48-I75
 Descriptive Geometry

Introduction to Geometric Constructions
can you work out the area of the green area just using geometrical construction?

Development of an object

C. DEVELOPMENT OF A CYINDER WTH ThE TOP and BOTTOM TRUNCATED

A. PROPOATION OF HEIGHT TO BASE

DEVELOPMENT
B. DEVELOPMENT PAOCEDURE
development of a cone

fRUSTUM

DEVELOPMENT

OEVELOPMENT
A. PROPORTION OF HEIGHT TO BASE

B. development procedure

Canons of the Five Orders of Architecture

Giacomo Barozzi da Vignola

Canon of the Five Orders of Architecture
the use of geometric tools
I. Determine height and largest diameter, d. These measures are normally integral multiples of a common module, m.
2. At $1 / 3$ the height, draw a line, l, across the shaft and draw a semi- circle, c, about the center point of I, C, with radius $d(I m)$. The shaft has uniform diameter d below line l.
3. Determine smallest diameter at the top of the shaft (1.5 m in our case). Draw a perpendicular, I', through an end-point of the diameter. I' intersects C at a point P. The line through P and C defines together with I a segment of c.
4. Divide the segment into segments of equal size and divide the shaft above I into the same number of sections of equal height.
5. Each of these segments intersects c at a point. Draw a perpendicular line through each of these points and find the intersection point with the corresponding shaft division as shown. Each intersection point is a point of the profile.

1. Determine height and diameter (or radius) at its widest and top. The base is assumed to be 2 m wide, the height 16 m . The widest radius occurs at r d of the total height and is $1+m$. The radius at the top is m.
2. Draw a line, I, through the column at its widest. Q is the center point of the column on I and P is at distance $I+m$ from Q on I.
3. M is at distance m from the center at the top and on the same side as P. Draw a circle centered at M with radius $I+m$ Jhis circle intersects the centerline of the column at point R.
4. Draw a line through M and R and find its infersection, 0 , with 1.
5. Draw a series of horizontal lines that divide the shaft into equal sections. Any such line intersects the centerline at a point I. Draw a circle about each T with radius m.

The point of intersection, S, between this circle and the line through O and T is a point on the profile.

Measurements

- width $=1$,
length (base)
then area $=$ length
- width $=10$,
then area $=$ length +

positionally add a zero at the end length (base)
or move decimal point to the right by one position
- width $=100$,
area $=$ length +
positionally add two zeroes at the end or
move the decimal point to the right by two positions
- and so on ...
- length can represent area
diagonal divides a rectangle into identical triangles

$\triangle_{a} A B C=\triangle_{a} A C F+\triangle_{a} C F B$
$\triangle{ }_{a} A B C=1 / 2 \square_{a} A D C F+1 / 2 \square_{a} C E B F$
$=1 / 2 \square_{a} A B E D$

$$
\begin{aligned}
& \triangle_{a} A B C=\triangle_{a} A C F-\triangle_{a} B C F \\
& \triangle_{a} A B C=1 / 2 \square_{a} A D C F-1 / 2 \square_{a} C E B F \\
& =1 / 2 \square_{a} A B E D
\end{aligned}
$$

$-A-B-,-A B-$	A line passing through points A and B.		
$-A-$	A line passing through point A.		
$A-$	A ray emanating from point A		
$A B$	The line segment between points A and B		
$A B$	Length of the line segment between points A and B		
$\|A B\|$	The signed length of the segment $A B .\|A B\|=-\|B A\|$		
\perp	Is perpendicular, e.g., $-A B-\perp-C-$		
$\\|$	Is parallel, e.g., $-A B-\\|-C-$		
$O(r)$	Circle centered at point O with radius r.		
$O(A B)$	Circle centered at O with radius equal to the length $\|A B\|$ $O(P)$		
Circle centered at O with P a point on its circumference,, or radius $=O P$			
$\triangle A B C$	Triangle with corners A, B and C		
$\square A B C D$	Quadrilateral with corners A, B, C and D		
$\square A B C D E F \ldots$	Polygon with corners A, B, C, D, E, F, \ldots		
$\angle B A C$	Angle at A defined by sides $A B$ and $A C$		
$\triangle \square_{a}, \ldots$	Area of triangle, etc.		

1. Extend $-\mathrm{CB}-$ to $-\mathrm{CBD}-$ so that $\mathrm{BD}=$ given base
2. Draw a line $-C-$ parallel to $-A D-$, that is, $-C-\|-A D-$; and extend $-A B$ - to intersect it at E
$\triangle B E D$ is the required triangle

triangle of given base of equal area to another

Suppose we are given an angle as well
I. Construct $\triangle B E D$ as before.
2. Draw a line $-E-$ parallel to $-C D-$
3. Draw a line at the given angle to -CBD- at B to intersect $-\underset{C}{E-}$ at F

$\triangle B D F$ is the required triangle with given base
$B D$ and $\angle D B F$, the given angle.

