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Geometric Constructions 

Everyone knows something about geometry and about certain basic entities such as 
lines, angles, arcs, etc.  Geometry is used in a very practical way in the design fields.  

1.1 CLASSICAL COLUMNS 

Let us begin with constructions that are at once historical, practical and motivational. 

Giacomo Barozzi da Vignola in the mid-16th century wrote one of the more influential 
treatises on Renaissance architecture.  In it, he describes manual ways of constructing 
architectural views.  I highlight two constructions from his text.  Each deals with an 
elevation of a classical column of a specific profile.  The first produces a tapered shaft, 
the second, also called an enthasis, a profile that 
diminishes towards both the top and bottom. Figure 
1-1 shows a plate from his treatise, Canon of the 
Five Orders of Architecture.  Each construction 
yields a finite number of points on the shaft profile. 
These points are connected by a smooth curve to 
produce the desired profile. 

Giacomo Barozzi da Vignola 
(Author) Gli Ordini D'Architettura Civile  

(Canon of the Five Orders of Architecture) 
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1-1  
"Entasis"  
Plate 31 from Giacomo Barozzi Da Vignola, Canon of the Five Orders of Architecture,  
Translated by Branko Mitrovic (New York: Acanthus Press, 1999) 
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Construction 1-1  
Constructing the profile of a classical tapered column 

There are five steps. 

1. Determine the height and largest diameter of the 
column, d. There are clear rules about preferred 
proportions between the height and diameter of various 
types of classical columns (doric, ionic etc.) These 
measures are normally related to each other as integral 
multiples of a common module, m.  

Figure 1-2 shows the shaft of a column with diameter 
2m and height 12m. That is, the proportion between 
diameter and height is 2:12 or 1:6 

2. At 1/3 of the shaft's height, draw a straight line, l, across 
the shaft and draw a semi- circle, c, about the center 
point of l, C, with radius d (1m in the figure). The shaft 
will have the uniform diameter d below line l. 

3. Determine the smallest diameter at the top of the shaft 
(1.5m in our case). Draw a perpendicular, l', through an 
end-point of the diameter. l' intersects c at a point P. 
The line through P and C defines together with l a 
segment of c. 

4. Divide the segment into segments of equal size and 
divide the shaft above l into the same number of 
sections of equal height. 

5. Each of these segments intersects c at a point. Draw a 
perpendicular line through each of these points and find 
the intersection point with the corresponding shaft 
division as shown in Figure 1-2.  Every intersection 
point is a point of the profile. 

 
1-2  

Classical column with diminishing diameter 
 
 

Construction 1-2  
Constructing the profile of a classical column with entasis 

Here, again, there are five steps. 

1. Determine the height and its diameter (or radius) where it is widest and at the top. 
Following Vignola, the base is again assumed to be 2m wide, and the height is 16m; 
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that is, the proportion of the diameter to height is 1:8. The widest radius occurs at  

of the total height and is 1+ m.  The radius at the top is m. 

2. Draw a line, l, through the column where it is widest. Call the center point of the 
column on that line Q and the point at distance 1+ m from Q on l, P. 

 
1-3  
Constructing a classical column with entasis 
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3. Call the point at distance m from the center at the top. On the same side as P, M, 

draw a circle centered at M with radius 1+ m; that is, the circle with the widest 

radius of the column.  This circle intersects the centerline of the column at point R. 

4. Draw a line through M and R and find its intersection, O, with l. 

5. Draw a series of horizontal lines that divide the shaft into equal sections. Any such 
line intersects the centerline at a point T. Draw a circle about each T with radius m. 
The point of intersection, S, between this circle and the line through O and T is a 
point on the profile. 

The construction is illustrated in Figure 1-3. 

Both constructions illustrate architectural forms – that is, spatial forms – that can be 
produced using simple mechanical tools, in this case, a compass to produce circular arcs 
and a ruler with measurements marked on it. Of course, the construction is augmented 
with freehand sketching. The steps assume an ability to construct particular lines, for 
example, lines parallel and perpendicular to the given line using just such tools. Such 
‘mechanical’ constructions are the subject matter of this course.   

1.2 MEASUREMENTS 

There are other kinds of useful practical geometric constructions. Among these are those 
that involve measurements, specifically, to calculate length, area, volume and so on.   

We use a line, or more specifically the length between the end-points of the line as a 
representation of one kind of measurement — namely, a linear measurement. 

 

1-4  
Length of a line as a measure 

 

When a geometric figure is drawn on a sheet or a surface it occupies a certain portion of 
the surface, which is referred to as its area.  A rectangle is representative of area and is 
specified by its length (base) × width (height).  The length and width represent two 
distinct linear measurements. 

1-5  
Area represented by a rectangle 

 
  

If height  = 1, then area = length 
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If height = 10, then area = length plus a positional addition of a zero at the end of the 
number or by moving the decimal point to the right by one position  

If height = 100, then area = length plus a positional addition of two zeroes at the end of 
the number or by moving the decimal point to the right by two positions 

And so on …  

That is, 

The length of a line can represent area 

1.2.1 Area of a triangle  

We can use rectangles and a theorem that states that the diagonal divides a rectangle into 
identical triangles. 

 

1-6   
The diagonal of a rectangle 

divides it into two identical triangles 
 

 
!area ABCD =  !area ABC + !area ADC 

∴!area ABC = ½ !area ABCD 

Consider the triangles shown in Figure 1-7. 

 

 

!a ABC = !a ACF + !a CFB 

∴ !a ABC = ½ !a ADCF +  ½ !a 

CEBF 

 =  ½ !a ABED 

 

!a ABC = !a ACF – !a CFB 

∴ !a ABC = ½ !a ADCF – 
   ½ !a CEBF 

 =  ½ !a ABED 

1-7  
Two triangles with the same base and height have the same area 
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Consider Figure 1-8.  What can we say about these triangles? 

 

1-8   
What can we say about these triangles? 

