
11  
Central Projections 

Central projections are similar to parallel projections in that they also associate points in 
one set with points in another set by projection lines that pass through the associated 
points, with the difference that the projection lines all pass through a given point. 
Central projections, behave differently too, in ways that make them, at the same time, 
difficult to construct manually, and interesting as visual objects. 

11.1 BASIC PROPERTIES 

11.1.1 Central projection of a line on a line 

The set of all lines that pass through any point C is a pencil of lines through C.  For any 
two lines coplanar with a pencil of lines through a point C on neither line, for any point 
on one line there is a line in the pencil maps it to a point on the other.  This is called a 
central projection and C is the center of projection. 

11-1  
Illustrating a central projection 
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As is the case with parallel projections, the lines may or may not be parallel, and these 
distinctions produce important differences in the resulting mappings.  

Case: Parallel lines 

Consider the case where the lines are parallel (see Figure 11-2). 
  

 

11-2  
Central projections between parallel lines 

As C is not on either line, every point P on one line defines, together with C, a line that 
passes through these two points; it is therefore not parallel to either line; moreover, it 
passes through a point on the other line, which is the unique image of P under the 
projection.  By the same argument, every point on the second line is the image of a 
unique point on the first.  That is, the projection is maps the points one on one. 

Using similar triangles, we can show that a central projection of a line on a parallel line 
multiplies distances by a constant factor, k.  This factor is not normally 1, except in the 
trivial case where the lines coincide or when C is equidistant to both lines. 

We summarize these observations in the following assertion: 

Property 11-1  

A central projection of a line on a parallel line uniquely maps between the points on the 
lines and multiplies distances by a constant factor (generally not 1). 

It follows, as an immediate consequence, that this type of projection preserves between-
ness, and therefore, maps line segments onto line segments, rays on rays and lines onto 
lines. 

These are the same properties that are also preserved by a parallel projection between 
lines (which do not have to be parallel); a difference between the two types of 
projections is that a parallel projection between concurrent lines fixes a point (the point 
of intersection), while a central projection between parallel lines, of course, cannot fix a 
point. 
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Case: Concurrent lines 

The case becomes more intricate when we consider the central projection of a line on a 
concurrent line. See Figure 11-3. 
 

 
(i) Vanishing points 

 

 
(ii) Between-ness is not preserved 

11-3  
Central projection of a line onto a concurrent line 

Let l and m be two concurrent lines and C, the center of projection. Consider the point of 
intersection, V, where line, m', parallel to m, passing through C, meets l (see Figure 
11-3i).  m' does not intersect m at any point; consequently, V has no image under this 
projection. All other points of l have a unique image on m.  If such a point P on l moves 
closer and closer to V, its image P' moves farther and farther away on m. For this reason, 
V is called a vanishing point on l. 

Likewise, the point, V', where the line l', parallel to l, passing through C, meets m cannot 
be the image of any point on l.  All other points of m are the unique image of a point on 
l.  V' is called the vanishing point on m. 
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Figure 11-3ii illustrates the fact that a central projection of a line on a concurrent line 
does not preserve betweenness: for example, point Q is between P and R on l, but its 
image, Q’, is not between the images of the other two points, P' and R', on m. 

 

An aside: cross ratio 

One of the more important properties of a central projection of a line is the following 
important invariant:  preserving ‘cross ratio’ of distances.   Let P, Q, R and S be four 
points on l with P and Q distinct. Then, the cross ratio of the four points is defined as 
the ratio: 

(P, Q, R, S) = (PR × QS) / (PS × QR),  

where lengths of the segments are measured along the same direction.  

 

 

11-4  
Illustrating the cross-ratio invariance 

If P', Q', R' and S' are the images of the four points on any line m under a central 
projection of l, then  

(P', Q', R', S') = (P, Q, R, S). 

The cross ratio plays an important part in the development of projective geometry; 
however, we will not consider this any further in this course. 
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11.1.2 Central projection of a plane on a plane 

Just as the case of consider a projection of a line on a line through a central projection, 
we can consider the central projection of a plane onto a plane by mapping every point on 
one plane to unique point on another by a pencil lines that pass through a point C not on 
either plane.   Again, C is called the center of the projection. 

Case: Parallel planes 

Let us again first consider the case when the two planes are parallel (see Figure 11-5).  

