
8  
Solids and Surfaces 

Intuitively, solids are objects that have volume, that is, occupy a region of space, and are 
all of one piece. They have insides and outsides and generally represent real-world 
objects that can be physically constructed out of real materials.  It is not entirely trivial 
to make this intuitive notion of what we mean by a solid mathematically precise.  

Surfaces do not have volume although they too occupy a region of space. The spatial 
boundary of a solid is a surface, and the geometry of surfaces can be studied in its own 
right. Again, a rigorous treatment demands more mathematical background than we can 
or are willing to provide and is certainly beyond the scope of this course. The present 
section treats solids informally but provides some useful terminology. 

8.1 SOLIDS 

We start informally by considering a solid as a set of points contained in a volume. 

8.1.1 Neighborhoods 

Points have neighborhoods, that is, for any point P, for some 
infinitesimal number r, there is a sphere of points that are at a 
distance less than r from P.  Clearly, every point has infinitely 
many neighborhoods (for each possible value of r), and every 
neighborhood contains infinitely many points. 

8-1  
A neighborhood of a point 
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8.1.2 Interior and boundary points 

Points can be inside a solid (indeed, a surface or any geometric figure), on the boundary 
of the figure or outside the figure.  An interior point is one in which every neighborhood 
of the point is in the figure. A boundary point is one in which every neighborhood of the 
point contains a point that is in the figure and a point that is not in the figure.  A 
boundary of a figure is made up of its boundary points.  All other points are exterior to 
the figure.  
 

 

 
8-2  
Interior, exterior and boundary points 

 

We say a point is on a solid if it is a boundary point.  We say a point is near a solid if it 
is either an interior point or a boundary point. 

8.1.3 Connectivity 

A solid is connected if it cannot be split into two solids (again, surfaces or geometric 
figures) such that each figure contains a point near the other. Connectivity expresses 
mathematically the intuitive notion that if a geometric figure is connected, it is all of one 
piece, and that it is not given as a collection of separate remote parts. 

A spatial figure is a solid if it is connected, contains at least one interior point and all of 
its boundary points and its boundary equals the boundary of its interior. 

This definition captures the following intuitive notions 

• The fact that it contains at least one interior point (and consequently infinitely many 
interior points) assures that a solid has volume and thus it can be built with real 
materials  

• The fact that it is connected captures our intuition that a solid hangs together as a 
single piece 

• The fact that it contains its boundary is included for technical reason that we want to 
be sure that whenever we are given a solid, we are sure that we are also given its 
boundary. 

• The fact its boundary is the boundary of its interior ensures that a solid has no 
dangling features; this, again, ensures that it can be built with real materials.  

Exterior point

Boundary point

Interior point

Solid is a set of points
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8-3  
Dangling features 

  
 

Although surfaces are much harder to define precisely we will rely on the notion that a 
connected subset of its boundary is a surface of the solid. 

A word of caution must be added here.  According to the above definition, we are not 
restricted to describing objects that are ‘solid’ in the normal sense, that is, constructed 
from real materials, and thus the opposite of a ‘void’, which signifies precisely the 
absence of physical material. Considered as sets of points, voids, like the space enclosed 
by walls, floors and ceilings, are solids as are the physical elements that enclose them.  

Solids can be classified into the following types. 

8.1.4 Polyhedral solids 

A polyhedron is a solid whose boundary (or faces) consists of planar surfaces. Like 
polygons, a polyhedron is convex if it contains every segment whose endpoints are on 
the solid. A regular polyhedron has congruent faces. There are five such regular 
polyhedra, which are also known as the Platonic solids. These are shown in Figure 8-4: 
the tetrahedron bounded by four triangles; the cube bounded by six squares; the 
octahedron bounded by eight triangles; the dodecahedron bounded by twelve pentagons; 
and the icosahedron bounded by 20 triangles. 

     

8-4  
The Platonic Solids 

Other or irregular polyhedra do not have this property and are described in other ways.  
Some are illustrated in Figure 8-5. 

dangling edge

dangling face
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8.1.5 Euler’s formula 

All solid convex polyhedra satisfy a property known as Euler’s formula: V-E+F = 2. 
That is, the number of vertices and faces is two more than the number of edges. 
 
