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This work is based on the recognition that there will always be a need for different representations of the
same entity, albeit a building or building part, a shape or other complex attribute.  Different representations
support different sets of operations with varying efficiencies.  Given our expectation that such multiple
representations will always exist, there is a need, formally, to define the relations between alternative
representations, in order to support translation and identify where exact translation is or is not possible, and to
define the coverage of different representations.  A method for the analysis of representations is developed,
which is applied to four different solid modeling representations.

Keywords: Solid modeling, representation, data exchange.

 

1    Introduction

 

Over the past twenty years, solid modeling has grown into a major area of research.  Many different models and
representations have been developed, based on a variety of representations, associated operations and
underlying concepts.  However, there is no single solid representation to solve every problem.  In the search for
an appropriate solid model there is, at least, a consensus, namely, a solid model has to be complete, that is, the
corresponding representations are “adequate for answering arbitrary geometric questions algorithmically” [1].

For practical applications, this poses another problem when one requires a form of communication between
two programs that do not share a common representation.  There have been a few attempts to bridge this gap,
but each comes with specific restrictions and limitations that do not make them generally applicable.  A popular
data exchange format in architectural applications is AutoCAD™’s DXF drawing interchange file format [2].  It
is, however, limited to graphical and/or surface models, and is incomplete with respect to solid modeling.  The
format was designed for AutoCAD’s own use which, at the time, did not include general solids.  AutoCAD’s
latest release updates the DXF format to include three-dimensional models, but only in binary form, readable
only by AutoCAD or other licensees of the ACIS™ modeling kernel.  A more universal approach to the
standardization of graphical data exchange is the IGES Initial Graphics Exchange Specification [3].  Successive
versions of it have seen the inclusion of different solid models: constructive solid geometry in version 4, and a
boundary representation is slated for inclusion in version 5.

It is not our purpose here to develop a new standard that would be “up to date” as to current research and
usage, but to consider an alternative approach that may take away the need for standards altogether.  Given the
number of different, often equivalent solid representations, any choice of a single standard is rather subjective
and creates a value assignment indifferent to the purposes of the different representations.  Moreover, as the
field of solid modeling expands and new types of information are included, such as features, surface finishes,
etc., such a standard could become quickly outdated.  Indeed, solid modelers with new capabilities are being
developed, such as the parametric solid modelers found in Pro-Engineer™, SDRC’s IDEAS™ and Autodesk’s
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DESIGNER™ for which no adequate translators exist.  Instead, we consider a different approach that is not
restricted to currently known representations.  We distinguish the data classes and subclasses that constitute a
representation and propose the development of a two-way communication system using these data classes as the
vocabulary elements.  This vocabulary is not a priori limited and may be extended by new applications.

The purpose of our paper is threefold: 
(i) to identify the issues of translation among solids; 
(ii) to identify those cases where exact translations are possible and those where not; and
(iii) to consider the coverage of a solid model in terms of the range of possible shape subclasses it can depict.

 

2    Solid models

 

Solid models fall into three main kinds: decomposition models (e.g., cell decomposition), constructive models
(e.g., constructive solid geometry) and boundary models.  Hybrid models are also possible.  Of these, boundary
models are among the most popular, mainly, because many of the questions we seek answers to relate to the
surface of the solid.  Boundary models represent a solid as a collection of two-dimensional boundary surfaces or
faces.  Even here, a large number of different representations exist, based on a variety of approaches, and more
appear as research continues.

Every application that employs a solid model can be expected to interpret information into one or more
representations.  When applications communicate, received information is interpreted into an application’s own
representation; a similar interpretation can be expected for the other application.  The core of the
communication system is limited to the facilitation of such interpretation.  At a recent presentation, Eastman [4]
gave a treatment of two-dimensional polygonal graphics information.  In this paper we consider a similar
decomposition of three-dimensional representational information into data types and with respect to scope.  To
demonstrate such a decomposition, we offer a comparison of representations found in the literature.

We restrict our comparison to boundary representations of polyhedral solids (possibly part of a hybrid
model), in particular, and rectilinear segments (volume, plane, line or points) in a three-dimensional space, in
general.  Boundary representations (b-reps) are particularly suited to graphics applications in that, in the main,
these directly represent the boundary faces that visually reflect upon the solids.