Consider a line l in p and a point P on l. The line in the pencil of the projection that 
passes through P defines together with l a plane to which all of the lines in the pencil 
passing through a point on l belong. This plane intersects p' at a line, which is the image 
of l under the projection. A central projection of a plane on a parallel plane thus maps 
lines on lines. 

 
11-5  
Central projection of a plane on a parallel plane 

We can observe furthermore that this projection uniquely maps between the points in 
both planes. Therefore, the images of two parallel lines cannot intersect, while the 
images of two concurrent lines must be concurrent. The projection thus preserves 
parallelism and concurrence between lines. 

Consider a line l and its image, l’. As they are on parallel planes, they must be parallel. 
That is, they are coplanar (because they belong both to the plane defined by them), and 
their points are associated by a central projection between parallel and coplanar lines. By 
Property 11-1, the projection multiplies distances by a constant factor. We can show that 
this factor is constant for the entire projection.  We again summarize the findings as 
follows: 
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Property 11-2 

A central projection of a plane on a parallel plane uniquely maps between the points in 
the planes. It maps lines on lines and multiplies distances by a constant factor. 

A consequence is that a central projection between parallel planes preserves between-
ness between points, and parallelism and concurrence for lines. It also maps conic 
sections onto conic sections of the same type. 

Case: Concurrent planes 

The situation is more intricate for a central projection of a plane on a concurrent plane 
(see Figure 11-6). 

 

11-6  
Central projection of a plane on a concurrent plane 

The plane through C parallel to p' intersects p at a line, v. No point on v can have an 
image under the projection because the lines in the pencil through these points are 
parallel to p'. v is consequently called a vanishing line and every point on it a vanishing 
point. Likewise, the plane through C parallel to p intersects p' at a line, v', so that no 
point on v’ is the image of a point on p. v' and the points on it are again called vanishing 
line and vanishing points, respectively. Every point on p that is not on v has a unique 
image on p', and every point on p’ that is not on v’ is the image of a unique point on p. 
The projection thus establishes a unique correspondence or mapping between the points 
on p and p' that are not on v or v'.  

Consider a line l on p that is not the vanishing line. The lines in the pencil through l form 
a plane that intersects p' at a line, l', which is the image of l under the projection. 
Furthermore, l and l' are coplanar, and the projection establishes a central projection of l 
on l' with center C. Given our investigation of central projections of a line on a line, two 
cases are of interest: 

(a)  l and l' are parallel.  
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Then, they have no vanishing points. l must be parallel to v and l' to v', and l is mapped 
in its entirety on l'.  Furthermore, between-ness and ratio of division are preserved. 

(b)  l and l' intersect.  

Then the projection establishes a unique correspondence between the points on the two 
lines, except for exactly one vanishing point on each line. Between-ness is not preserved 
for all points. We can summarize this by the following statement: 

Property 11-3 

A central projection of a plane on a concurrent plane establishes a unique mapping 
between the points on the planes, except for points on the vanishing line in each plane.  
It preserves collinearity for points that have an image, but not necessarily betweenness, 
and complete lines are not always mapped onto complete lines. 

11.1.3 Central projections at vanishing points 

One reason why central projections are important for architectural applications is that 
they are the basis for an understanding of shadows cast by point light sources. It is 
therefore worthwhile to look a little deeper into the effects of central projections, 
especially on points on the vanishing lines, which can be striking. 

Any two lines that intersect at the vanishing line are mapped on parallel lines. 

To show this, I will employ an argument technique that essentially involves a 
contradiction.  Let us consider two lines, l and m, intersecting at point, A, which thus 
define a plane, p. Let us also consider their central projection into a plane, p', concurrent 
with p.  See Figure 11-7. 

 
11-7  
Central projections of lines intersecting at a vanishing point 
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Suppose the center of the projection, C, establishes a vanishing line, v, in p that passes 
through A. Clearly, A has no image. Suppose the images of the two lines, l' and m', meet 
at a point, A', on p'. Since the projection is uniquely maps all points not on the vanishing 
lines, A' must be on the vanishing line in p' (because otherwise it would be the image of 
a unique point not on v where l and m intersect). But this is impossible because of the 
following argument: C and l define a plane, a, that also contains l', and C and m define a 
plane, b, that also contains m'.  Since A belongs to both planes, they must intersect at the 
line through A and C. This line is parallel to plane p', and therefore cannot intersect v'. 
Therefore, l' and m' cannot intersect at a point of v' and, therefore, must be parallel. 