☛ ANSWER 

 

1.3 A SHORTHAND NOTATION 

Many of you, perhaps, tweet.  You almost certainly text.  You probably invoke some 
kind of abbreviation, or shorthand.  We employ something similar when describing 
constructions.  In fact, you may have already noticed their use in the constructions 
above.  For consistency of description, I employ the following shorthand convention 
(with more added as we move through the subject):  

Points are identified by a single uppercase letter: A, B, C, …, P, Q, R 

Measurements such as lengths are given in lowercase italics: a, b, c, …  

Common geometrical figures are denoted in shorthand  

 

–A–B–, –AB–  

–A– 

A– 

𝐴𝐵 

AB  

𝐴𝐵  

⊥ 

|| 

O(r) 

O(AB) 

O(P)  

! 

! 

!n 

A line passing through points A and B. 

A line passing through point A. 

A ray emanating from point A 

The line segment between points A and B  

Length of the line segment between points A and B 

The signed length of the segment AB.  𝐴𝐵  = − 𝐵𝐴  

Is perpendicular, e.g., –AB– ⊥ –C– 

Is parallel, e.g., –AB– ||  –C– 

Circle centered at point O with radius r.  

Circle centered at O with radius equal to the length AB 

Circle centered at O with radius = OP 

A triangle 

A rectangle, parallelogram, rhombus, or quadrilateral 

An n-sided geometrical figure, e.g., !6 for a hexagon 
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!ABC 

! ABCD 

!ABCDEF … 

∠BAC 

!a, !a, … 

Triangle with corners A, B and C 

Quadrilateral with corners A, B, C and D 

Polygon with corners A, B, C, D, E, F, …  

Angle at A defined by sides AB and AC 

Area of triangle, etc. 

 

Construction 1-3  
Construct a triangle with the same area as a given triangle and with a given base 

 
Let !ABC be the given triangle.  
(See figure on the right.)  

1. Extend –CB– to –CBD– so that BD = given base. 

2. Draw a line –C– parallel to –AD–, that is, –C– || –
AD–; and extend –AB– to intersect it at E 

! BED is the required triangle. 

The construction is shown in Figure 1-9. 

 

 

 

1-9  
!aBED = !aABC 

 
☛ QUESTION: Why is !aBED = !aABC? 

☛ ANSWER 

Explanation will be given 
in class but these diagrams 
should help.    
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Construction 1-4  
Construct a triangle with the same area as a given triangle and with a given base and angle 

Suppose additionally we are given an angle as well. 

1. Construct !BED as before. 

2. Draw a line –E– parallel to –CD– 

3. Draw a line at the given angle to –CBD– at B to intersect –E– at F  

!BDF is the required triangle with given base BD and ∠DBF, the given angle.  The 
construction is shown in Figure 1-10. 
 

 

1-10  
Construction 1-3 with an added angle constraint 

 

☛ QUESTION: Can you find a single line whose length equals the area of a triangle 
based on what we have done so far? 

 

☛ ANSWER 

Left as an exercise  

(HINT: What should the length BD be?) 
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1.4 PARALLELOGRAMS AND TRAPEZIUMS 

  
!a ABCD = !a ABC + !a ADC 

= ½ bh + ½ bh = bh 
!a ABCD = !a ABC + !a ADC 

= ½ ah + ½ bh = ½(a+b)h 

1-11  
Area of a parallelogram and trapezium 
 

 
 
1-12  
Parallelograms with the same base and height have the same area 

 

Construction 1-5  
Construct a triangle with the same area as a quadrilateral 

Let ! ABCD be the given quadrilateral 

1. Draw a line –D– through D parallel 
to the diagonal –AC– 

2. Extend –BC– to meet this line  
at C'. 

 

! ABC' is the required triangle 

 

1-13  
Converting a quadrilateral to a triangle with equal area 
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Construction 1-6  
Constructively calculate the area of a polygon  

The construction is shown in Figure 1-14. 

 

 
 
1-14  
Area of a polygon 
 

Note that constructively !a ABC' = !a BKH = !a BKLN (Why?) 
If BK = 1, then area of polygon !a ABCDEFG is given by the length, BN. 

!ABCDEFG is a polygon with area identical to ! ABC’.  

 

☛ QUESTION: What is the construction? 
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☛ ANSWER 

We successively eliminate triangles until we only have one triangle 

In the example polygon !ABCDEFG above, consider !AGF. 

 

 
Draw a line –G– parallel to –AF– 

Extend –EF– to meet this line at Fʹ′.   

Then, !AFʹ′F = !AGF and polygon !ABCDEFʹ′ has the same area has polygon 
!ABCDEFG. 

 

 
We repeat this for 𝐴𝐹.  That is, 

Draw a line –Fʹ′– parallel to –AE– 

Extend –DE– to meet this line at Eʹ′.    

 

 
But order is unimportant.   
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We can choose any triangle to eliminate at any time.   

Suppose we choose !ABC.  

 

 
Draw a line –B– parallel to –AC– 

Extend –DC– to meet this line at Bʹ′.   

 

 
 

We now reduce the quadrilateral ! ABʹ′DEʹ′ to the !ADʹ′Eʹ′  

 

 

 

The last step is to reduce triangle !ADʹ′Eʹ′ to an equivalent right-angled triangle 
with base equal to two.   

Below  

!ADʹ′Eʹ′ = !ADʹ′Eʹ′ʹ′ = !Dʹ′XY 
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As Dʹ′X = 2 and ∠XDʹ′Y = 90º, Dʹ′Y measures the required area 

1.5 CONSTRUCTIBLE NUMBERS 

Adding and subtracting numbers is trivially simple  

Construction 1-7  
Addition and subtraction 

To add or subtract two numbers, say, a and b, we draw a line and mark a point A on 
it.  Construct the circular arc A(a) to meet the line at B. The circular arc B(b) meets the 
line at two points C and D as shown in Figure 1-15. Then, AC = a + b and AD = a – b. 
 

1-15  
Constructively adding and 

subtracting two numbers 

 

D'X = 2

Y

E''

D'

E'

A

X

b

a

DA B C



 
 

15 

Construction 1-8  
Multiplication and division  

Similar triangles preserve proportion between corresponding sides  

That is, if ∆ABC and ∆PQR are similar triangles, then the ratio AB:PR is the same as 
BC:QR.  

Suppose AB = 1, PQ = b. If BC = a, then QR must equal a × b (see Figure 1-16). If QR = 
a, then BC must equal a ÷ b.  

 

 
1-16  
Similar triangles preserve proportion 

 

 

The constructions for multiplication and division are shown in Figure 1-17. In each case 
we construct an arbitrary but convenient angle; from the corner O draw circle O(a) to 
meet one side at A and draw circles O(1) and O(b) to meet the other side at P and B.  
 