Solid Tetrahedron Hexahedron Octahedron Dodecadehdron Icosohedron 

Vertices 4 8 6 20 12 

Edges 6 12 12 30 30 

Faces 4 6 8 12 20 

 

 

 

 
8-5  
Example polyhedral solids 

Lateral face Lateral edge

Base planehexahedron
6 faces and 8 vertices

tetrahedron
4 faces and 4 vertices

Vertex

Base Base 

oblique prismright prism

Vertex

Center of baseCenter of base

Vertex

oblique pyramidright pyramid
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8-5(continued) 
Example polyhedral solids 

8.1.6 Extruded solids 

Certain solids as shown in Figure 8-5 can be described by a process, termed extrusion, in 
which a simple polygon or a simply closed curve on a plane is swept along a line 
between the plane and another plane parallel to it in doing so gathering the points, which 
are contained in the extruded solid. These solids have a standard cross-section that does 
not vary over the length of the solid, and once a cross-section is known, only the line has 
to be specified to completely define the solid.  An augmented form of extrusion adds a 
constant tapering of the cross-section over the length of the solid. Again, for a given 
cross-section, only the line has to be specified to completely define the solid.  Both 
forms of extrusion are shown in Figure 8-6. 
 

  
8-6  
Extrusions 

If a polygon with n sides is extruded, the extruded solid is an n-sided prism. A prism is a 
parallelopiped if the polygon is a parallelogram.  If a polygon with n sides is extruded 
with taper, the extruded solid is an n-sided pyramid. Figure 8-7 illustrates extruded 
solids that are often encountered in buildings: walls and columns. 

Base

Top face
Top face

Base

frustum of a right pyramidtruncated right pyramid

direction of the extrusion extrusion with a constant taper
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8-7  
Extruded solids found in buildings 

Extruded shapes often reflect a specific manufacturing process, one in which a malleable 
material is pressed through an opening or die whose form is the desired cross-section, 
very much like spaghetti are made by pressing amorphous pasta dough through a special 
die of a spaghetti machine. 

8.1.7 Rotational solids 

Here, solids are produced, by revolving a figure about a line. For each point on the line, 
we can specify a disc with radius equal to the perpendicular distance between the figure 
and line.  The collection of points on the disc for all such discs constitutes a rotational 
solid.  See Figure 8-8. 
 

 
 
 

8-8  
Creating a rotational solid 

 

 

 

 

Column shafts with entasis or balusters of 
a balustrade are architectural examples of 
rotational solids.  

 

8-9  
Balustrade 
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When a line is revolved about a given line parallel to it, the solid generated by is a 
rotational cylinder or simply cylinder (which can also be considered as an extrusion 
solid.) 

When the line revolves about a line also intersects it, the solid generated is a right 
circular cone.  A cone may be considered as a rotational solid with constant taper. 

When an ellipse is revolved about its major or minor axis, the solid generated is a 
rotational ellipsoid.  If the ellipse is a circle, the solid is a sphere.  Likewise, for a 
parabola, the solid generated is a rotational paraboloid, and for a hyperbola revolved 
about its major or minor axis, the solid generated is a rotational hyperboloid.  See Figure 
8-10 for examples of rotational solids. 

 
 
8-10  
Example rotational solids 

The qualifier ‘rotational’ used in these examples distinguishes these solids from other 
solids in which a figure is revolved around a line in shapes other than disks. 

Rotational solids may again reflect a special manufacturing process, for example one 
that uses a lathe that allows a piece of raw material to be rapidly rotated about a center 
line so that, when a cutting instrument is held at a constant distance from the center line, 
portions of material are removed at an equal distance from the center line. See Figure 
8-11. 

 
 
8-11  
Solids of Rotation by Pedro Reyes (wood+paint) 
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8.2 SURFACES 

Planes, plane segments and boundaries of regular solids belong to a class of geometrical 
figures known as surfaces. While the precise definition of a general surface is somewhat 
complicated we will not attempt here; instead, we introduce some commonly 
encountered surfaces. 

Surfaces fall into two major categories: ruled surfaces and double curved surfaces. 

8.1.8 Ruled surfaces 

A ruled surface is a surface that can be produced by moving a straight line.  We have 
previously seen that parallel and intersecting lines can produce planes by moving a line 
parallel to itself while remaining in contact with the two given lines.  See Figure 8-12. 