What is, perhaps, even more striking is that: 

Two parallel lines are mapped onto intersecting lines that intersect at a vanishing point. 

In order to see this, consider the projection mapping used in the previous case.  Let us 
call it ƒ.  Now consider its inverse, that is, a central projection of p' on p with center C.  
This projection clearly has the same vanishing lines as ƒ.  By the argument used before, 
it can be seen that this projection maps two lines, k' and n', on p' intersecting at v', onto 
two lines, k and n, on p that are parallel.  That is, ƒ maps k and n on k' and n'. This means 
that those portions of linear figures that have an image are mapped on a linear figure, but 
not necessarily onto a similar figure.  

Next, consider, for example, the cases illustrated in Figure 11-8.  

 

i.  

ii.  

11-8  
Central projection of a triangle on a concurrent plane 
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The first of these shows the central projection of a triangle with one corner, A, on the 
vanishing line on a plane concurrent to that defined by the triangle. The two sides that 
meet at the vanishing line are mapped exclusive of A as open segments on parallel rays. 
The other side is mapped on a segment whose end-points are the images of the corners 
connected by the side. 

The second case shows the central projection of a triangle with one side on the vanishing 
line. This side has no image, and the other two sides are mapped (exclusive of the corner 
that is a vanishing point) as half-open segments on a ray whose vertex is the image of 
the corner not on the vanishing line. 

 

11-9  
Central projection of a circle on a plane 

Another property of central projections that is important for the modeling of point light 
sources is their effect on conic sections. Consider the example illustrated in Figure 11-9.  
It shows the center of a projection, C, and a plane, p, with an embedded circle, where C 
is on the line, l, which is normal to p and passes through the center of the circle. The 
projection of the circle on a plane p' parallel to l can be seen as the intersection of the 
right circular cone established by the projection lines that pass through the circle with a 
plane parallel to the axis of the cone; we know that this intersection is a hyperbola. The 
vanishing line of this projection in p is the line parallel to p'; it passes through two points 
of the circle, which consequently have no image. This is another example of a bounded 
set being mapped on an unbounded set by a central projection. 

In a practical application, C may represent the center of a light bulb, the circle the lower 
rim of a lamp shade and plane p' a wall partially lit by the bulb and partially shaded by 
the lamp shade. The hyperbola is the boundary between the lit and shaded portions of 
the wall. However, note that this boundary only approximates what happens with real 
light sources. The next section develops this further. 
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The general effect of a central projection of a plane on a concurrent plane on conic 
sections is stated in the following: 

Property 11-4 

A central projection of a plane on a concurrent plane maps conic sections on conic 
sections, but not necessarily on conic sections of the same type.  

A worked example 

Suppose you are given the top and front views of a point L (light source), and an 
unlimited plane defined by a pair of lines and an inclined cone.  We are required to cast 
the shadow of the cone onto the given plane.  See Figure 11-10. 
 

 

11-10  
Shadow casting from a single light source (the problem) 

For this one needs to find the piercing (shadow) point of each ray of light from the light 
source through every (shade) point on the prism onto the given plane. This must be done 
in both views.  Join by a line, shadow points corresponding to adjacent (shade) points on 
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the prism to construct the shadow, and highlight the shadow, in both views.  There is the 
preliminary step of finding the tangent to the cone passing through the light source. See 
Figure 11-11. 

 

 

11-11  
Shadow casting from a single light source (the solution) 

 

11.2 PERSPECTIVE VIEWS 

Of all the central projections, perspectives are perhaps the most well known. 
Perspective, for instance, are useful in architecture for several reasons, the two main 
ones being: (i) realistic views and (ii) an understanding of how shadows are cast by light 
sources. 
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Orthographic views are appropriate representations when exactness is required and 
geometric problems have to be worked out with precision. However, they do not convey 
a natural or intuitively obvious view of an object that can be understood by a general 
audience. For the latter purpose, perspective views are normally used. Figure 11-12 
show two examples prepared by Frank Lloyd Wright, one of the great architectural 
draftsmen of the century. 