 

3    Representations

 

Representations of solids are expressed in terms of data classes with subclasses, and defined in a consistent
manner across all representations considered.  Classes are presented as compositions of their part
representations, e.g., faces, edges, vertices, and so on.  Given a set of representations, equivalencies across both
specialization and composition lattices can be established.  Communication between representations can be
identified as either a one-to-one (isomorphism) or a one-to-many (homomorphism) equivalency.  The following
concepts are basic.

 

3.1    Definitions

 

Representations 

 

are class structures identified by attributes grouped by one or more constructors.
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Attributes

 

 are named entities identified by a type, 

 

type

 

(

 

a

 

), that specifies its set of possible values.  Common
types are real, integer, string and boolean.

 

Constructors

 

 are devices for relating attributes to one another; examples include records, arrays, lists, rings,
stacks and so forth.  Definitions of those constructors we will be using are given in Table 1.  Others may be
defined, as needed.  Constructors specify relations between attributes, where such relations are used and
assigned an interpretation within the operations on the representation. 

 

Structures 

 

are groupings of constructors; 

 

entities

 

 are attributes or structures.  Representations are structures
along with the operations supported by the structure.   

Representations found in computer-aided design or geometrical modeling are, typically, complex structures
of attributes and constructors.  Moreover, a representation may be a construction of another.  Such complex
representations may be considered as a whole.  Representations may also be considered in terms of nestings of
other representations.

 

3.2    Notation

 

We introduce a simple notational device to abstract a representation.  As an example,

 

R 

 

= 

 

C

 

record

 

(

 

C

 

list

 

(

 

a

 

1

 

), 

 

a

 

2

 

, 

 

a

 

3

 

, 

 

C

 

list

 

(

 

C

 

record

 

(

 

a

 

4

 

, 

 

a

 

5

 

, 

 

a

 

6

 

)))

In this example, representation 

 

R

 

 consists of a record structure with two nested list structures, one over a simple
attribute, 

 

C

 

list

 

(

 

a

 

1

 

), the other over a record structure, 

 

C

 

list

 

(

 

C

 

record

 

(

 

a

 

4

 

, 

 

a

 

5

 

, 

 

a

 

6

 

)).  In addition, the structure 

 

R

 

 has
two simple attributes: 

 

a

 

2 

 

and

 

 

 

a

 

3

 

.  Equivalently, we can also consider 

 

R

 

 to have two nested representations and
describe it as follows:

 

R 

 

= 

 

C

 

record

 

(

 

R

 

a

 

, 

 

a

 

2

 

, 

 

a

 

3

 

, 

 

R

 

b

 

)

 

R

 

a

 

 = 

 

C

 

list

 

(

 

a

 

1

 

)

 

R

 

b

 

 = 

 

C

 

list

 

(

 

R

 

c

 

)

 

R

 

c

 

 

 

= 

 

C

 

record

 

(

 

a

 

4

 

, 

 

a

 

5

 

, 

 

a

 

6

 

)

Since we are dealing with only a few constructors, mainly sequences 

 

−

 

 distinguished by position; either of
fixed or variable length; and sequentially cyclical or otherwise 

 

−

 

 we can adopt a simplified notation.  We use
angular brackets to denote a record (or enumerated set), and parentheses to denote a sequence.  Parentheses
without any closing superscript denote a list or variable length sequence; parentheses with a numeric closing
superscript, 

 

n

 

, denote an array or fixed length sequence of size 

 

n

 

; and, parentheses with a closing superscript ‘*’

record an enumerated set of entities, distinguished by membership

array a fixed length sequence of entities, distinguished by position

list a variable length sequence of entities, distinguished by position

ring a variable length sequence of entities, distinguished by (relative) 
position, where the last and first entities are considered sequential

 

Table 1.  