 
8-12  
Producing planes by moving a line in continuous contact with two lines 

Likewise, we can move a line whilst in continuous contact with a figure in a plane to 
produce a surface. See Figure 8-13. 

 

 
8-13  
Example ruled surfaces 
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8-13(continued) 
Example ruled surfaces 

When the figure is a curve, and the line is parallel to its initial position the surface is 
cylindrical.  When the line is also in contact with a fixed point not on the curve, the 
surface generated is conic. Note that if the figure is a convex polygon, the respective 
surfaces are prismatic and pyramidal. When the line is a tangent to the curve, the surface 
generated is a convolute. Cylindrical, conic and convolute surfaces are examples of 
single-curved surfaces. 

The lines on the surface are called its elements and are said to generate the surface. A 
representative element is called the generatrix. The curve is called the directrix.  The 
surface is called right if the line is normal to the plane and oblique, otherwise.  The 
surface is circular if the figure is a circle. 
 

8-14  
An example of a ruled surface 

 
http://www1.maths.leeds.ac.uk/~khouston/ruled.htm 

Ruled surfaces have the property that a straight line on the surface can be drawn through 
any point on the surface. 

A ruled surface can become the boundary of a solid when its elements are restricted to 
the segments between two planes that intersect the elements. Some common ones are 
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shown in Figure 8-15. To complete the boundary, the segments on these planes that are 
between elements must be added. Terms like ‘cylinder’, ‘prism’, ‘pyramid’ and ‘cone’ 
are often used interchangeably to denote both a solid of that form or a surface. 

 

8-15  
Common ruled surfaces 

8.1.9 Warped Surface 

8-16  
The Philips Pavilion, 
Brussels Expo 1958  

Le Corbusier and Iannis Xenakis 

  

A ruled surface for which two successive elements are neither parallel nor pass through 
a common point is called warped.  A well-known example is the hyperbolic paraboloid 
generated by line segments between two skew lines so that any two elements belong to 
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parallel planes. The surface is generated, by moving a line parallel to a given plane 
whilst maintaining continuous contact with two skew lines.  See Figure 8-17. 

 
8-17  
Hyperbolic paraboloid 

The standard position of a hyperbolic paraboloid is shown in Figure 8-18. In this 
position, sections with planes parallel to the two vertical planes are (congruent) 
parabolas, while sections with planes parallel to the horizontal plane are hyperbolas; 
thence the name of the surface.  

 
8-18  
Parabolic hyperboloid – in the standard position 

Generating line
AB parallel to
horizontal plane

Horizontal projection of
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It is important to note that a warped surface cannot be developed accurately in that no 
two consecutive lines on the surface may lie in the same plane if the surface is laid onto 
a flat plane.  The surface would be distorted. 

8.1.10 Double-curved surfaces 

The boundaries of rotational solids generated by rotating a curve instead of a straight 
line are examples of double-curved surfaces.  There are two kinds of double-curved 
surfaces: surfaces of revolution and surfaces of evolution.  The former is produced by 
revolving a curved line about an axis; the latter by moving a curved line of constant or 
variable shape over a noncircular curved path.  Figure 8-19 shows examples of double 
curved surfaces. The most common double curved surface is the sphere, which is 
obtained by rotating a semi-circle about an axis of revolution. 

8-19  
Double curved 

surfaces 

 

 

8-20  
A double curved 

surface 
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8.3 REPRESENTING SURFACES 

Surfaces are typically represented in multi-view drawings by showing, in each view, the 
base curve(s) and/or directrices, the relevant elements, and the relevant vertices.   

We consider two common surfaces: cones and cylinders.  Figures 8-20, Error! 
Reference source not found. and 8-22 shows the top and front views of a right cone, an 
oblique cone, a right cylinder and oblique cylinder. 

8.3.1 Cones 

If the base curve is symmetric, then the axis may be shown as in Figure 8-21.  Although 
a cone contains an infinite number of elements, it is sufficient to show in each view 
those elements that define the contour of the cone.  In the top view for the oblique cone, 
these extreme elements are tangent to the base circle. The part of the cone that is visible 
in the front view is highlighted in the top view. 