 

1-17  
Multiplying (above) and dividing (right) numbers 
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For multiplication, draw a line through B parallel to meet the angle at Q. OQ is the 
required multiplication. 

For division, draw a line through P parallel to meet the angle at Q. PQ is the required 
division. 

We can clearly extend this to multiply (or divide) several quantities together. Figure 
1-18 shows how to multiply four numbers together. 

 
 
1-18  
Multiplying four numbers constructively 

 

☛ QUESTION: Can you use of any of these arithmetical constructions to calculate the 
riser and tread for a staircase? 

 

 
 

☛ ANSWER 

Left as an exercise 
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Construction 1-9  
Powers of quantities 

The above constructions can be used to obtain the powers of numbers such as a2, a3, a4 

and so on. A simpler construction based on similar right (angled) triangles is shown in 
Figure 1-19.  

  

 
1-19  

Powers of a number  
obtained constructively 

  
 

☛ QUESTION: Why does this construction work? 

☛ ANSWER 

Consider any two successive triangles in the sequence as shown below. 

 

 

From three right angled triangles  

 x2 = a2 + 1,   z2 = a2 + y2  and  
(y+1)2 = x2 + z2 = 2a2 + y2 + 1 

 ∴ y = a2 
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Construction 1-10  
Square Roots 

Like powers, square roots of numbers can be calculated graphically. On a line mark off a 
unit length and a length = a.  On the combined length draw a semi-circle as shown in 
Figure 1-20. At A, draw a perpendicular to meet the semi-circle at B. AB = .   

As Figure 1-20 indicates, we can continue the construction to produce  and so on.  

 

 

1-20 
Even roots of a number 

1.5.1 Theoretical versus practical constructions 

There are geometrical problems that cannot be solved using conventional geometric 
tools such as a compass or ruler in the pure sense.  Among the well known ‘impossible’ 
constructions are the following problems: 

• Squaring the circle. Constructing a square having the same area as a given circle. 

• Duplicating a cube. Constructing the edge of a cube having twice the volume of a 
given cube. 

• Trisecting an angle. Constructing two lines that divide a given angle into three equal 
parts. 

However, some of these so-called “impossible” constructions can be solved, by 
tweaking the tools a fraction.  Here are two examples. The deceptive nature of the 
impossibility of the constructions is illustrated by the following trisection constructions. 

 

a

4 a
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Trisecting an angle 

Given ∠AOB (without loss in generality, let OA = OB) 

Draw O(OA), –BCD–, 
CD=OA, OC=OA –OA–, –BD– ∠ADB 

Points of 
intersection C D  

 

The proof for angle trisection is straightforward (see Figure 1-21). As can be seen from 
the figure, the construction requires a ‘marked’ straightedge, where the distance CD 
(=OA) is marked on the straightedge. This is distinct from Euclidean constructions, 
which rely solely on a compass and an unmarked straightedge. Clearly, in this 
construction the straightedge has to be aligned so that marked points C and D are 
coincident with the semi-circle and horizontal line respectively. 

 
1-21  
Trisecting an angle using a ‘marked’ straightedge 

The above construction creates an angle 1/3rd the measure of the given angle. The 
following construction, illustrated in Figure 1-22, creates a trisected angle using one of 
the sides of the given angle, again using a ‘marked’ straightedge. 

 
1-22  
Another method for trisecting an angle using a ‘marked’ straightedge 
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1.5.2 The insertion principle 

 

A marked straightedge is an example of a 
mechanical construction device known as the 
insertion principle.  

The above constructions are each an example of a 
construction drawn by the insertion principle. 

 

Insertion Principle 

Given two curves and a point, the 
line passing through the given 
point, touching the two curves at 
points corresponding to marked 
locations on a straight-edge, is 
said to be drawn by the insertion 
principle. 

We can use the insertion principle to duplicate a cube.  

If the length of a segment, say a, represents the side of a cube, then we are interested in 
finding a segment the length of which, say b, satisfies b3 = 2(a3).  

On a given line segment, AB, construct a perpendicular, BM–, and another ray, BN–, 
which meets 𝐴𝐵 at 120º.1  Using a ‘marked’ straightedge construct a line that meets line 
–BM– at C and line –BN– at D such AB = CD.  Then, AC3 = 2(AB3).   

See Figure 1-23. 

. 
1-23  
Duplicating the cube by the insertion principle 

The existence of ‘impossible’ constructions, and perhaps, to explore ‘possible’ 
constructions prompted early geometers to investigate and, potentially, invent new and 
different ‘mechanical’ devices. Some are the forerunners of modern drawing equipment. 
We illustrate three devices in light of the angle trisection problem. 

                                                        
 
1 An angle of 120° can be easily constructed with an unmarked straightedge and a compass. We 
leave this as an exercise to the reader. 

33AC  = 2(AB  )

m∠ABN = 120.00°

CD = 2.00 in.

AB = 2.00 in.
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1.5.3 Practical tools 

Tomahawk 

The Tomahawk was first described in 1835, although its author is unknown. The device 
is based on the following construction. RU is a trisected line such that RS = ST = TU. At 
S draw a line perpendicular to RU. With T as center construct a semicircle with radius 
ST. To use the device, align the given angle ∠AOB such that ray OB– touches R and ray 
OA–is tangential to the semicircle and O lies on the perpendicular at S. Then, 𝑂𝑇 trisects 
angle ∠AOB. The proof follows from the fact that triangles ∆RSO, ∆TSO and ∆VTO are 
all congruent. 

 

1-24  
Tomahawk 

See Eves,  
An Introduction to the History of Mathematics, 1983 

  

Aubrey Right Circular Cone 

The following tool offers a simple ‘practical’ way to solving the trisection 
problem.  Construct a right circular cone (say, of wood) with center O and apex V, with 
slant height thrice its radius. Mark points A and B on the circumference of the base so 
that the given angle is ∠AOB. Wrap a paper around the cone and mark points 
corresponding to A, B and V.  Flatten the paper.  ∠AVB is the required trisected angle.  
Proof follows by considering the length of the chord AB. 

