48-I75

Descriptive Geometry

Planes in Descriptive Geometry

A spatial figure is a plane whenever for any two points on the figure, the line specified by the points also lies on the figure.

A plane is the set of all points that lie on any line specified by two points one from each two intersecting lines.

Line moving parallel to itself will generate a plane

Line rotated about a point form a sector of a plane circle

By two intersecting lines

By three non-collinear points

By a line and a point off the line

By two parallel lines

Planes are always depicted to have limited size

A plane is completely and uniquely defined by three non-collinear points on the plane;

That is, we can delineate a bounded portion of the plane by points that form the corners of a triangle which belong to the plane

LIne XY lies on plane $A B C$ and passes through point P, which is also in the plane $A B C$

Line CZ appears as a point plane $A B C$ as an edge

Line $B Y$ appears as a point plane $A B C$ as an edge

Edge view of plane $A B C$
Line $A X$ in point view

incircle - last step (variation 2)

Suppose a plane is given by diagonal lines, say $A B$ and $C D$. Suppose three of the points, say A, B and C are given by their quad paper coordinates, for example, $A(1,21 / 2,51 / 2), B(3,2,5)$, and $C(2,11 / 4,33 / 4)$.

In order to determine D we will need further constraints. Suppose the diagonals are of equal length, that is, $A B=C D$; suppose further that they intersect at right angles.
to determine the slope and true shape of the plane $A B C D$; to find the true length and bearing of $C D$; and to complete the top and front views of the plane

- to determine the slope and true shape of the plane ABCD;
- to find the true length and bearing of CD;
- to complete the top and front views of the plane.

C

completing the views of a plane

how do we handle these cases?