 

 

 
 
 

8-21 
Representing cones  
(Above) Right cone 
(Left) Oblique cone 
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8.1.11 Cylinder 

Cylindrical surfaces are represented in multi-view drawings by showing in each view the 
base curve(s) and the extreme elements.  For regular cylinders the axis is also shown.  
See Figure 8-22. 

Note that in the standard position, the base is seen in top view as a circle and in front 
view the axis of the cylinder is in true length.  Auxiliary views b and c show the base as 
ellipses with the major axis equal to the diameter of the base. Figure 8-22 also shows 
how to locate a point on the surface of the cylinder. 

  

 

8-22  
Representation of a right cylinder 

Figure 8-23 illustrates the representation of an oblique cylinder.  Although the top and 
front views do not show the axis in true length, it shows the base circles as edges in front 
view.  Views showing the axis in true length can be easily constructed. The base circle 
appears as ellipses in these views with their major axes equal to the diameter of the 
circular base. 
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8-23  
Representation of an oblique cylinder 

8.1.12 Locating points on surfaces 

When one deals with problems in determining the lines of intersections between 
different surfaces, one must introduce methods by which points on the surface are 
specifically located. That is, determining the line of intersection between two 
intersecting surfaces actually means locating points common to both surfaces.  One 
common way of looking at this is to consider section cuts. 

8.4 SECTION OF A SOLID 

This idea is best illustrated by examples.  

Figure 8-24 shows a triangular pyramid in adjacent views. In the top view, the ‘section’ 
plane that cuts through the solid is seen as a line, which may be considered as the edge 
view of the ‘section’ plane. If we project the points of intersection of the line with the 
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edges of the solid in top view into the front view, we obtain a section cut off from the 
solid, which is shown shaded.  

 

8-24  
Section of a triangular pyramid 

 

 
 

 

In the case of curved solids such as a 
sphere or a cone, a similar technique 
applies. Figures 8-25 and 8-27 illustrate 
respectively obtaining views of section 
cuts from a cone and a sphere.   

 

 

 

 

 

 

8-25  
Sections of a cone 

section

section plane
as a line or EV
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In the case of the sphere, we use an auxiliary view that shows the section in true size to 
obtain the transfer distances needed to construct a view of the section. 

 

 

 
 
 
 

8-26  
Sections of a sphere 

  

8.5 INTERSECTION OF A LINE AND A SOLID 

In principle, we can use sectional views to determine the piercing points of a line and a 
solid. We treat the line in one view as the edge view of a section plane and determine the 
corresponding section in the other view. The points of intersection of the line (in the 
other view) and the section give the piercing points, which can then be projected back 
into the first view.  

We will start with some simple examples. 

8.1.13 Intersection of a line and pyramid 

We consider the triangular pyramid in Figure 8-28.  As suggested above, we first take a 
section cut using a view of the line as the edge view of a cutting plane and examine 
where the line meets the section in the other view. 
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8-27  
Determining the piercing points of a line and a triangular pyramid 

8.1.14 Intersection of a line and a prism 

The same procedure can be applied to a prism to determine where a line meets it.  Figure 
8-28 illustrates the procedure for a simple inclined prism. 

 
8-28  
Intersection of a line and a prism 

piercing
points 

piercing
points 

line used as section plane

edge view of sectional
plane containing the line
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8.1.15 Intersection of a line with a right cone, a right cylinder and sphere  

We employ a vertical section plane as illustrated in Figure 8-29 to demonstrate how to 
determine the intersection between a line and a right cone in a similar fashion to the 
intersection problems previously discussed. 

 

8-29  
Intersection of a line and a right cone 

The sphere and right cylinder can be treated in a similar fashion by also using a vertical 
section plane.  See Figures 7.28 and 7.29. 
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8-30  
Determining piercing points 

of a line and sphere 

  

8-31  
Determining piercing points 

of a line and right cylinder 
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For other types of solids, special adaptations of the section or cutting plane method often 
lead to solutions. 

8.1.16 Intersections of a line with an inclined cylinder  

Figure 8-32 shows a line piercing a cylinder at two points and a cutting plane parallel to 
the axis of the cylinder containing the line.   
 