 

 

1-25  
Aubrey Cone to trisect an angle 
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Carpenter Square 

This tool is readily available in any hardware store. Although the carpenter square was 
not specifically developed for the trisection problem, however, otherwise, it does come 
in handy. ∠AOB is the given angle. Construct a line –DE– parallel to line –AO– at 
distance equal to wider arm of the carpenter’s square. Mark points P, Q and R on the 
other arm such that R is the mid-point of 𝑃𝑄, which equals twice the height of the wider 
arm. Align point P on –DE– and the other edge at O as shown. ∠POR is the required 
trisected angle. Proof follows from considering similar triangles. 

 

1-26  
Carpenter Square to trisect an angle 

 
 

1.6 CONSTRUCTIONS FROM PROJECTIVE GEOMETRY 

Construction 1-11  
Drawing a line between two points using a short ruler 

Interestingly, the following construction borrows from the theory of perspectives (or 
rather projective geometry). We will see more on perspective in this class.  

Consider the following trial and error construction.  Construct any line with the finite 
ruler. Mark two points on the line the distance of which is less than the length of the 
ruler. Align the ruler with these points and extend the line. This process can be repeated 
indefinitely. 

 
 

1-27  
Constructing an indefinite line using a finite ruler by ‘trial and error’ 
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Let the length of the ruler be ε (epsilon) units. (It is a very short ruler!)  Two points are 
said to be ε-near (pronounced epsilon near) if the ruler can span them.  Let A and B be 
two points that are not ε-near. By trial and error perhaps, repeatedly, it is possible to 
construct two lines through A, say 1 and 2, such that the lines 1, 2 and AB are ε-near. 
That is, the ruler spans the three lines. Choose a point P ε-near B such that by using the 
finite ruler, we can construct lines 3, 4 and 5 through P that cut the lines 1 and 2.  See 
Figure 1-28. 

 
1-28  
Construction to join two points far enough apart by a line using a finite ruler 

Points R and R' are joined by lines 6 and 7 through B. The lines intersect line 4 at T and 
T'.  Join T by line 8 through S.  Likewise, join T' by line 9 through S'.  Then, lines –ST– 
and –ST'– meet at C, and points A, B and C are collinear. Moreover, C is ε-near B. It 
follows that by the trial and error construction described above, it is possible to extend 
BC to meet A (line 10).  

 [The proof is omitted here. For the interested reader, it follows from Desargues 
configurations. See Section 1.6.1 below.]   

1.6.1 Desargues configuration 

It is well known that if two particular pairs of lines are parallel then a third pair is 
likewise parallel. There is a counterpart to this notion in projective geometry where 
parallel lines meet at the horizon, namely, if two particular pairs of lines meet at the 
horizon so does a third pair. The Pappus and Desargues theorems express this differently 
about three pairs of lines having their intersection on the same line. The projective 
Pappus configuration shown in Figure 1-29 illustrates six points lying alternatively on 
two straight lines forming a hexagon whose opposite sides meet on a line, namely, the 
horizon. 

The projective Desargues configuration states that if two triangles are in perspective 
from a point, then their corresponding sides meet on a line.  See Figure 1-30.  In Figure 
1-28, the two triangles !RST and !R'S'T' are in perspective from P and the required 
line –AB– corresponds to the horizon of the perspective projection. 
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1-29  
Projective Pappus configuration 

 

 

1-30  
Desargues configurations 
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center of perspective

center of perspective
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Co-polar and co-axial triangles 

Two triangles are copolar if the lines 
joining corresponding vertices are 
concurrent. 

The triangles are coaxial if the points of 
intersection of corresponding sides of 
the  
triangles are collinear. 

The concurrent point is called the 
center of perspective and coaxial line 
is the horizon or axis of perspective. 

Desargues theorem can restated as:  

Copolar triangles are coaxial and 
conversely 
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☛ A TYPICAL QUESTION  
 

Suppose we are given a point P and two lines whose point of intersection is inaccessible 
(i.e., not shown on the drawing), construct the line through P that meets the inaccessible 
point of intersection (see the figure below indicating the desired line shown dotted). 

 
 
☛ ANSWER 

[Left as an exercise – HINT – construct a Desargues configuration involving point P and 
the two lines as shown below in Figure 1-31.] 
 

 
 
 
1-31  
Finding a line through a point and the inaccessible point of intersection of two lines 
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1.6.2 Projective arithmetic 

We can employ the projective Desargues configuration to add two numbers and a 
variation to multiply two numbers as Figures 1-32 and 1-33 show.   

1-32  
Addition by applying Desargues 
configuration  
(Top) Sum is independent of the 
choice for L 
(Bottom) Sum is independent of the 
choice of axis 

 

 

 
 
  
 

1-33  
Multiplication by applying a 
variation of Desargues theorem  
(The construction is independent of 
the unit in both axes)  
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1.7 GEOMETRIC TRANSFORMATIONS IN THE PLANE 

 

  
Translation:  

Each point on the figure moves to a corresponding 
point on the translated figure by the same distance in 
the same direction.  

Rotation: 

Each point on the figure moves to a corresponding 
point on the rotated figure by the same angle and 
angular direction about a fixed center of rotation. 

 
 

Reflection:  

Each point on the figure moves to a corresponding 
point on the reflected figure by the same distance 
about an axis of reflection in a direction perpendi-
cular to the axis. 

Glide-reflection 

Each point on the figure moves to a corresponding 
point on the reflected figure by a reflection and a 
translation. 

 

 
1-34  
Basic geometric transformations in the plane  

 

Rotated Reflection:  

Each point on the figure is moved to a corresponding 
point on the reflected figure by a reflection and a 
rotation. 

 

angle

center of rotation
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1.7.1 Rotating a geometric figure without using a compass 

This construction relies upon properties relating to geometric transformations, symmetry 
and congruence. A little too much to explain here, but I will explain the basis of the 
construction in class.  Figure 1-35 illustrates the construction. 