 

Definitions of example constructors.
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denote a ring or cyclical sequence.  The same notation also allows us to denote a fixed length cyclical sequence,
e.g., (

 

a

 

)*

 

n

 

. Then, the previous example becomes:

 

R 

 

= <(

 

a

 

1

 

), 

 

a

 

2

 

, 

 

a

 

3

 

, (<

 

a

 

4

 

, 

 

a

 

5

 

, 

 

a

 

6

 

>)>

 

3.3    Derivations

 

A representation explicitly defines and stores one set of attributes and relations between them.  But other
attributes and relations may be derived from the stored ones, in a deterministic fashion.  We call these values

 

derivations

 

 of the stored data.  The representation uniquely determines the derived values.  Derivations may be
simple attributes.  A representation of a polygon as a list of vertices (which are arrays of coordinates) has as
possible derivations the area of the polygon, its perimeter (attributes), and centroid (an array of coordinates).
Some derivations are parts of other representations, or together with parts of the original representation, can
define another whole representation.  We denote such derivations as extensions to the original representation,
and specify the derived structure as derived from the original structure using the ‘

 

→

 

’ symbol:

 

R

 

d

 

 

 

= <(

 

a

 

1

 

), 

 

a

 

2

 

, 

 

a

 

3

 

, (<

 

a

 

4

 

, 

 

a

 

5

 

, 

 

a

 

6

 

>)> 

 

→

 

 <

 

a

 

7

 

, 

 

a

 

8

 

, (

 

a

 

9

 

)>

An example might be that of an arc represented as a center point and two equidistant endpoints, swept
counter-clockwise, having as derivations the radius, and beginning and ending angles from the origin.  Another
representation may be defined using these derived values:

 

R

 

arc-1

 

 = <<

 

x

 

, 

 

y

 

>

 

center

 

, <

 

x

 

, 

 

y

 

>

 

start

 

, <

 

x

 

, 

 

y

 

>

 

end

 

> 

 

→

 

 <

 

ab-angle, ae-angle, aradius>
Rarc-2 = <<x, y>center, ab-angle, ae-angle, aradius> → <<x, y>start, <x, y>end>

3.4    Equivalent entities

In the preceding examples, given the center point, the radius, beginning angle and ending angle are derived from
the endpoints; likewise, given the center point, the endpoints are derived from the radius, beginning angle and
ending angle.  In terms of their information content with respect to the arc representation, the structures
<ab-angle, ae-angle, aradius> and <<x, y>start, <x, y>end> are identical.  We say that both entities are equivalent
within the representation.  We use the symbol ‘↔’ to signify equivalent entities within a representation:

Rarc-3 = <<x, y>center, <<x, y>start, <x, y>end> ↔ <ab-angle, ae-angle, aradius>>

3.5    Optional entities

Within the previous representation, one of the two structures: <ab-angle, ae-angle, aradius> or <<x, y>start,
<x, y>end> is optional, but not both.  This is because these entities are equivalent within the representation.
Sometimes, representations may have entities that are explicitly designated to be optional, that is the attributes
or entities may or may not be specified a value.  Examples of optional attributes are the color and cross-hatching
of figures.  We use enclosing square brackets to signify entities that are explicitly specified as optional within
the representation.

Rarc-4 = <<x, y>center, <x, y>start, <x, y>end, [acolor]>

Entities that are not specified as optional are considered mandatory, unless they are equivalent within the
representation.  Note that it is important that a representation is well-formed, that is, that all equivalent or
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optional entities are explicitly specified as such.  Otherwise, these will be considered as mandatory, and the
subsumption relationship specified below may not properly apply.

3.6    Alternatives

Sometimes a representation can take different forms, depending on the particular instance, and these forms may
not be equivalent.  For example, a representation may model arcs as well as straight line segments.  Even though
each type of figure has its own representation in terms of its attributes and grouping constructors, we may want
to denote each figure as an instance of the same overall representation.  We use the symbol ‘|’ to divide such
alternatives within a representation:

Rfigure = <Rarc | Rline | Rpolyline>

A figure may represent an arc, a straight line or a concatenation of straight line segments.  Each figure
belongs to exactly one of these three representations, but a list of figures might include all three representations.

4    Subsumption

Equivalency between entities can be extended to representations.  Informally, we may consider two
representations with identical information content as equivalent.  It is obvious that the representations Rarc-1,
Rarc-2 and Rarc-3 are equivalent, since these represent the same class of figures.  [Note that two representations
that are equivalent do not require their entities to be positioned identically in a record.]  On the other hand,
Rarc-4 is not equivalent with any of these arc representations, because it can represent ordinary arcs and
optionally a family of colored arcs as well.  Therefore, we say that Rarc-4 subsumes all three representations
Rarc-1, Rarc-2 and Rarc-3.  This subsumption only holds because the color attribute is specified as optional.  If
we define an arc representation with a mandatory color attribute:

Rarc-5 = <<x, y>center, <x, y>start, <x, y>end, acolor>

then, this new representation no longer subsumes the other arc representations.