 

8-32  
Cutting plane for a cylinder 

Since the cutting plane is parallel to the cylinder axis, it cuts straight-line elements on 
the surface of the cylinder.  When extended to the base plane, the cutting plane leaves a 
trace on the base plane that cuts the cylinder base at two points, which are the points 
through which the straight-line elements, determined by the cutting plane, pass.   Since 
cutting plane contains the given line that intersects the cylinder, the points of 
intersection of the straight-line elements with this line are the piercing points for the 
given line and cylinder.  If the cylinder and line are given in two views, it is easy to find 
the two line elements where the cutting plane and the cylinder intersect. The following 
construction shows this for an inclined cylinder, that is, a cylinder on an inclined axis. 

Construction 8-1  
Intersection between an inclined cylinder and a line 

Given a line and an inclined cylinder in two adjacent views, t and f, where the axis of the 
cylinder is inclined but the base remains circular, find the intersection points between 
the line and the cylinder.   
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with the base plane
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See Figure 7.31. 

 

8-33  
The problem – intersecting a line and an inclined cylinder 

There are three steps: 

1. Select two points on the line, M and N, and draw two lines of the cutting plane 
through M and N, respectively, parallel to the axis of the cylinder in both views. 
These lines intersect with a plane parallel to a horizontal projection plane seen as an 
edge in the front view at points A and B.  In Figure 7.32 the base plane of the 
cylinder in front view was selected for that purpose. 

2. Project A and B into the top view.  AB is the trace of the cutting plane in the top 
view. The cylinder intersects that plane in a circle. Its intersection with the trace 
gives two points of the cutting plane from which the intersection lines between the 
cutting plane and the cylinder can be drawn in both views. 

3. The intersection between the intersection lines and the given line are the piercing 
points. We can then determine visibility between the line and cylinder, keeping in 
mind that different lines are on the outline of a cylinder in the different views. 

f

t
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8-34  
Intersection of a line and an inclined cylinder 

Construction 8-2  
Intersection between a right cylinder seen obliquely and a line 

A variation of this problem occurs when a right cylinder is oblique in both views. We 
consider a variation where the cylinder is parallel to the folding line in one view and 
oblique in the other. The construction is virtually similar in steps to the construction 
above and is shown in Figure 8-36.  

 

cutting plane

cutting plane

piercing points

piercing points

edge view of the base plane

AB is the trace of the cutting
plane on the base plane

BA

M

N

M

B

A

N



 

 248 

 
8-35  
A cylinder seen obliquely in front view and parallel to the folding line in the top view 

 
8-36  
Intersection of a line and cylinder shown obliquely 

The reader should note that when both views of a right cylinder are oblique, we first find 
an auxiliary view in which the axis of the cylinder is parallel to the folding line, and then 
apply this construction. 
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8.1.17 Intersections of a line with an inclined cone  

Intersections between a line and an inclined cone can be constructed in a similar fashion 
using a cutting plane through the line and the vertex of the cone as illustrated in Figure 
8-37. 

 

8-37  
Cutting plane for a cone 

Construction 8-3  
Intersection between an oblique cone and line 

For a given line and a cone in two adjacent views, where the axis of the cone is inclined, 
find the intersection point(s) between the line and the cone.   

There are three steps. 

1. Select two points, M and N, on the line. Draw two lines through M and N, from the 
vertex V to intersect the base plane of the cone at points A and B. The lines VA and 
VB specify the cutting plane in both views. 

2. Project A and B into the top view.  AB is the trace of the cutting plane in the base 
plane. The cone intersects that plane in an ellipse. Its intersection with the trace 
gives two points of the cutting plane from which the intersection lines between the 
cutting plane and the cone can be drawn in both views. 

3. The intersection between the intersection lines and the given line are the piercing 
points. Visibility between line and cone is determined in the usual way. 

The construction is shown in Figure 8-38. 
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8-38  
Intersecting a line with an inclined cone 

(above) the problem 
(right) the solution 
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8.6 LOCATING POINTS ON COMMON GEOMETRICAL SURFACES 

Implicit in the preceding constructions is the ability to locate points on surfaces of 
objects. For instance, locating a point on the surface of a prism or pyramid is easy by the 
cutting plane method.  See Figure 8-39. 

 

 

 

 

 

8-39  
Locating a point P 

on the surface of a prism in both views  
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To locate a point on the surface a cone is much simpler.  Here one has to draw a line 
from the apex through the point to the base of the cone.  See Figure 8.40.  Cylinders 
were previously treated.  See Figures 8-22 and 8-23. 