 
 

11-12  
Two perspective views of the Jacobs house (Frank Lloyd Wright, 1937) 

11.2.1 Basic terms and constructions 

A perspective view of a spatial figure is a composite of a central projection of the figure 
onto a plane called the picture plane (PP) and a distance preserving mapping of the 
picture plane onto the Euclidean plane (essentially, a sheet of paper). The center of 
projection is the station point (SP).  The point where the line normal to PP through SP 
meets PP is the center of vision (CV), and the horizontal line on PP through CV is the 
horizon or eye line. 

As with orthographic views, two mappings are involved in the construction of a 
perspective view: one that maps the object onto a spatial picture plane and one that maps 
the picture plane on a strictly two-dimensional plane, represented in practice by the 
paper or screen that carries the view. 

These principles are clearly demonstrated by the etching produced by the German 
painter and theoretician Albrecht Dürer shown in Figure 11-13, which depicts a 



 

 321 

contraption that allows one to construct a perspective view by following literally the 
steps involved.  Like other artists of the Renaissance, Dürer was keenly interested in the 
newly discovered perspective drawing techniques. 

 

 
 

11-13  
Construction of a perspective (Albrecht. Dürer, 1525) 

The object to be viewed in perspective is a lute; the station point is given by a hook in a 
wall; the picture plane is defined by a rectangular frame; and projection lines are 
represented by a string that is threaded through the hook at one end and can be 
connected to any point on the lute at the other end by a pointing device; a plumb assures 
that the string is always stretched tightly between the two ends. While one person 
attaches the string to a point on the lute, another person determines the coordinates of 
the point where the string pierces the picture plane (the first mapping); from there, the 
point can be transferred to a sheet of paper (the second mapping).   

Constructing a perspective view directly from a three-dimensional object is, of course, 
extremely cumbersome. Moreover, the object to be depicted in architectural design 
normally doesn’t even exist in physical form. The techniques developed for the 
construction of perspective views therefore assume that the object is described through 
drawings, more specifically, orthographic views. This is straightforward if we are given 
an orthogonal top and side view of the object, each of which also shows the station point 
and an edge view of the picture plane. The following is a basic construction to find the 
perspective view of an arbitrary point on such an object (and thus to construct the 
perspective view of an object point-wise). 
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Construction 11-1  
Direct Projection Method 

Given an orthogonal top and side view of a point P, each of which also shows a station 
point SP and a picture plane PP in edge view, find the perspective view of P. 

There are three steps. 

1. Arrange the given top and side views so that they frame the area of the perspective 
view as illustrated in Figure 11-14. 

2. Draw the projection lines through SP and P in both views 

3. Determine the points where the projection lines pierce PP in each view; the point 
where the perpendiculars through the piercing points intersect is the perspective 
view of P. 

 

11-14  
Direct projection method 

This construction is known, for obvious reasons, as the direct projection method. The 
readers should convince themselves that this construction faithfully reflects Dürer’s 
depiction under the condition that the entire set-up is already given in two-dimensional 
views. 
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Example 

Figure 11-14 illustrates how the above construction can be repeated for each corner of a 
rectangular prism to produce a perspective view of the entire rectangular prism. (Recall 
that central projections preserve collinearity of points.) 

11.2.2 Common constructions 

The direction projection method is a very general construction that allows us to piece 
together a perspective view of an arbitrary object from the views of appropriately 
selected points from ‘first principles’. Its drawback in practice is that it is generally 
cumbersome; moreover, the top and side views on which it depends may not be given 
and may be difficult to construct for a desired station point and picture plane. It is for 
this reason that simplified procedures have been developed, procedures that depend on a 
combination of assumptions often met in practice, especially with respect to parallelism 
between lines defining the object and parallelism between the lines defining an object 
and the picture plane. 

The simplifications that can be used when these assumptions are met are a consequence 
of the following general properties of central projections: 

1. Lines on the picture plane appear in true length. 

2. Parallel lines parallel to the picture plane are mapped onto lines that are parallel to 
each other and to their originals; especially, vertical lines are mapped on vertical 
lines and horizontal lines on horizontal lines (relative to a given ground plane 
perpendicular to the picture plane). 

