48-I75

Descriptive Geometry

Lines in Descriptive Geometry

- Given a segment in two adjacent views, t and f, and the view of a point, X, on the segment in one view, say t, how can we construct the view of X in f, X_{f}

X_{f} can immediately be projected from X_{t}

construction: where is the point?

- If the views are perpendicular, we go through the following steps:
I. Use the auxiliary view construction to project the end-points of the segment into a view, a, adjacent to p and connect them to find the view top of the segment.

2. Project X_{t} on the segment.
3. The distance of X_{a} from folding line $t \mid a, d_{x}$, is also the distance of X_{q} from folding line $t \mid f$ and serves to locate that point in f.

Transfer distance d_{X} in the auxiliary view is transferred back into the front view to obtain the point in the front view
construction: where is the point?

summary - where is the point?

Quiz-how do you know if a figure is planar

the first basic construction true length of a segment

The true length (TL) of a segment is the distance between its end-points.

Projection plane \#1

When a line segment in space is oriented so that it is parallel to a given projection plane, it is seen in its true length in the projection on to that projection plane

true length of a segment

two cases when segments seen in TL
requires an auxiliary view

requires an auxiliary view

Edge view of auxiliarly projection plane \#3 when viewing the frontal plane \#2
when lines are perpendicular to the folding line

Given two adjacent views, I and 2, of an oblique segment, determine the TL of the segment.

There are three steps.

1. Select a view, say I, and draw a folding line, I | 3, parallel to the segment for an auxiliary view 3
2. Project the endpoints of the segment into the auxiliary view
3. Connect the projected endpoints.

The resulting view shows the segment in TL.

true length of a chimney tie

how do you calculate the distance between two points?
point view of a segment

requires successive auxiliary views

With a line of sight perpendicular to an auxiliary elevation that is parallel to $A B$, the projection shows the true slope of $A B$ (since horizontal plane is shown in edge view)

Auxiliary plane \#3 is parallel to $A B$
${ }^{\circ} A_{4}, B_{4}$
Auxiliary plane \#4 in which line is seen as a point. Plane \#4 is perpendicular to $A B$ (and therefc is also perpendicular to $A_{3} B_{3}$ wh is a true length projection of $A B$)

With a line of sight perpendicular to an auxiliary elevation that is parallel to $A B$, the projection shows the true slope of $A B$ (since horizontal plane is shown in edge view)

Auxiliary plane \#4 in which line $A B$ is seen as a point. Plane \#4 is perpendicular to $A B$ (and therefore is also perpendicular to $A_{3} B_{3}$ which is a true length projection of $A B$)

Given an oblique segment in two adjacent views, I and 2 , the steps to find a point view of the segment

1. Obtain a primary auxiliary view 3 showing the segment in $T L$
2. Place folding line $3 \mid 4$ in view 3 perpendicular to the segment to define an auxiliary view 4
3. Project any point of the segment into view 4 .

This is the point view of the entire segment

parallel lines

- When two lines are truly parallel, they are parallel in any view, except when they coincide or appear in point view
- The converse is not always true: two lines that are parallel in a particular view or coincide might not be truly parallel

What am I looking at ?

Lines are parallel in adjacent views

testing for parallelism

Lines are perpendicular to the folding line

- Use two successive
auxiliary views to show the lines in point view.
- The distance between the two point views is also the distance between the lines.

a practical example - distance between railings
- Constructions based on auxiliary views can be used flexibly to answer questions about the geometry of an evolving design as the design process unfolds.
- It is often sufficient to produce auxiliary views only of a portion of the design, which can often be done on-the-fly in some convenient region of the drawing sheet.
- Important to select an appropriate folding line (or picture plane)
- Pay particular attention to the way in which the constructions depend on properly selected folding lines

perpendicular lines

- two perpendicular lines appear perpendicular in any view that shows at least one line in $T L$
- the converse is also true
projection plane p parallel to $C D$

perpendicular lines

construction: perpendicular to a line from a given point
- Show $/$ in TL in an auxiliary view a.
- In a, draw a line through O perpendicular to l. Call the intersection point X.

This segment defines the desired line in a.

- Project back into the other views.

$>$ construction: perpendicular to a line
- Given a line and a point in two adjacent views, find the true distance between the point and line
- There are two steps:
I. Construct in a second auxiliary view, the PV of the line.

2. Project the point into this view

The distance between the point and the PV of the line shows
 the true distance

specifying lines

- By two points and the distances below the horizontal picture plane and behind the vertical picture plane

Edge view of the horizontal and profile projection planes seen in view \#2

Edge view of the frontal projection plane seen in view \#

Bearing always measured from a compass direction (typically north or south) to a compass direction through a certain angle.

- The bearing is always

Here the bearing reads 60° from north towards west
seen in a horizontal plane view relative to the compass North

The angle of inclination of a line segment is the angle it makes with any horizontal plane It is the slope angle between the line and the horizontal projection plane and is seen only when - the line is in true length and the horizontal plane is seen in edge view

specifying a line given a point, its bearing and slope

- origin: lower left corner

- Point (x, Front y,Top y)
- x distance from left margin
- Front y distance from lower border to front view
- Top y distance from lower border to top view
border
\square

Unknown quantity marked by an "X"

- On quad paper, line $A:(2,2,6), D:(2,2,9)$ is a diagonal of a horizontal hexagonal base of a right pyramid. The vertex is 3 " above the base. The pyramid is truncated by a plane that passes through points $\mathrm{P}:(\mathrm{I}, 4 \mathrm{I} / 2, \mathrm{X})$ and $\mathrm{Q}:(4, \mathrm{I} \mathrm{I} / 2, \mathrm{X})$ and projects edgewise in the front view. Draw top and front views of the truncated pyramid.

- Given a point, the bearing, angle of inclination and true length of a line, construct the top and front views of the line
- Suppose we are given the top and front projections of the given point, A, bearing $N 30^{\circ}$ E, slope 45° and true
- Assume North.
- Choose the point A in front view 2 arbitrarily

- Constructing an auxiliary view 3 using a folding line 3|| parallel to the top view of the given line.
- Project A_{1} to A_{3} using the transfer distance from the front view 2.
- Draw a line from A_{3} with given slope and measure off the supplied true length to construct point B_{3}

- Project B_{3} to meet the line in top view at $B_{1} . A_{1} B_{1}$ is the required top view.
- Project B_{1} to the front view and measure off the transfer distance from the auxiliary view 3 to get B_{2}. $A_{2} B_{2}$ is the required front view.

- The problem is to determine the true length of structural members $A B$ and $C D$ and the percentage

 grade of member $B C$. | T | | | |
| :--- | :--- | :--- | :--- |
| F | | | |

- Consider two such mine tunnels $A B$ and $A C$, which start at a common point A. Tunnel $A B$ is 110 ' long
bearing $\mathrm{N} 40^{\circ} \mathrm{E}$ on a downward slope of 18°. Tunnel AC is 160^{\prime} long bearing $S 42^{\circ} \mathrm{E}$ on a downward slope of 24°.
- Suppose a new tunnel is dug between points B and C. What would its length, bearing, and percent grade be?

$A B$ is seen in true length and slope in view 1

> in pittsburgh
- Let $A B C$ be a triangular planar surface with B 25 ' west 20 ' south of A and at the same elevation. C is 12^{\prime} west 20 south and $15{ }^{\prime}$ above A. Locate a point X on the triangle 5^{\prime} above and 10 ' south of
A. Determine the true distance from A to X.

Step 3