 

  

8-40  
Locating a point on the surface of a cone 

 

8.7 PLANES TANGENT TO THE SURFACE OF A CONE AND CYLINDER 

As we have seen we can use the cutting plane method for locating points and 
determining piercing points.  When determining the intersection of certain geometrical 
objects such as cones and cylinders, we employ lines on the surfaces of these objects to 
construct points that lie on their line of intersection.  Occasionally these cutting planes 
are tangential to the surface of the object.  These plane tangents fall into three 
categories: 

• Plane tangents to a specific point on the surface 

• Plane tangents to the surface but contain points outside the surface 

• Plane tangents to the surface but parallel to a line outside the surface  

Edge view
of base plane

P

Edge view 
of base plane

P

P



 

 253 

Construction 8-4  
Plane tangents to a specific point on the surface 

Cylinder 

We are given a point P on the surface of a cylinder. 

A tangent plane to a cylinder along any one of its line 
elements is parallel to the axis of the cylinder.  
Moreover, its trace is tangential to the base of the 
cylinder. We can use these facts. 

The construction is shown in Figure 8-41.  First, we 
locate point P in both views.  For this, given P in either 
view, draw line parallel to the axis through P to meet the 
base at M.  Project M to the other view and draw a line 
parallel to axis.  Project P onto this line to locate P in 
the other view.   

Next, in top view, construct a tangent at M and mark two 
points X and Y on it. Project these points to the front 
view. In top view, draw a line through N parallel to the 
tangent.  From X and Y draw lines parallel to MN to 
meet the above line at W and Z.  The points WXYZ 
define the tangent plane.  Project and locate W and Z in 
the front view.   

 

8-41  
Constructing a tangent plane 
through a point on the surface 
of a cylinder 
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Cone   

We are given a point P on the surface of a cone. 

A plane tangent to the cone has a trace that is tangential to the base of the cone.  This 
fact can be used to construct the plane tangent. 

The construction is as follows.   

As before, locate the point P in both views.  In top view, construct a tangent at M and 
mark two points X and Y on it.  Project these points to the front view. In top view, draw a 
line through apex A parallel to the tangent.  From X and Y draw lines parallel to AM to 
meet the above line at W and Z.  The points WXYZ define the tangent plane.  Project and 
locate W and Z in the front view.   

See Figure 8-42. 

 

  

8-42  
Constructing a tangent plane through a point on the surface of a cone 
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Construction 8-5  
Plane tangents through a point outside the surface 

Cone  

 

We are given a point P outside the surface of the 
cone. 

We construct the tangent plane in a manner similar 
to the preceding construction.   

In front view draw line from A through P to meet 
the base plane at R.  Project R to the top view to 
meet the line through A and P.  In the top view 
draw a tangent to M from R. AMR is the required 
tangent plane.  Project M to the front view.   

See Figure 8.43. 

 

 

 

 

8-43  
Constructing a tangent plane 
through a point outside the surface 
of a cone 
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Cylinder   

 

We are given a point P outside the surface of 
the cylinder. 

The construction is similar in to the above 
steps. A detailed description is omitted 
although the construction is shown in 8.42.  
Notice that there are two possible tangent 
planes MNYX and M’N’YX through point P 
outside the cylinder (Why?). 

 

 
 

 

 
8-44  
Constructing a tangent plane 
through a point outside a cylinder 
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Construction 8-6  
Plane tangents parallel to a line outside the surface 

Cone 

We are given a line l outside the surface of 
the cone 

This construction is similar to that when 
given a point outside the surface of the cone.  
Here one determines the straight-line 
element along which the plane is tangent to 
the cone by constructing a plane through the 
apex and is parallel to the line outside. The 
construction is given in Figure 8-45.    

 

 
 

 

 

AR is parallel to l.  

 

 

 

 

8-45  
Plane tangents parallel to a line l 
outside the surface of the cone 
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Cylinder   

 

We are given a line l outside the 
surface of the cone. 