 

☛ ANSWER 

 
 
1-35  
Rotating a geometric figure without a compass 

 

1.8 CONIC SECTIONS 

I began this chapter by describing two practical constructions with application to 
Renaissance architecture. I conclude it by describing practical constructions for 
geometric objects of importance in architectural design. Specifically, we take a look at 
basic curved figures that are normally called conic sections, so called because all of 
these geometrical figures derive from a cone. If we take a right cone and intersect it by a 
‘3-dimensional plane’, we obtain various geometrical figures depending on the 
inclination of the plane to the cone. For instance, if the plane is parallel to the base of the 
cone, the cross section is a circle. If the plane slices the cone at an angle to the base, the 
resulting figure is an ellipse. If the plane cuts through both the cone and its base at an 
angle, the resulting figure is a parabola. If the plane is vertical to the base, the cross 
section is a hyperbola.  

 

angle of rotation =
2 x angle between the reflection axes

center of rotation =
point of intersection of the reflection axes
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1-36  
The conic sections 

 

Circles are the most common figures to appear in architectural drawings.  The reasons 
are manifold.  

In traditional masonry construction, circles (more accurately, half- or semi-circles or 
other portions of a circle) appear in section as domes or vaulted ceilings over spaces 
too wide to be covered by wooden beams; or they occur in regions where stone and 
brick are more readily available as building materials than wood. 
 

For the same reasons, we may find 
arches in elevations over openings 
instead of straight lintels (see 
Figure 1-37). The structural reason 
for this use is that bricks and cut 
stones arranged in semi-circles or in 
related curves are able to cover 
wide spans without being subjected 
to too much tensile stress (the 
tensile strength of these materials is 
rather weak). 

 
 

1-37  
Arches, walls and domes 

in section or elevation 

 
Over centuries of use, arches and vaults have become so universally accepted as forms 
that they are even employed in the absence of structural or economic reasons; that is, 
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they have become elements of decoration and are, in fact, frequently abused in this 
manner. One should note that stress lines of these types of structures are rarely circular, 
and we find a variety of curves used besides the circle. The latter curve nevertheless 
dominates in practice because it is the easiest form to layout and construct. 

Circles also appear in plan, but not so much for structural than for formal or expressive 
reasons. Most obvious is this use in buildings that have a circular plan overall. The 
prototype for this type of building in the western tradition is the Roman Pantheon 
(Figure 1-38), one of the best-preserved buildings to survive from antiquity.2It has 
inspired a host of very distinguished buildings in the classical tradition, for example, the 
library in Thomas Jefferson’s campus for the University of Virginia at Charlottesville. 

 

 

 

1-38  
Plan of the Roman Pantheon 

 
 

Circular buildings are generally occupied by a major space to which at most some small 
ancillary spaces have been added. For obvious reasons, circular buildings are rare when 
the functions become more complex and the resulting programs more diverse in terms of 
the spaces to be allocated (although there exist some notable attempts, for example by 
the French architect Viollet Ledoux). But in buildings with such programs, a circular 
room frequently marks the geometric center of the plan and is consequently reserved for 
the most important function in the building. Such rotundas are also noticeable in 
libraries, where they house the main reading room (see Figure 1-39). 

 

 

1-39  
Plans with central rotundas: 
Stockholm Public Library by Gunnar Asplund 
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Another prominent use of the circle in plan is that of a ‘knuckle’ or joint that turns a 
major circulation axis into another direction. 

Semi-Circles also occur in similar circumstances in many plans.  
 
Prominent is their use as the 
end of an axis, possibly 
combined with a special 
focus, as demonstrated by 
the apse at the end of a 
traditional church plan, 
which is also the place for 
locating the most important 
piece of furniture, the altar. 
Figure 1-40 shows the plan 
of a bath with a profusion 
of semi-circles. 

 

1-40  
Plans with semi-circles: Imperial baths, Trier, Germany 

Parabolas are of special interest because the stress line of an arch forms a parabola 
under special loading conditions.  

This means that the arch can be rather thin, whereas circular and other forms require a 
greater thickness to ensure that the stress line does not fall outside the arch. This is 
demonstrated in the famous arch spanning the central space of the palace at Ctesiphon in 
present-day Iraq that dates back to around 3rd century AD (see Figure 1-41). The arch is 
a beautiful example of a freestanding parabola. 

 

1-41  
Palace at Ctesiphon, Iraq (circa 3rd century AD) 
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Ellipses appear in circumstances similar to those in which circles appear; this is true for 
plans, sections and elevations.  

It is not always clear that the curve in question 
is a true ellipse (which is more difficult to 
construct than a circle); it is therefore often 
referred to as an oval of an unspecified nature. 
Figure 1-42 shows the most famous building 
inscribed in an oval, the Roman Colosseum.  

 

 

1-42  
Plans of the Roman Colosseum 

 

Hyberbolas come into their own in building design in connection with certain three 
dimensional surfaces called ‘shells’.  

Figure 1-43 shows the elevation of the chapel of S. Vicente de Paul at Coyoacan, 
Mexico, which uses such surfaces for its roof structure. 
 

 

1-43  
S. Vicente de Paul at Coyoacan, 
Mexico (1959-60) Enrique de la Mora and 
Fernando Lopez Carmona, architects, and 
Félix. Candela, structural engineer 

 



 
 

33 

1.9 CONSTRUCTING CONICS 

1.9.1 Circle 

Constructing circles is trivial given that a compass is one of our mechanical tools.  

 
However, there are useful practical constructions that involve 
circular arcs.  I give two that relate to rectification. The first 
determine the (approximate) length of a circular arc and its 
inverse problem, namely, to construct a circular arc of a given 
length for a given radius. The second relates to rectifying the 
circumference of a circle. 

Rectification 

Rectification means 
constructing a straight 
line whose length 
equals the length of a 
curved line. 

Construction 1-12  
The approximate length of a circular arc 

Suppose we are given a circular arc AB that subtends a given angle ∠BOA (= α) at 
center O. We want to determine the length of this circular arc.  

1. Draw a tangent to the arc at A (How?).  

2. Join A and B by a line and extend it to D with AD = ½AB. 

3. Draw the circular arc with center D and radius DB to meet the tangent at E.  

AE is the required length  

The construction is shown in Figure 1-44. 

 
 
1-44  
Construction to find the approximate length of a given circular arc 
If the angle is less than 30º, the error is less than 1/14,000. 

α AD = AC = BC

E

D

C

B

O
A
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The construction works best for smaller angles.  If the angle is less than 30º, the error is 
less than 1/14,000.  When the angle is close to 60º, the error is close 1/900.  The 
following calculation of the error shows this.  Figure 1-44 is annotated as follows, where 
the length AE is the unknown variable x to be determined. 