3. Parallel lines not parallel to the picture plane are mapped onto lines that converge 
towards a common point, which is the vanishing point of the lines under the 
projection. Moreover, the vanishing point is the point where the line through SP that 
is in the same family of parallel lines pierces PP; if the given lines are horizontal, 
this vanishing point is on the horizon. 

1 and 2 are direct consequences of Property 11-1; 3 is (a less immediate) consequence of 
the observations on central projections between lines and planes. 

In buildings, horizontal and vertical lines (or more accurately, line segments) dominate 
due to the laws of gravity. If we select a PP normal to some horizontal ground plane, we 
know immediately that vertical lines (that is, lines normal to the ground plane) will 
remain vertical and parallel horizontal lines (that is, lines parallel to the ground planes) 
will remain horizontal or meet at a common vanishing point on the horizon on a line in 
the same family of parallel lines. Furthermore, many buildings are designed on an 
underlying rectangular grid; that is, the lines defining their most important parts fall into 
exactly three families: vertical lines and two families of horizontal lines, where the lines 
in one family are perpendicular to the lines in the other family. Such objects will be 
called rectangular in the following. 

The construction shown in Figure 11-15 depicts such an object in a PP parallel to the 
vertical lines on the object, but inclined towards the horizontal lines. Consequently, lines 
in each of the two families of horizontal parallel lines meet at a distinct vanishing point 
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VP on the horizon. In general, each family of parallel lines that is not parallel to the PP 
meet at a distinct vanishing point.  Thus, 

Property 11-5  

A perspective projection has as many vanishing points as the figure mapped has 
families of parallel lines not parallel to the PP. 

 

11-15  
Vanishing points for a family of horizontal parallel lines 

11.2.3 One-point perspectives 

The construction of a perspective view is particularly easy for rectangular objects when 
the picture plane is parallel to both its vertical lines and one family of horizontal lines. 
Horizontal lines not parallel to PP are perpendicular to it, and the view has one 
vanishing point, which coincides with the center of vision, CV. The following 
construction shows how perspective views can be found under these circumstances. 

Construction 11-2  
One-Point Perspective 

Given the top view of a rectangular object and some means of establishing the true 
heights of horizontal lines above some horizontal ground plane, construct a one-point 
perspective of the object 

There are four steps.  

1. In the top view, select a SP and a PP parallel to the vertical lines and one family of 
horizontal lines. This PP will appear in edge view parallel to the lines in the selected 
family. In the illustration of the construction in Figure 11-16, the object to be 
depicted is a flight of stairs with four steps; the selected PP is parallel to the front 
edges of the steps and touches the first step. 
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11-16  
One-point perspective of a flight of four steps 

2. Select a horizon parallel to the edge view of PP and a ground line parallel to the 
horizon. Project the SP on the horizon; this point is also the VP and CV. 

3. The image Q' of any endpoint Q of a segment on the object in the perspective is 
determined as follows: 

In the top view, draw the projection line through Q, and draw the perpendicular l 
through the piercing point, P, with PP into the perspective view; Q' will be on this 
line 

In the top view, draw a line through Q perpendicular to PP; this line meets PP at a 
point R. Draw the perpendicular m through R in the perspective view. 

On m, mark point S at the height of Q from the ground line. Q' is the point of 
intersection between the line through S and VP and l. 

4. The view can be constructed rapidly by finding the views of selected endpoints. A 
horizontal segment parallel to PP will be on a horizontal line through the image of 
one of its endpoints. A horizontal segment perpendicular to PP will be on a line 
through one of its endpoints and VP. Vertical segments appear in point view in the 
top view. Their images will be on vertical lines through the points where the 
projection lines through the point view pierces PP. 

A one-point perspective is also known as a parallel perspective.  
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Example - Museum for Arts and Crafts by Richard Meier 

Figure 11-17 shows a one-point perspective of part of the exterior of the Museum for 
Arts and Crafts in Frankfurt, Germany, designed by Richard Meier. The center of vision 
is slightly to the left of the true center-line of the drawing.  

 

 

11-17  
One-point perspective of the exterior of the Museum for Arts and Crafts (Museum für Kunstgewerbe) in Frankfurt, 
Germany, designed by Richard Meier 

Observe how a one-point perspective draws the viewer’s eye towards the center of 
vision because it coincides with the vanishing point of the perspective. In the present 
example, the eye is lead down an open walkway that connects an outdoor café with the 
main entrance area of the museum. A one-point perspective is appropriate when this 
type of directional effect is desired, or when a specific center or focus of a composition 
is to be emphasized. This is not to say that these perspectives haven’t been used also for 
more mundane reasons: they are simply the easiest perspectives to construct. 

