48-175 Descriptive Geometry

Lines in Descriptive Geometry

recap-depicting lines

construction: where is the point?

Quiz-how do you know if a figure is planar

the first basic construction true length of a segment

The true length (TL) of a segment is the distance between its end-points.

Projection plane #1

true length of a segment

two cases when segments seen in TL

requires an auxiliary view

when lines are perpendicular to the folding line

construction:TL of a segment

Given two adjacent views, I and 2, of an oblique segment, determine the TL of the segment.

There are three steps.

- 1. Select a view, say 1, and draw a folding line, 1 | 3, parallel to the segment for an auxiliary view 3
- 2. Project the endpoints of the segment into the auxiliary view
- 3. Connect the projected endpoints.

The resulting view shows the segment in TL.

true length of a chimney tie

how do you calculate the distance between two points?

point view of a segment

Given an oblique segment in two adjacent views, I and 2, the steps to find a point view of the segment

- I. Obtain a primary auxiliary view 3 showing the segment in TL
- Place folding line 3 | 4 in view 3 perpendicular to the segment to define an auxiliary view 4
- 3. Project any point of the segment into view 4.

This is the **point view** of the entire segment

recap – pv of a line

parallel lines

- When two lines are truly parallel, they are parallel in any view, except when they coincide or appear in point view
- The **converse is not always true**: two lines that are parallel in a particular view or coincide might not be truly parallel

Elevation

What am I looking at ?

Lines are parallel in adjacent views

Lines are perpendicular to the folding line

- Use two successive auxiliary views to show the lines in point view.
- The distance between the two point views is also the distance between the lines.

▶ a practical example – distance between railings

- Constructions based on auxiliary views can be used flexibly to answer questions about the geometry of an evolving design as the design process unfolds.
- It is often sufficient to produce

auxiliary views only of a portion of the design,

which can often be done on-the-fly in some convenient region of the drawing sheet.

- Important to select an appropriate folding line (or picture plane)
- Pay particular attention to the way in which the constructions depend on properly selected folding lines

perpendicular lines

- two perpendicular lines

 appear perpendicular in
 any view that shows at
 least one line in TL
- the *converse* is also true

perpendicular lines

perpendicular lines

construction: perpendicular to a line from a given point

- Show I in TL in an auxiliary view σ .
- In *a*, draw a line through *O* perpendicular to *I*. Call the intersection point *X*.
 This segment defines the desired line in *a*.
- Project back into the other views.

construction: perpendicular to a line

- Given a line and a point in two adjacent views, find the true distance between the point and line
- There are two steps:
- Construct in a second auxiliary view, the PV of the line.
- Project the point into this view
 The distance between the point and the PV of the line shows the true distance

specifying lines

Bearing always measured from a compass direction (typically north or south) to a compass direction through a certain angle.

- Here the bearing reads 60° from north towards west
- seen in a horizontal В N 60° W plane view relative to the compass North $W \leq$ $\gg E$ Α 1 2 A'_{2} B_2 Position of line AB in the frontal projection has no effect on the bearing of line AB (Two positions AB and A'2B'2 are shown) B'_{2} A_2 specifying a line given a point, its bearing and slope 56

• The **bearing** is **always**

The *angle of inclination* of a line segment is the angle it makes with any horizontal plane It is the **slope angle** between the line and the horizontal projection plane and is seen only when — *the line is in true length and the horizontal plane is seen in edge view*

specifying a line given a point, its bearing and slope

adding precision

On quad paper, line A: (2, 2, 6), D: (2, 2, 9) is a diagonal of a horizontal hexagonal base of a right pyramid. The vertex is 3'' above the base. The pyramid is truncated by a plane that passes through points P: (1, 4 1/2, X) and Q: (4, 1 1/2, X) and projects edgewise in the front view. Draw top and front views of the truncated pyramid.

- Given a point, the bearing, angle of inclination and true length of a line, construct the top and front views of the line
- Suppose we are given the top and front projections of the given point, A, bearing N30°E, slope 45° and true
- Assume North.
- Choose the point A in front view 2 arbitrarily

- Constructing an auxiliary view 3 using a folding line
 3|1 parallel to the top view of the given line.
- Project A₁ to A₃ using the transfer distance from the front view 2.
- Draw a line from A₃ with given slope and measure off the supplied true length to construct point B₃

- Project B₃ to meet the line in top view at B₁. A₁B₁ is the required top view.
- Project B_1 to the front view and measure off the transfer distance from the auxiliary view 3 to get B_2 . A_2B_2 is the required front view.

 The problem is to determine the true length of structural members AB and CD and the percentage grade of member BC.

solving the structural framework problem

Consider two such mine tunnels AB and AC, which start at a common point A.Tunnel AB is 110' long bearing N 40° E on a downward slope of 18°. Tunnel AC is 160' long bearing S 42° E on a downward slope of 24°.

 Suppose a new tunnel is dug between points B and C. What would its length, bearing, and percent grade be?

step 2

Step 3