 

 

By the Cosine Law, DE2 = AD2 + AE2 – 2.AD.AE. cos(180-α/2) 

9𝑎!   = 𝑎! + 𝑥! − 2𝑎𝑥   cos 180 − !
!

  

9𝑟!   sin!
𝛼
2
= 𝑟!   sin!

𝛼
2
+ 𝑥! + 2𝑥  𝑟    sin

𝛼
2
  cos

𝛼
2

 

𝑥! + 𝑥𝑟 sin 𝛼 − 8𝑟!   sin!
𝛼
2
= 0 

∴ 𝑥 =   − !
!
sin 𝛼 ± !!

!
sin! 𝛼 + 8𝑟!   sin! !

!
   =   𝑟 − !

!
sin 𝛼 ± sin !

!
8+  cos! !

!
 

 

𝑥 =   𝑟 sin
𝛼
2

3 − sin
𝛼
2

3 + sin
𝛼
2
  − cos

𝛼
2

 

 

α 
(in º) 

radians 
(arc length α) sin α/2 cos α/2 x  x/α error precision 

10 0.174532925 0.087155743 0.996194698 0.174532775 0.99999914 8.59702E-07 1163194 
20 0.34906585 0.173648178 0.984807753 0.34906104 0.99998622 1.378E-05 72569 
30 0.523598776 0.258819045 0.965925826 0.52356214 0.999930032 6.99683E-05 14292 
40 0.698131701 0.342020143 0.939692621 0.69797669 0.999777963 0.000222037 4504 
50 0.872664626 0.422618262 0.906307787 0.872189148 0.999455143 0.000544857 1835 
60 1.047197551 0.5 0.866025404 1.046007244 0.99886334 0.00113666 880 
70 1.221730476 0.573576436 0.819152044 1.219140067 0.997879721 0.002120279 472 
80 1.396263402 0.64278761 0.766044443 1.391174863 0.996355602 0.003644398 274 
90 1.570796327 0.707106781 0.707106781 1.561552813 0.994115396 0.005884604 170 

 

180-α/2

α/2

90-α/2

OA = r
AD = AC = BC = a = r sin(α/2)
AE = x

α

E

D

C

B

O

A
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Construction 1-13  
An approximate circular arc of a given length 

This construction is similar to the one above. We assume that we are given a circular arc 
on which we wish to mark off an arc of a specified length.  Let A be a point on the arc.  
Let AB be the given length on the tangent at A.  Mark a point D on the tangent such that 
AD =¼AB.  Draw the circular arc with center D and radius DB to meet the original at C. 
Arc AC is the required arc. The construction is shown in Figure 1-45. 

 

 
1-45  
Construction to mark off a circular arc of 
given length 

 

Construction 1-14  
Rectifying the circumference of circle 

Let O(B) be the given circle with diameter AB.  Draw a tangent at A and mark off a point 
C such that AC = 3AB.  Draw radius OE such that ∠BOE = 30º. From E draw 𝐸𝐹 
perpendicular to 𝐴𝐵.  

CF is the required length. 

 
1-46  
Rectifying the circumference of a circle 

AB = given length

required arc

C

D

3

1

2

A B

4

O

m∠BOE = 30.00°

3 x Diameter

circumference

F E
B

O

C21A
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The error is less than 1/21,700 as the following calculation shows. 

𝐴𝐹 = 𝑟 + !
!
  𝑟, AC= 6r, and CF = l 

We have  𝑟! + !
!
𝑟! + 3𝑟! + 36𝑟! = 𝑙! 

∴ 𝑙 =    39.4820508  𝑟 = 6.28347442  𝑟 

Circumference 𝑐 = 2𝜋𝑟 =   6.28318531  𝑟 

𝑙
𝑐
= 1.00004601 

Thus, error = 0.00004601 and precision = 1/21734 

 

EXAMPLE - Unfolding of a cone  

We can use these constructions to produce an 
unfolding of a cone if we know its slant height and 
base radius. We first rectify the circumference of 
the base, and then construct a sector with radius 
equals the slant height with arc length equaling the 
circumference. 

 

 
 
1-47  
Unfolding a cone 

radius r

slant height h

slant height h

radius r

30°
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1.9.2 Parabola 

The definition for a parabola suggests the following construction, which can be 
described in three steps.  

Firstly, we specify the focus and directrix.  Secondly, we 
construct the axis of the parabola, which is perpendicular 
to the directrix and passes through the focus. The 
principal vertex lies on the axis midway between the 
focus and the directrix.  Lastly, the remainder of the 
procedure is to construct arbitrary points on the parabola 
as follows: 

1. Draw a line l parallel to the directrix at a distance d, 
which can be measured off the axis. 

2. Draw a circle with the focus as center and radius d to 
intersect l at two points, which lie on the parabola. 

Parabola 

A parabola is a curve on any 
point at which is equidistant to 
both a given fixed point and a 
given line.  

The fixed point is called the 
focus of the parabola.  

The given line is called its 
directrix.   

The line through the focus and 
perpendicular to the directrix is 
the axis of the parabola; the 
point of inter-section between 
the axis and the parabola is its 
principal vertex. 

We repeat these two steps for different lines parallel to the directrix at different distances 
from it till we have a sufficient number of points. See Figure 1-48. 

 

 

1-48  
Constructing a parabola given its focus and directrix 

The following two constructions suggest practical ways of constructing parabolas with a 
given height on a base of given width. 

d

d

directrix

focus

principal vertex

axis
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Construction 1-15  
Constructing a parabola within a rectangle 

See Figure 1-49. 

Bisect the sides, 𝐵𝐶  and 𝐴𝐷, of rectangle 
ABCD and join their midpoints, E and F, 
by a line segment. 

Divide segments, 𝐴𝐵 and 𝐵𝐶, into the 
same number of equal parts, say n = 5, 
numbering them as shown. 

Join F to each of the numbered points on 
to intersect the lines parallel to through the 
numbered points on at points P1, P2, … 
Pn-1 as shown. These points lie on the 
required parabola.   

The parabola so traced corresponds to the 
trajectory of a stone thrown into the air at 
a height equal to AB and through a 
distance equal to BC. 