However, ease of construction ceases being a factor with the spread of computers as 
drawing tools in architectural offices. Computer programs generate perspectives based 
on general algebraic methods that work equally well for any selection of a picture plane 
and for an arbitrary number of vanishing points. But even when they use computers, 
designers should understand the principles underlying perspective views and the effects 
that the selection of a picture plane has on the resulting view. 
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11.2.4 Two-point perspectives 

Consider the steps example, which we saw in Figure 11-15, both the vertical and 
horizontal edges of the steps were parallel to the picture.  However, if the horizontal 
edges were inclined, then in the perspective, the vertical edges remain vertical and the 
horizontal edges converge to two vanishing points.   Such a perspective is called a two-
point perspective.  If the figure contained lines that were oblique or inclined lines there 
would be other vanishing points (see Property 11-5).  The two points refer to the number 
of vanishing points in the principal edges only.  That is, in a two-point perspective, the 
PP is parallel to the vertical lines of a rectangular figure, but inclined toward each of the 
families of parallel horizontal lines. See Figure 11-18. 

 

 

11-18  
1- and 2-point perspectives 

 

The following construction shows how two-point perspective views can be generated. 

Construction 11-3  
Two-Point Perspective 

Given the top view of an object and some means of establishing the true heights of 
horizontal lines above some horizontal ground plane, usually, a right side elevation, 
construct a two-point perspective of the object. 

The construction is shown in Figure 11-19.   

These are the steps:  

1. In the top view, select a SP and a PP parallel to the vertical lines and inclined to 
each family of horizontal lines. This PP will appear in edge view inclined to the 
lines in the families.  

VPL VPRVP(CV)
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2. The next step is to determine the two vanishing points.  For this, select a horizon 
parallel to the edge view of PP and a ground line parallel to the horizon. The two 
VPs are found in the top view by drawing a line parallel to a horizontal line in each 
family through SP. Each of these lines intersects the PP. The perpendiculars through 
the intersection points meet the horizon in the perspective view at the vanishing 
points. 

3. The image of any point—typically, an endpoint of a segment in the object—in the 
perspective is determined analogously to the parallel perspective method. 

4. The view again can be constructed rapidly by finding the views of selected 
endpoints. A horizontal segment will be on a line through one of its endpoints and 
the VP associated with the family to which the line belongs. Vertical segments 
appear in point view in the top view. Their images will be on vertical lines through 
the points where the projection lines through the point view pierces the PP.  In the 
example illustrated, all the visible points on the first height level were determined 
first and the points on the upper height level determined next. 

A two-point perspective is also called an angular or office perspective, and the above 
construction is also known as office method. 

 

 

11-19  
Constructing a two-point perspective 
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Example – Lobby of the J. Paul Getty Museum  

Figure 11-20 shows the two-point perspective of the lobby of the museum building in 
the J. Paul Getty Center, Los Angeles, as designed by Richard Meier.  

 

11-20  
Two-point perspective of the lobby of the museum building in the J. Paul Getty Center, Los Angeles, by Richard 
Meier (1984) 

Readers should compare the effects produced by this technique with those of a one-point 
perspective: the view has much less of a central focus, and the observer is less forcefully 
drawn into the picture.  

This figure also illustrates that two- or one-point perspectives can have curves or lines 
not parallel to the families that determine the basic set-up underlying these views. If an 
object has additional families of horizontal parallel lines, their vanishing point can be 
determined as indicated in the office method. Other lines and even curves can be found 
by constructing points on them; this can be done by the same method even if the line is 
neither horizontal nor vertical: there is always a horizontal and a vertical line parallel to 
the PP that passes through any point on a line or curve, and these lines can be 
constructed by the methods shown. The only prerequisite is that we are able to determine 
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the true height of the points under consideration. Especially when dealing with curves, 
this may require assistance from sections or elevations; but these views serve only to 
determine the height of selected points above the ground plane and do not have to show 
the PP in edge view, as the direct projection method requires. This is demonstrated in 
Figure 11-21 for a circular arch.  