 

 

(Right) The problem 
 

 

 
 

8-46  
Tangent plane 

parallel to a line l 
outside a cylinder 
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Edge view 
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8.8 INTERSECTIONS OF COMMON GEOMETRICAL SOLIDS AND SURFACES 

The study of the intersection of the solids and surfaces promotes visualization of three-
dimensional space and the relationships, in this space, between various geometrical 
entities. To solve such problems one needs an understanding of i) planes and their 
properties; ii) relationship between lines and planes; and iii) basic characteristics of 
solids and surfaces. 

In the case of the solids bounded by planar surfaces, the methods introduced below lead 
quickly to solutions to intersection problems. This is the case most often encountered in 
architectural applications. The roof example used to illustrate the applicability of Figures 
6.14 and 6.15 can be taken as an illustration. For other solids, special adaptations of the 
cutting plane method can be used. We illustrate this with a few example constructions. 

8.1.18 Lines of intersection of a plane surface and the faces of a prism 

As we have seen in Chapter 6, the intersection of two flat surfaces is a line.  Therefore, 
when a plane surface intersects the face of a prism it does so in a line.  The individual 
lines of intersection between the plane and faces of the prism form the complete lines of 
intersection between the plane and the prism. We can determine the piercing points 
either by taking an edge view of the intersecting plane or by using the cutting plane 
method. Both methods were illustrated in Figures 6.11 and 6.12 respectively, which are 
reproduced again here. 

 

8-47  
Intersection of a plane surface with a prism (edge view method) 

Piercing points

Edge view of plane

Edge view of base plane
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8-48  
Intersection of a plane surface with a prism (cutting plane method) 

Other the intersection of a plane surface with a polyhedron can be similarly constructed. 

8.1.19 Intersection of a plane surface with an inclined cone 

The intersection of a plane surface with a cone is a curved surface; in fact, it is one of 
the conic sections.  See Figure 8-49.   The construction is shown below as a series of 
steps. 

Firstly, it is convenient to take an edge view of the plane and using cutting planes that  
top correspond to ruled-line elements of the cone. See Figures 8-52 and 8-51.  The last 
step projects the ruled lines and ellipse from the view to the front view.  See Figure 8-52. 
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8-49 
Intersection of a plane and a cone 

 
 

 

8-50 
Step 1: Find edge view of plane and construct ruled lines for the cone 
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8-51 
Step 2: Complete the ellipse in top view using the ruled lines as cutting planes 

 
8-52 
Step 3: Complete the intersection of a plane surface with an inclined cone 
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We can employ a similar approach with other single-curved surfaces such as a cylinder 
to determine the intersection with a plane surface. 

8.1.20 Lines of intersection of a prism and a pyramid 

Figure 8-53 illustrates a prism and a 
pyramid, in which an auxiliary view 
(see Figure 8-54) is taken to show the 
end view of the prism in true shape. 

In this case we employ a combination of 
the line method and the cutting plane 
method to determine the lines of 
intersection.  

 

 

 

8-53  
Intersecting prism and pyramid 

 
 

 
8-54  
Solving the intersection of a prism and a pyramid 
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8.1.21 Intersection between a cylinder and a prism  

The intersection of a cylinder and a prism (indeed, a cylinder and a cylinder) may be 
determined by cutting planes parallel to the axis of both surfaces which determine 
straight-lines elements from each surface.  In general, the intersection will be a curved 
line, continuous across intersected face of the prism, but broken at each ridge. 

To illustrate the construction, we consider the case of an inclined cylinder and a 
triangular prism. To simplify the construction we consider the problem in a special 
position.  In top view the axes of the prism and cylinder appear parallel in which case 
the cutting planes will appear in edge view.  If the problem is specified in any other 
position, we may first reduce the problem to this position. 

Figure 8-55 illustrates the construction.  Five representative cutting planes are shown. 
CP1 and CP5 are the extreme planes.  CP1 passes through A; CP5 is tangential to the 
cylinder.  CP3 passes through the ridge at B. CP2 and CP4 intersect the prism.  
Constructions for the piercing points are shown in detail. 
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8-55  
Intersection of an inclined cylinder with a prism 

8.1.22 Intersection between a cylinder and cone  

 

This is the classic example of the intersection of 
two single-curve surfaces, namely, a cylinder and 
a right cone.  See Figure 8-56. 

Other variations can be similarly dealt with though 
perhaps requiring much more detailed 
construction. 

 

 

 
 
 

8-56  
Intersection of a right cone and cylinder 
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