We can consider the subsumption relation, formally, in set theoretic terms.  The domain of an entity,
dom(E), is the set of possible distinct individuals it can depict.  The domain of an attribute is the set of values it
can take.  The domain of each component of a representation can be defined.  A grouping of attributes has as its
domain the Cartesian product of its attribute domains.  A record structure has as its domain the Cartesian
product of its entity domains.  A sequence structure has as its domain all combinations of its entities’ domains,
as allowed by the constructor; if the structure is of unbounded length, then its domain is indefinite.  Using this
same approach, the domain of more complex representations can be defined, involving any combination of
entities grouped by different constructors.

We can add to the domain of any representation certain derivations.  The possible set of derived attributes is
open-ended; there is no practical way to identify all possible derivations.  However, when comparing two
representations, derivations of one representation that are equivalent to entities of the other representation
identify equivalent partial domains.  When determining the domain of a representation, these partial domains as
defined by derivations that are equivalent to entities in a subsumed representation, participate in the overall
domain.  In the arc example above, the domains of the arcs are extended because the derivations are equivalent
to entities of the other (subsumed) representation.
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We can define the subsumption relation in terms of the domains of the representations.  A representation
subsumes another representation if the domain of the first representation can be partitioned such that one of the
parts corresponds to the domain of the second representation.  We use the symbol ‘≤’ to denote the subsumption
relationship.  That is, given two representations Rx and Ry, if Rx is subsumed by Ry (or Ry subsumes Rx), we
write Rx ≤ Ry.  If, additionally, Rx subsumes Ry, then the two representations are equivalent, Rx ≡eq Ry.
Formally,

Rx ≡eq Ry  if and only if  Rx ≤ Ry  and  Ry ≤ Rx

The subsumption relationship is a partial order relation (reflexive, anti-symmetric and transitive) that
specifies a partial ordering on a set of representations.  Consider ℜ  the set of all possible representations.  The
least upper bound for any set of representations defines the operation of sum (‘+’) on representations.  Similarly,
the greatest lower bound for any set of representations defines the operation of product (‘⋅’) on representations.
The set ℜ  is closed under sum and product.  [Unfortunately, both the scope of this paper and limitations of
space, prevent further consideration of the operations of sum or product on representations.]  The set ℜ  has a
zero or minimal element, nil, that is the greatest lower bound for the empty set of representations.  The nil
representation is subsumed by every representation.  The subsumption relation defines a lattice on ℜ .

5    Ordering rules

The above conditions can be specified by a set of ordering rules.  The first kind of ordering rules applies to
groupings of entities or representations:

nil  ≤  R for every representation R (1.1)

<a>  ≤  <b>  if and only if  type(a) = type(b)  and  dom(a) ⊆  dom(b) (1.2)

We consider a merge operation ‘∧ ’ of two structures.  If both are records, this results in a record structure
composed of all entities in both structures.  Otherwise, if either is not a record structure, the merge treats this
structure as a single entity in the other structure, or, in a new record.  The merge operation, unlike sum, is not
defined over ℜ : that is, nil ∧  R is undefined.  The merge operation is introduced as a convenience to simplify
the ordering rules.

<a> ∧  R  ≤  <b> ∧  S  if  <a>  ≤  <b>  and  R  ≤  S (1.3)

Note that this is only a sufficient condition for a record structure to subsume another, not a necessary condition.

R  ≤  R ∧  [S] (1.4)

R ∧  S  ≤  R ∧  [S] (1.5)

That is, a structure R is subsumed by another structure that is composed of R and other optional entities.  A
structure that includes entities R and S is subsumed by another structure that is composed of entities R and [S].

Another method of combining structures is as alternatives within a same representation.  We use the symbol
‘∨ ’ to denote this operation: R ∨  S = <R | S>. Like the merge operation, this operation is not defined over ℜ :
that is, nil ∨  R is undefined.
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R  ≤  R ∨  S (1.6)

Each alternative in a representation is subsumed by the representation.

The second kind of ordering rules applies to the constructors that define relations.  We denote a constructor
relation C over entity R as C(R).  In general:

C(R)  ≤  C(S)  if and only if  R ≤ S (2.1)

That is, one structure subsumes a second if both constructors are of the same type and dimensionality, and the
entities of the first structure subsume the entities of the second.