 
 

11-21  
Two-point perspective of an arch 

The figure also demonstrates how perspectives and the views used to construct them are 
often laid out in practice to save space. 

 

11.2.5 Three-point perspectives 

One associates with one- and two-point perspectives simplicity and ease of construction.  
Readers should keep in mind, however, that these techniques are also mathematically 
correct, that is, result in true central projections of a spatial object on a picture plane, 
viewed in two dimensions (the only inaccuracies that may occur are caused by drawing 
or, when computers are used, round-off errors). The simplifications result not from 
methodological shortcuts, but from the selection of special picture planes that allow, in 
particular, use of a given top or plan view to draw the picture plane in edge view. 

However, the resulting views are not necessarily perceptually correct. If they are used to 
depict the interior of a low-ceilinged space with a station point at eye level, they may 
come close to an observer’s impression. But when they are used, for example, to show 
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the exterior of a 30-floor tower with vertical lines perfectly parallel to each other, the 
result is likely to be less realistic. It is in these cases that a designer may consider using a 
three-point perspective.  

A three-point perspective of a (rectangular) object results from a picture plane not 
parallel to the vertical or horizontal lines on the object. As a result, none of the normally 
available horizontal views (floor plan, roof plan) show the PP in edge view, a condition 
on which the previous three constructions crucially depend.  

The constructions used so far can nevertheless be used to generate three-point 
perspectives of objects given in the usual form.  

Figure 11-22 illustrates the construction for a rectangular prism, which is shown in plan 
and elevation with the station located as shown with a view directed towards the center 
of the prism.  

 

11-22  
3-point perspective of a rectangular prism 

The vanishing points lie on a horizon in directions parallel to the sides of the prism.  
Firstly, an auxiliary view showing the SP to center in true length is constructed.  In this 
view the vanishing points VPL and VPR are seen in point view.  By choosing a picture 
plane we can determine the third vanishing point VPV along the vertical direction.   
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Secondly, join SP to the vertices of the prism in both plan and auxiliary elevation by 
lines as shown.  These meet the PP in both views.   

Finally transfer these distances on the PP to the vertical and horizontal axes as shown in 
the right most drawing.  Project lines as shown to meet to construct the vertices of the 
prism, which the perspective can be drawn. 

This same construction is demonstrated in Figures 11-23 and 11-24 for a more complex 
figure, an obelisk. In Figure 11-22 we create an auxiliary side and plan view, a and b 
respectively, that show the PP for a three-point perspective in edge view as required by 
the direct projection method. 

 

11-23  
Generating a side and plan view for a three-point perspective 
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11-24  
Three-point perspective of an obelisk 

As in the construction in Figure 11-22, we start by selecting the trace of the PP in p and 
the station point SP p. The trace determines the horizontal angle between the viewer and 
the object, and SP p fixes the center of vision in plan. A side view, a, showing the picture 
plane in edge view can then be generated using a folding line perpendicular to the trace. 
The angle of the PP and the height of SP in this view can be chosen arbitrarily. The 
former determines if the viewer looks up or down, the latter fixes the center of vision 
vertically. In the example, the SP and PP were selected to generate a view seen by an 
observer looking upwards towards the obelisk. 

If we now generate a second auxiliary view, b, using a folding line perpendicular to the 
edge view in a, we generate an auxiliary plan view showing again the PP in edge view. 
From these two views, the three-point perspective can be constructed using the direct 
projection method (see Figure 11-24). 

These manual constructions are not complicated once the underlying principles are 
understood; but they are certainly tedious and time-consuming for all but the simplest 
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objects (for which one would not want to draw a three-point perspective anyway) 
because one has to find two auxiliary views before starting the construction proper. 
Methods for constructing three-point perspectives without auxiliaries by generating the 
vanishing points explicitly can be found in the literature (AIA Architectural Graphics 
Standards gives a method that is relatively easy to follow); but even then the process is 
time-consuming and not often employed in practice. 

But we mentioned already that all of this has changed with the advent of computers and 
drawing software, for which picture planes in unusual positions pose no problem. As a 
result, three-point perspectives start to appear more frequently in architectural 
presentations and publications, and it is worth studying the effects that can be achieved 
with this technique. 
 