Can you find a single line whose length equals the area of a triangle based on what we have done so far?

$\square_{a} A B C D=\triangle_{a} A B C+\triangle_{a} A D C$

$$
=1 / 2 b h+1 / 2 b h=b h
$$

$$
\begin{aligned}
\square_{a} A B C D & =\triangle_{a} A B C+\triangle_{a} A D C \\
& =1 / 2 b h+1 / 2 b h=b h
\end{aligned}
$$

parallelograms \& trapeziums

Let $\square A B C D$ be the given quadrilateral

1. Draw a line $-D-$ through D parallel to the diagonal $-A C-$
2. Extend $-B C$ - to meet this line at C.
$\triangle A B C$ ' is the required triangle

Given	$\angle A O B$ (without loss in generality, let $O A=O B$)		
Draw	$O(O A),-B C D-$, $C D=O A, O C=O A$	$-O A-,-B D-$	$\angle A D B$
Points of intersection	C	D	

more 'impossible' construction

small rulers

Geometric Transformations

Hint: what you need are mirrors!
rotating an object without using a compass

Conic Sections

Circle

Ellipse

produced by slicing a cone
by a cutting plane

Parabola

Hyperbola

- Pantheon

- Imperial baths,Trier

- Colosseum

- S.Vicente de Paul at Coyoacan
rectification: approximate length of a circular arc

1. Draw a tangent to the arc at A (How?).
2. Join A and B by a line and extend it to produce D with $A D=1 / 2 A B$.
3. Draw the circular arc with center D and radius $D B$ to meet the tangent at E.
$A E$ is the required length
constructions involving circles
approximate circular arc of a given length
A be a point on the arc.
$A B$ is the given length on the tangent at A.
I. Mark a point D on the tangent such that $A D=1 / 4 A B$.
4. Draw the circular arc with center D and radius $D B$ to meet the original at C.

O

a practical application

a parabola within a rectangle

I. Bisect the sides and of the rectangle $A B C D$ and join their midpoints, E and F, by a line segment.
2. Divide segments and into the same number of equal parts, say $n=5$, numbering them as shown.
3. Join F to each of the numbered points 2 on to intersect the lines parallel to through the numbered points on at points $P_{1}, P_{2}, \ldots P_{n-1}$ as shown.
4. These points lie on the required parabola.

a parabola by abscissae

an abscissa is related to any of its double ordinate by the ratio, $A B$: $(P B \times B Q)$, which is always a constant. That is, the abscissa is a scaled multiple of the parts into which it divides the double ordinate.

P is an arbitrary point between D and E.
Construct circles $A(D P)$ and $B(E P)$.
The circles intersect at two points that lie
minor axis on the ellipse.

constructions involving ellipses

The Trammel Method

Draw the axes and mark off along a straight strip of card-board the distances $P Q$ and $P R$. Apply the trammel so that Q lines up with the major axis and R lines up with the minor axis; P is a point on the ellipse. More points P can be plotted, by moving the trammel so that
Q and R slide along their respective axes.

W Abbott

Practical Geometry and Engineering Graphics Blackie \& Son Ltd, Glasgow, 197I.

the trammel method

constructing an ellipse within a rectangle

hyperbola
$C L$ and $C M$ are the asymptotes.
M
I. Construct lines $-P-R-$ and $-P-S-$ parallel to them.
2. Construct any radial line from $e T_{S}$ cutting $-P-R-$ and $-P-S-$ at points, I_{R} and I_{S}.
3. Through these points construct lines parallel to the asymptotes to intersect at I, which is on the curve.
4. Similarly construct points $2,3, \ldots$

L
C is the center and V, one of the vertices. $-C-V$ - is the semi-transverse axis.
I. Extend $-C-V-$ to $-C-V^{\prime}-$ such that $C V^{\prime}$ $=C V$.
2. Construct a line perpendicular to the axes through P to form the rectangle VQPR.
3. Divide and into equal number of segments.
4. Join by lines the points, on to V '
5. Join by the lines, the pónts on tov.

Golden Section
$A B$ is a segment and C a point so that $A-C-B$.
C divides $A B$ in the golden ratio if $A B: A C=A C: C B$

Any division that satisfies the golden ratio is called a golden section $=$ $1 / 2(1+\sqrt{ } 5)$

Le Corbusier's Villa Stein at Garches
$A B \cdot B+1 \cdot 1$