 

1-49  
Constructing a parabola inscribed within a rectangle 

The next construction is based on the following property of parabolas: 

An abscissa is related to any of its double ordinate by the ratio, AB:(PB × BQ), which is 
always a constant. That is, the abscissa is a scaled multiple of the parts into which it 
divides the double ordinate. 

Construction 1-16  
Constructing a parabola by abscissae 

The construction is shown in Figure 1-50.  

The base is divided into, say 10, equal parts. Vertical segments are drawn at these 
points with length proportional to the division of the base. The points lie on the 
required parabola. 
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Ordinate and abscissa 

The perpendicular from a point P on a 
parabola to its axis is referred to as an 
ordinate; its extension to a second point 
Q on the parabola is referred to as the 
double ordinate.  

A line parallel to the axis between a 
point A on the parabola and a point B 
on an ordinate is referred to as an 
abscissa. 

 

1-50  
Constructing a parabola by abscissae 

1.9.3 Ellipse 

Its definition suggests the following construction. 

First, we specify the parameters of the ellipse, 
namely, the foci A and B, and the distance r > AB. 
Mark off a segment of length r. 

Let P be an arbitrary point between D and E. 
Construct circles A(DP) and B(EP). The circles 
intersect at two points that lie on the ellipse. 
Repeating construction with the radii reversed gives 
another two points on the ellipse. The construction is 
repeated for different choices of P until enough points 
have been generated. The construction for a few 
points on the ellipse is illustrated in Figure 1-51. 

Ellipse 

An ellipse is a curve on any 
point of which the sum of the 
distances to two fixed points 
equals a constant.  

The fixed points are called the 
foci of the ellipse.   

The mid-point of the segment 
joining the foci is called the 
center of the ellipse. 

 

 
1-51  
Constructing the points on the ellipse 

minor axis

major axis

r

center

D E

A B

fociP
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Trammel method of constructing ellipses 

If the axes of the ellipse are known, the most convenient method of construction is by 
means of a trammel, a strip of material on which designated points have been marked.  

Refer to Figure 1-52 where C is the center of the ellipse.  We can draw two circles, 
centered at C with radii a, the semi-major axis, and b, the semi-minor axis. These are 
known as the major and minor circles respectively.  Consider the common radius DC 
passing through point G. Let P be a point on the ellipse. Let PM be its ordinate. Draw a 
line through P parallel to DC to meet the axes at Q and R. Because  is parallel to 
BC, and PG is parallel to , it follows that PR = DC = a, and PQ = GC = b. Then, the 
line –P–Q–R–can serve as a trammel by means of which points on the curve can be 
located. 

Alternatively, we can draw a line through P to meet the axes at points Q1 and R1 such 
that ∠MQ1P = ∠PQM. From congruent triangles, Q1P = PQ = b and PR1 = PR = a, 
and we can use the line –Q1–P–R1– as a trammel. Both trammel methods are illustrated 
in Figure 1-52. 

 

The Trammel Method 

Draw the axes and mark off along a straight 
strip of card-board the distances PQ and PR. 
Apply the trammel so that Q lines up with the 
major axis and R lines up with the minor axis; P 
is a point on the ellipse. More points P can be 
plotted, by moving the trammel so that Q and R 
slide along their respective axes. 

W Abbott 
Practical Geometry and Engineering Graphics 
Blackie & Son Ltd, Glasgow, 1971.  

1-52  
Principle of the Trammel 

 
1-53  
The trammel method of constructing ellipses 
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Construction 1-17  
Constructing an ellipse within a rectangle 

This is a convenient way to quickly construct an ellipse.  

1. Bisect the sides of the rectangle ABCD and join their midpoints of opposite sides by 
line segments to meet at the center O. 

2. We consider the upper left quadrant O2D3.  The construction is similar for each 
quadrant. 

3. Divide segments  𝑂3 and  𝐷3 into the same number of equal parts, say n = 8, as 
shown. 

4. Join 2 to each of the points on D3.  Join 1 to each of the points on O3 to intersect the 
corresponding lines from 2 as shown. 

These points lie on the required ellipse. See Figure 1-54. 

  

 
1-54  
Constructing an ellipse inscribed within a rectangle 

☛ QUESTION: What do you construct if ABCD is a square? 

☛ ANSWER 

Left as an exercise 
 

O
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C

1

2
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1.9.4 Hyperbola 

As before, we consider a technique suggested by 
the definition to find the points of a hyperbola. 
Like the ellipse, the hyperbola is specified by two 
focal points and a real number r, the distance 
between two arbitrary points, say D and E. The 
construction is illustrated in Figure 1-55. Given 
these points, we repeatedly apply the following 
procedure to generate arbitrary points that are on 
the hyperbola. Select a point P so that P is not 
between D and E. Construct circles A(DP) and 
B(EP). The two circles meet at two points of the 
hyperbola. Repeating the two steps with the radii 
reversed gives two additional points. 

 

Hyperbola 

A hyperbola is a curve on any 
point at which the absolute 
difference of the distances to two 
fixed points equals a constant. 

The fixed points are called the 
foci of the hyperbola.   

The mid-point of the segment 
joining the foci is called the 
center of the hypebola. 

 

 
 
1-55  
Constructing points on the hyperbola  

The constructions below give practical techniques for producing hyperbolas. The first 
relies on being given the asymptotes; the second requires the semi-transverse axis. For 
both, we need to know a point on the curve. 

transverse axis

r

D E

A
B

foci

P
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Construction 1-18  
Constructing a hyperbola given its asymptotes and a point on the curve 

Let CL– and CM– be the asymptotes. Construct lines –P–R– and – P–S– parallel to 
them. Construct any radial line from C cutting –P–R– and –P–S– at points, 1R and 1S. 
Through these points construct lines parallel to the asymptotes to intersect at 1, which is 
on the curve. Similarly construct points 2, 3, … as shown in Figure 1-56. 

 
 
1-56  
Constructing a hyperbola given its asymptotes and a point on the curve 

Construction 1-19  
Constructing a hyperbola given the semi-transverse axis and a point on the curve 

 

 

1-57  
Constructing a hyperbola given the semi-transverse axis and a point on the curve 

Let C be the center and V, one of the vertices. –C–V– 
is the semi-transverse axis. Extend –C–V– to –C–V’– 
such that CV’ = CV. Construct a line perpendicular to 
the axes through P to form the rectangle VQPR. 
Divide PQ and PR into equal number of segments. 
Join by lines the points on PR to V’. Join by the lines 
the points on PQ to V. The points of intersection of 
corresponding lines as shown in Figure 1-57 lie on 
the required curve.  
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1.10 THE “DIVINE PROPORTION” OR GOLDEN SECTION 

The proportion called the golden section has played an important role in many 
architectural proportional systems through the centuries. 

