Descriptive Geometry

A typical problem

can you work out the area of the green area just using geometrical construction?

a typical problem

Or the green areas here?

Development of an object

C. Development of a cyinder with the tor and bottom truncated

A. PROPORTION OF HEIGHT TO BASE

DEVELOPMENT
B. DEVELOPMENT PAOCEDURE

- development of a cone

FRUSTUM

DEVELOPMENT

OEVELOPMENT
A. PROPORTION OF HEIGHT TO BASE

B. development phocedure

Canons of the Five Orders of Architecture

Giacomo Barozzi da Vignola

Canon of the Five Orders of Architecture
the use of geometric tools

I. Determine height and largest diameter, d. These measures are normally integral multiples of a common module, m.
2. At $1 / 3$ the height, draw a line, l, across the shaft and draw a semi- circle, c, about the center point of I, C, with radius $d(I m)$. The shaft has uniform diameter d below line 1 .
3. Determine smallest diameter at the top of the shaft (1.5m in our case). Draw a perpendicular, I ', through an end-point of the diameter. I^{\prime} intersects c at a point P. The line through P and C defines together with / a segment of c.
4. Divide the segment into segments of equal size and divide the shaft above I into the same number of sections of equal height.
5. Each of these segments intersects c at a point. Draw a perpendicular line through each of these points and find the intersection point with the corresponding shaft division as shown. Each intersection point is a point of the profile.

I. Determine height and diameter (or radius) at its widest and top. The base is assumed to be 2 m wide, the height 16 m . The widest radius occurs at r of the total height and is $1+m$. The radius at the top is m.
2. Draw a line, l, through the column at its widest. Q is the center point of the column on I and P is at distance $I+m$ from Q on I.
3. M is at distance m from the center at the top and on the same side as P. Draw a circle centered at M with radius $I+m$. This circle intersects the centerline of the column at point R.
4. Draw a line through M and R and find its intersection, Q, with I.
5. Draw a series of horizontal lines that of the shaft into equal sections. Any such line intersects the centerline at a point T. Draw a circle about each T with radius m.

The point of intersection, S, between this circle and the line through O and T is a point on the profile.

Another typical problem
draw a line through P that meets the intersection of the two lines?

P
a typical problem
hint

Desargues configuration

Computation and Representations

but also

Digital Fabrication
Engineering
Product design
CAM
Prototyping
Robot programming

Architecture

Mathematics
Engineering
Computer Science

Motion/sensor/... planning
models are representations of physical artifacts, ideas, designs ... of things in general

- User interface
- Geometrical and algorithmic level
- Arithmetic substratum
models and representations
models are representations of physical artifacts, ideas, designs ...
of things in general
an artificially constructed object that makes the observation of another object easier

a geometrical model is an abstraction
- an idealization of real 3D physical objects
models are representations of physical artifacts, ideas, designs ...
of things in general
configurations of elements bearing relationships to one another to give an overall sense of structure

Elements

Relationships between elements
Structure
http://www.designboom.com/architecture/ik-studio-conics-canopy/

geometric transformations

Hint: all you need are mirrors!

Figure 3.2
Examples of point groups in architectural plans:
a, Montmorency
Palace, D_{1}
b, De Witt House, D_{2}
c, Inn St. Marceau, D_{3}
d, Barrière de Picpus, D_{4} e, House of Entertainment (circular colonnade and pavilions), D_{1} all projects and buildings by Claude-Nicolas

Ledoux:

f, Sepulchral Church, D_{3} g , Kennels, D_{3}
both designs by Sir John Soane:
and projects and buildings by Frank Lloyd Wright
h, Greek Orthodox
Temple, C_{1}
i, St Mark's Apartment
Tower, C_{2}
j, Huntingdon Hartford
Clubhouse, D_{3}
k, Suntop Homes, C_{4}
1, Daphne Mortuary, D_{5}

h

i

Conic Sections

Circle
produced by slicing a cone by a cutting plane

Parabola

Ellipse

Hyperbola

Pantheon

Stockholm Public Library

Ctesiphon

Colosseum

S.Vicente de Paul at Coyoacan

developing a cone

rectifying the circumference of a circle
rectification: approximate length of a circular arc

1. Draw a tangent to the arc at A (How?).
2. Join A and B by a line and extend it to produce D with $A D=1 / 2 A B$.
3. Draw the circular arc with center D and radius $D B$ to meet the tangent at E.
$A E$ is the required length
approximate circular arc of a given length
A be a point on the arc.
$A B$ is the given length on the tangent at A.
I. Mark a point D on the tangent such that $A D=1 / 4 A B$.
4. Draw the circular arc with center D and radius $D B$ to meet the original at C.

parabola

a parabola within a rectangle

$\leftrightarrow \geq$ Bisect the sides and of the rectangle $A B C D$ and join their midpoints, E and F, by a line segment.
$\downarrow \geq$ Divide segments and into the same number of equal parts, say $n=5$, numbering them as shown.
$-\quad$ Join F to each of the numbered points on to intersect the lines parallel to through the numbered points on at points $P_{1}, P_{2}, \ldots P_{n-1}$ as shown.
$\cdots \geq$ These points lie on the required parabola.

constructing an oblique parabola

reflective property of a parabola

kraal in Namibia

Inuit igloo

ellipse

distance to $F_{1}+$ distance to $F_{2}=a$ constant

P is an arbitrary point between D and E.
Construct circles $A(D P)$ and $B(E P)$.
minor axis
The circles intersect at two points that lie on the ellipse.

$$
\begin{aligned}
2 a & =\overline{P F_{1}}+\overline{P F_{2}} & \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
\end{aligned}
$$

axonometric view of a circle is an ellipse

us capitol building
http://www.loop-the-game.com
hyperbola
distance to F_{1} - distance to $F_{2}=$ a constant

hyperbola

hyperbola

C is the center and V, one of the vertices. -$\mathrm{C}-\mathrm{V}$ - is the semi-transverse axis.
$\leftrightarrow _$Extend $-C-V-$ to $-C-V^{\prime}-$ such that $C V^{\prime}=$ CV.
$\pm \geq$ Construct a line perpendicular to the axes through P to form the rectangle VQPR.
\triangle Divide and into equal number of segments.
\rightarrow Join by lines the points on' to $x^{\prime \prime}$ '.
$\uparrow \geq$ Join by the lines the points on to

reflective property of a hyperbola

oscar neimeyer

creating surfaces from conic curves

- Is produced when a line is moved in contact with a curve (directrix) in the plane to produce a surface

Generating a conical surface

Generating a convolute (Tangent line)

Generating a cylindrical surface

Generating a convolute (Tangent plane)

A ruled surface has the property that a straight line on the surface can be drawn through any point on the surface.

- Is a ruled surface for which two successive elements are neither parallel nor pass through a common point

http://www.achimmenges.net

coordinates and transformations

cartesian coordinate system

translation

polar coordinate system

rotation

cylindrical coordinate system

spherical coordinate system

reflection

scale transformation

shear transformation
freeform curves to surfaces

surface parameterization

surface constructions

intersection curves of surfaces

boolean operations
trim and split

deformations

twisting

free form deformations deformations

back to descriptive geometry

