlapping fish
combine in an unexpected way to form a more
complex fish, a totally unanticipated fish. The
emergent fish is outlined with bold lines. In order to
do something with this emergent fish, a new,
emergent rule [Fig. 20d] can be added to the
grammar.

Another look at the design, and other unexpected
shapes may show themselves – such as the face
(outlined in bold) in Figure 20e. A new rule acting on
this new form can be defined in Figure 20f. While
perhaps unwelcome in analysis applications,
unanticipated emergence like this is key to design
applications. This is what happens when we design.
The way shape grammars handle emergence may be
viewed as a formal counterpart of Donald Schon’s
(1983) back talk and reflective interaction with the
stuff of design. It shows that creative behaviour in
design, at least in Schon’s sense, is not beyond
computation.

What makes emergence possible? The answer is
unambiguous – ambiguity. Ambiguity is the special
property of concrete things like shapes that lets you
see them in different ways whenever you like.
Ambiguity gets a bad press. One of the pioneers of
cognitive science, George Miller (1983), thinks
ambiguity is noise:

An interesting question for a theory of semantic
information is whether there is any equivalent for the
engineer’s concept of noise. For example, if a statement
can have more than one interpretation and if one
meaning is understood by the hearer and another is
intended by the speaker, then there is a kind of semantic
noise in the communication even though the physical
signals might have been transmitted perfectly.
(pp.495–496)

Perhaps Miller is right for cognition, at least if it is
rationality, but there may be more to it than this.
Ambiguity can be a designer’s best friend.

But how does ambiguity work and what can one do
with it in computations? Figure 21a is a good
example (see Stiny, 2001 for background and more
details). The figure on the left of this is rotated about
its centre to produce the figure on the right. This is

information technology arq . vol 5 . no 4 . 2001 369

Classical and non-classical computation Terry Knight and George Stiny

20d

20c 20e

20f

20 With anticipated
emergence the
grammar author
writes the rules and
knows that certain
shapes will emerge,
with possible
emergence the
author thinks that
certain shapes may
emerge, and with
unanticipated
emergence shapes
that were not
anticipated emerge

a Anticipated
emergence: a
grammar based on
equilateral triangles
leads predictably to
hexagons
b Possible
emergence: a
grammar based on
overlapping
triangles leads,
predictably, to a
fish, and possibly, to
a swan or a cat
c Unanticipated

emergence: the
grammar in 20c
leads to an
unanticipated
complex fish
d An emergent rule
that acts on the
unanticipated fish
and …
e … an
unanticipated face
also emerges …
f … that enables a
new, emergent rule
to be added

simple enough, but try it with a rule that rotates
triangles about their centres. It is impossible! The
rule keeps the centres of triangles fixed when they
are rotated. But these centres rotate when the left-
most figure is rotated into the right-most one. How is
this done? Calculating with the rule, one can use
Figure 21b to find out. The trick is to see that the
fourth shape in this computation is both three
triangles – the rotated versions of the original
triangles – and two triangles as well. With the second
description, three triangles can be produced from
two that are rotated appropriately. The sequence of
triangles, without ever erasing or adding any, is 3 - 3 -
3 - 2 - 2 - 3 - 3 - 3 - 3. This is not magic. It is ambiguity.
And this is just what non-classical representations in
shape grammars are good for. Nothing is fixed in
advance. There are neither units, primitives, nor
definitions.

But perhaps this is just an isolated computation.
How common is ambiguity anyway? It is everywhere,
whenever shapes are involved. For example, it is easy
to generalize the computation with triangles using
the shapes in the potentially infinite table shown in
Figure 21c. Ambiguity is anywhere you have a rule to
find it, and that’s everywhere. And if explanation is
desired, there is an algebraic theory about how all of
this works. Figure 22 depicts the algebras of shapes
for points, lines, planes, and solids (Stiny, 2001).
These algebras have a classification in terms of
whether or not the indices i and j are 0. Most
importantly, the atomic algebras are defined when
i = 0. They formalize classical representation. There is

arq . vol 5 . no 4 . 2001 information technology370

Terry Knight and George Stiny Classical and non-classical computation

21a

21b

21c

22

21 Emergence is made
possible by
ambiguity – the
property of concrete
things like shapes to
appear in different
ways
a The top left figure
can be rotated
around its centre –
but not around the
centres of the
individual triangles.
The individual
centres themselves
rotate when the
whole figure is
rotated
b Writing a rule for

21a: the fourth shape
is both 3 triangles
and 2
c Ambiguity is
everywhere: it is easy
to generalize the
computation with
triangles using the
shapes shown

22 Ambiguity is
anywhere there is a
rule to find it – and
there is an algebraic
explanation for this.
Algebras for points,
lines, planes and
solids (see Stiny,
2001)

information technology arq . vol 5 . no 4 . 2001 371

Classical and non-classical computation Terry Knight and George Stiny

23

24a

24b

24c

24d

23 Non-classical
process and non-
classical
computation

24 Eiform (Shea) is an
example of non-
classical/classical
computation
a Shape rules used in
Eiform generate
forms that may or
may not be
structurally feasible

b Computations
with these rules are
controlled by shape
annealing …
c … that can lead to
impressive, artistic,
structurally sound
forms
d A collection of
shape rules that
could be developed
in an evolutionary
process to define
grammars for floor
plans

References
Chomsky, N. (1957). Syntactic Structures,

Mouton, The Hague.
Gardner, M. (1970). ‘Mathematical

Games’, in Scientific American 223:4,
pp.120-123.