Let AB be a segment and C a point so that A-C-B (that is, C belongs to the segment 
and it is between A and B).  C divides AB in the golden ratio if AB:AC = AC:CB 

That is, C divides the segment so that the ratio between the length of the segment and its 
larger part is equal to the ratio between the larger and the smaller part. 

Any division that satisfies the golden ratio is called a golden section 

If we define AB = l, AC = a and CB = b, this ratio simplifies to l:a = a:b.  Or, a+b:a= 
a:b.  That is, a2–ab – b2 = 0. 

This ratio is independent of l, a, or b. In calculating this ratio, it is convenient to set b 
=1.   That is, a2– a – 1 = 0. 

The positive solution to this equation is which is the ratio φ we are looking for.  φ is 
called the golden ratio.  

That is, φ = ½ (1+√5) 

Alternatively, φ × (φ –1) = 1.  Or, φ = 2/(√5–1). 

1.10.1 Golden rectangles 

A rectangle ABCD is golden if AB = φ BC.   

We can always construct a golden rectangle with a given longer side, by extending it in 
the golden ratio using a construction to divide a segment in the golden ratio. Golden 
rectangles are used as regulating lines frequently in building designs. An example is the 
facades of Le Corbusier’s Villa Stein at Garches, which is shown below. 
 

1-58  
Le Corbusier’s Villa Stein at Garches 
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It is easy to see that a golden rectangle, ABDE (with longer side), can be divided into a 
square and a (smaller) golden rectangle, CBDF, as shown on the right.  If C divides in 
the golden ratio with longer side, the segment through the rectangle with C as one of its 
end points accomplishes the desired division. This can be seen if one again sets BD = 1. 
Then AB = φ and CB = φ - 1. Thus, BD:CB = φ:1, and CBDF is a golden rectangle.  

The division of a golden rectangle into a 
square and a smaller golden rectangle is used 
prominently in the south (garden) elevation 
of the Villa Stein and less prominently in its 
street elevation. 

 
 

We can use this division to construct a golden spiral as shown below.  

 
1-59  
Golden spiral 
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The spiral is composed of quarter circles inside the squares that successively divide the 
golden rectangles ABDE, CBDF, HDFG … constructed according to the above 
construction. The major diagonals of the first two rectangles are perpendicular and cross 
at M.  

Construction 1-20  
Constructing a golden rectangle given one of its sides 

We adapt Construction 1-10 (see page 18) and the fact that φ = ½ (1+√5).  There are two 
possibilities. 

Suppose we are given the longer side, say, AB.  Then, we have to construct C such that 
AB:AC = φ 

There are three steps: 

1. Let M be the mid-point of AB.  Draw a perpendicular at B and arc B(M) to meet it at 
D. 

2. Draw arc D(B) to meet AD at E. 

3. Draw a perpendicular at A and arc A(E) to meet it at C  

AC is required shorter side.  See Figure 1-60. 

 

1-60  
Constructing the golden rectangle given 

longer side 
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Suppose we are given the shorter side, say, AC.  Then, we have to construct C such that 
AB:AC = φ 

Again, there are three steps: 

1. Draw perpendicular to AC at A.  Draw arc A(C) to meet it at E. 

2. Draw perpendicular to AE at E.  Draw arc E(A) to meet it at D. 

3. Let M be the mid-point of AE.  Draw arc M(D) to meet –AE– at B. 

AB is required longer side   See Figure 1-61. 

 
 

1-61  
Constructing a golden rectangle 
given one its shorter side 

 

1.10.2 Golden series  

A Tale of Rabbits  

In 1202, Leonardo da Pisa, also known as Fibonacci, constructed a simplified model of 
the breeding habits of rabbits as follows: he assumed that rabbits live forever; every pair 
of rabbits produces a new pair of baby rabbits every month, and the new pair starts to 
breed on its own after two months. Starting with a single, new born pair, we have one 
pair in the first and second months; two pairs in month 3; 3 pairs in month 4; 5 pairs in 
month 5 etc. Figure 1-62 illustrates this for the first 7 months.  

Golden rectangle
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Table 1-1 The first ten Fibonacci numbers 

n 1 2 3 4 5 6 7 8 9 10 

u
n
 1 1 2 3 5 8 13 21 34 55 

u
n+1
 /u

n
 1 2 1.5 1.667 1.6 1.625 1.6154 1.619 1.6176 1.6182 

 

Table 1-1 above gives these numbers for the first 10 months, together with the ratios 
un+1/un, where un is the number of pairs in month n.  These numbers suggest that the 
ratios un+1/un approach φ more and more closely as n increases. This is true although we 
do not prove this here. 

 

1-62  
The first seven months 
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The Golden Series  

The sequence of numbers 1, φ, φ2, φ3, φ4, … , φn, … is the golden series. 

The golden series is a geometric progression: If the terms of the progression are denoted 
by un, un/un-1 is constant for every n; in the present case, it is obviously φ. 

It is easy to prove that the golden series has the following additive property:  un = un−1 + 
un−2.  That is, each term is the sum of its two preceding terms. 

The Fibonacci numbers enter the picture when we compute the first terms of the series: 

 φ 2 = φ + 1 

 φ 3 = 2φ + 1 

 φ 4 = 3φ + 2 

 φ 5 = 5φ + 3 
 … 

That is, we can express the members of the series as first order expressions in φ using 
the Fibonacci numbers as coefficients. 

The importance of the golden series for proportional systems in architecture results from 
the combination of additive and multiplicative properties that establish a flexible system 
of dimensions related to each other by the golden ratio.  

It has been suggested by Scholfield (Theory of Proportions in Architecture, Cambridge 
University Press, 1958) that the golden series can be incorporated into a universal 
golden scale that can be used to find a golden series for any base unit of measurement as 
shown below in Figure 1-63. 

 

 

1-63  
A universal golden scale 