The dimensionality of a constructor is the length of the resulting grouping.  This dimensionality is definite
for some constructors and indefinite for others.  For example, a quadrilateral may be defined by exactly four
points, a triangle by exactly three points, while a polygon may have a variable number of points.

(R)m  ≤  (R)n  if and only if  m ≤ n (2.2)

Thus, one array structure subsumes a second if the dimensionality of the first array constructor is greater than
the dimensionality of the second, and they both apply to the same entity.

In addition, some constructors may subsume others.  For example, a list structure subsumes an array
structure if they both apply to the same entity:

Carray(R) ≤ Clist(R) (2.3)

That is, every relation derived from an array can also be derived from a list, because the array length is fixed.
The reverse is not true.  [See, for example, the long line of research using lists to deal with sparse arrays [5].
We are, of course, not taking into account practical considerations of efficiency.]

Other rules, apart from those given, may be defined.  Subsumption relations form lattices.  Lattices are
transitive, reflexive and anti-symmetric [6], and have a long history in the theory of types (see, for example, [7]).

A simple example may be helpful in showing how these rules can be used to order representations.  Consider
three types of figures: a two dimensional polygon defined by n points, a triangle and a quadrilateral.
Furthermore, consider these polygons with, say, optional and mandatory cross-hatching.  The subsumption
lattice would be as shown in Figure 1.  The vertices of the quadrilateral and triangle are assumed to be
represented by arrays of fixed length, whilst that of the polygon by a variable length list.  The representation at
the top is the most general, in that it can represent every possible individual of the representations below it.  The
representations at the bottom are the most limited, not being able to depict conditions in the representations
above it.  If a general polygon involving three-dimensional coordinates was added, it would subsume polygon
(p1, … pn), based on Rules 2.1 and 2.2.  This assumes that the coordinate values are carried in an array.  If
coordinates are carried as named attributes in a vertex record, the same relation would only hold if explicitly
specified as such, for instance, 2D coordinates can be mapped to 3D coordinates with the third coordinate equal
to 0, e.g., <x, y> ≡eq <x, y, z = 0>.
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6    Regularized representations of solid models

Solid modeling representations are complex structures.  Some subsume others and some are equivalent to
others.  Generally, under a b-rep, a solid is represented by its boundary, i.e., a collection of (polygonal) faces.  A
face is represented by its boundary line segments or edges; an edge is defined by its endpoints or vertices.  Each
particular b-rep distinguishes itself depending on the characteristics of the representation.  For example,
representational elements, i.e., faces, edges and vertices, may be explicitly or implicitly defined and may be
uniquely defined.  It also depends on the degree of explicitness of the topological structure, the degree of
information redundancy, and the elements to which the geometry is attached.  Each particular representation
influences the domain of representable figures, that is, whether solids or faces may have holes, the degree of
manifoldness of the solids, and whether and how the representation allows for non-regular figures.

Each of the representations considered below is an example of one of the three types of boundary models
identified by Mäntylä [1]: edge-based, vertex-based, and face- or polygon-based.  The simplest of these is the
winged-edge representation [8] which is an example of an edge-based boundary model that is explicit in
representing all face, edge and vertex elements uniquely and is complete in the representation of the topological
structure.  In its original formulation it is limited to manifold and regular solids.  [Informally, a solid is regular if
it does not contain any “dangling” faces or edges, or isolated points.  Such a regular solid is manifold if it has no

Figure 1.  An exemplar subsumption lattice for polygons. 
The applications of the ordering relations are shown.

polygon (p1, … , pn) ∧  Η polygon (p1, … , pn)

polygon (p1, … , pn) ∧  [Η]

polygon (p1, … , p4) ∧  [Η]

polygon (p1, … , p3) ∧  [Η]polygon (p1, … , p4) ∧  Η polygon (p1, … , p4)

polygon (p1, … , p3) ∧  Η polygon (p1, … , p3)

Rule 2.2 Rule 1.5 Rule 1.4 Rule 2.2

Rule 1.5 Rule 1.4

Rule 2.2 Rule 2.2

Rule 1.5 Rule 1.4

Rule 2.2

Rule 2.2
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parts that touch at a line or point of contact, nor does it touch itself at a line or point of contact.]  Variations of
the representation extend to non-manifold solids such as the half-edge representation [1].  The winged-triangle
representation [9] is an example of a vertex-based boundary model for non-manifold, regular solids.  This
representation can be made canonical.  The maximal element representation [10, 11] is a canonical
representation that supports a polygon- or face-based model.  The topology is only implicitly represented in a
recursive declaration of solids in terms of faces, in turn, in terms of edges, in turn, in terms of vertices.  The
representation allows for non-regular shapes, yet, the shape operations are always regular within their
dimensionality.