Hillier, B. and Hanson, J. (1984). The
Social Logic of Space, Cambridge
University Press, Cambridge.

Hillis, W. D. (1998). The Pattern on the
Stone, Basic Books, New York.

Horgen, J. (1993). ‘The Death of Proof’,
in Scientific American 26:9, pp.92–103.

Knight, T. (1994). Transformations in
Design, Cambridge University Press,
Cambridge, England.

Koning, H. and Eizenberg, J. (1981).
‘The Language of the Prairie: Frank
Lloyd Wright’s Prairie Houses’, in
Environment and Planning B 8,
pp.295–323.

Langer, S. K. (1982). Philosophy in a New
Key, Harvard University Press,
Cambridge, MA.

McCarthy, J. (1996). ‘Hubert Dreyfus,
What Computers Still Can’t Do’, in
Artificial Intelligence 80, pp.143–150.

Miller, G. (1983). ‘Information Theory
in Psychology’, in The Study of
Information: Interdisciplinary
Messages, Fritz Machlup and Una
Mansfield, eds., 1983, John Wiley &
Sons, New York.

MIT Encyclopedia of Cognitive Science,
(1999). MIT Press, Cambridge, MA.

Putnam, H. (1987). The Many Faces of
Realism, Open Court, LaSalle, IL.

Schon, D. (1983). The Reflective

Practitioner, Basic Books, New York.
Shea, K. and Cagan, J. (1999).

‘Languages and Semantics of
Grammatical Discrete Structures’,
in Artificial Intelligence for Engineering
Design, Analysis and Manufacturing,
Special Issue on Generative Systems in
Design 13, pp.241–251.

Stiny, G. (1977). ‘Ice-Ray: A Note on the
Generation of Chinese Lattice
Designs’, in Environment and Planning
B 4, pp.89–98.

Stiny, G. (1980). ‘Kindergarten
Grammars: Designing with
Froebel’s Building Gifts’, in
Environment and Planning B 7,
pp.409–462.

Stiny, G. (2001). ‘How to calculate with
shapes’, in Formal Engineering Design
Synthesis, E. K. Antonsson and J.
Cagan, eds., 2001, Cambridge
University Press, New York.

Stiny, G. and Gips, J. (1972). ‘The
generative specification of painting
and sculpture’, in Information
Processing 71, C. V. Frieman, ed., 1972,
North-Holland, Amsterdam.

Stiny, G. and Mitchell, W. J. (1978). ‘The
Palladian grammar’, in Environment
and Planning B 5, pp.5–18.

Testa, P. (2001). ‘Emergent Design: a
crosscutting research program and
design curriculum integrating
architecture and artificial
intelligence’, Environment and
Planning B: Planning and Design 28(4),
pp.481-498.

Illustration credits
arq gratefully acknowledges:
B. Hillier and J Hanson, 7a and b
M. Auer, T. Braude, J. Nakagawa, 8
Doug Ricket, 10
G. Stiny, 13, 16
G. Stiny and W. J. Mitchell, 24
H. Koning and J. Eizenberg, 15
Randy Brown, 17a
Michael Brown, 17b
Wei-Cheng Chang, 17c
Murat Sanal, 17d
Jin-Ho Park, 17e
Michael Wilcox, 17f
Gabriela Celani, 18a and b
K. Shea and J. Cagan, 24a-c

Acknowledgement
This paper is a modified version of a
keynote address given at the
Greenwich 2000 International
Symposium on Digital Creativity, 13-15
January 2000.

Biographies
Terry Knight is an Associate Professor

in the Department of Architecture
at the Massachusetts Institute of
Technology. She conducts research
and teaches in the area of design
and computation.

George Stiny is a Professor in the
Department of Architecture at the
Massachusetts Institute of
Technology. He has been working in
the area of shape computation –
especially as it applies to design –
for many years.

no reason to think that verbal and visual devices are
not both part of a single mathematical theory. The
non-atomic algebras for lines, planes, and solids are
defined when i is greater than 0. They take care of
non-classical representation.

Non-classical/non-classical computation
What happens when the kind of non-classical
representation described here is used in a non-
classical process? We have non-classical/non-classical
computation [Fig. 23].

There are not yet many examples of this. In non-
classical/non-classical computation, explicit
explanation may be abandoned, but effective results
are not. Kristina Shea’s (1999) program for generating
free form structures, called Eiform, is a good
example of non-classical/non-classical computation.
Figure 24a shows some shape rules used in Eiform.

The rules are general – so much so that they
generate forms that may or may not be structurally
feasible. However, computations with these rules are
orchestrated by a host of outside criteria. These
contribute to making the whole process non-
classical. Factors like efficiency, economy, utility, and

aesthetics are put together in an optimization
process called shape annealing [Fig. 24b]. The results
of computations are no longer explainable by the
shape rules or by the computations themselves.
Figure 24c shows the kind of impressive, artistic, and
structurally sound form that results. And, in a more
architectural vein, it is easy to imagine putting
together a collection of rules, say floorplan rules
[Fig. 24d] that have been useful at one time or
another individually, and then seeing what the rules
do when they act and evolve together in an
evolutionary process. This is exactly what Hillis did
in evolving his number sorting programs. There is
no claim to explanation, because it is almost
impossible to know how the evolved grammars work.

There’s more …
Computation has been described in this paper in
terms of representation and process. However,
representation and process are just two aspects of
computation among a host of many, many others. In
many ways, computation is much like shapes. There
is always some other way to describe it that may
prove insightful. One’s work is never done.

arq . vol 5 . no 4 . 2001 information technology372

Terry Knight and George Stiny Classical and non-classical computation