6.1    Baumgart’s winged-edge representation  

The winged-edge polyhedron representation is an edge-based boundary model that explicitly represents each
face, edge and vertex element uniquely and is complete in the representation of the topological structure.  The
basic representational element is the edge.  Each edge has a direction and two bounding vertices assigned.  Each
edge forms a part of the boundary of exactly two faces.  From the direction of the edge and the notion of outside
versus inside of a solid with respect to a face (represented by the surface normal of a face), these two faces,
related to the specific edge, can be distinguished as clockwise and counterclockwise.  The edges that compose
the boundary of a face are linked in cyclical order such that for each edge, the next clockwise, next
counterclockwise, previous clockwise and previous counterclockwise edge can be determined.  A face is defined
by a single edge and its orientation with respect to this face.  The geometry is represented in the vertices.  The
condition of each edge belonging to exactly two faces limits this representation to only manifold solids.  In its

Representation Edge-based boundary representation

Elements Body, face, edge and vertex. These are all explicit and unique. The topology is 
attached to edges, and the geometry to vertices

Topology body: list of faces, edges and vertices
face: one of the edges on its perimeter
edge: an orientation, 2 bounding vertices, 2 adjacent faces, and 4 immediate 

neighboring edges clockwise and counter-clockwise about its face 
perimeters as seen from the exterior side of the surface. These links 
are consistently oriented with respect to the surface of the polyhedron 
such that the surface always has two sides: inside and outside.

vertex: one of the edges on its perimeter

Geometry face: an exterior pointing normal vector
vertex: 3D coordinates

Scope regular:  only regular 3D bodies
manifold:  each edge is adjacent to exactly two faces
connected surfaces: bodies with only a single shell
no faces with holes:  each face has a single loop of edges

Extensions Braid [12] allows for faces with holes.
Yamaguchi and Tokieda [13] specify a bridge-edge representation that
allows for faces with holes.

Table 2.  Winged-edge representation.
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minimal form the winged-edge representation does not allow for faces with holes.  Extensions to this
representation that allow for faces with holes are present in the literature [12, 13]. 

The winged-edge representation can be described as follows:

Rwinged-edge =  <(Rwe-body)>
Rwe-body =  <(Rwe-face), (Rwe-edge), (Rwe-vert)>
Rwe-face =  <Vnormal, Rwe-edge>
Rwe-edge =  <aorientation, (Rwe-vert)

2, (Rwe-face)
2, (Rwe-edge)

4>
Rwe-vert =  <Rvert, Rwe-edge>
Rvert =  <<x, y, z> ↔ <x, y, z, w>>

The winged-edge representation edge carries pointers to adjacent faces, edges and vertices.  Vertices have
back-pointers to an incident edge.  It also allows triangulation of edge rings, as required for certain display
operations.  

6.2    Mäntylä’s half-edge representation 

Like the winged-edge representation, the half-edge representation is an edge-based boundary model.  Each
edge is represented by two distinct edge halves.  Thus, the representational element is an edge-half.  Each half is
contained in only one face.  Each face has its own unique set of edge-halves.  The clockwise ordering of the
edge-halves around a face determines the orientation of the face.  Each edge-half has one and only one
orientation.  Each edge-half is ordered in the opposite orientation of its other half.  Both edge-halves are bound
by the same pair of vertices.  

nccw

v1

pcw

pccw

ncw

v2

fccw

fcw

e

Figure 2.  Winged-edge data structure.

cw eh

eh

ccw eh

other eh

vertex

Figure 3.  Half-edge data structure.
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The half-edge representation can be described as follows:

Rhalf-edge =  Rhe-solid
Rhe-solid =  <Rhe-face, Rhe-edge, Rhe-vert, (Rhe-solid)2>
Rhe-face =  <Eplane, (Rhe-loop)2, (Rhe-face)

2, Rhe-solid>
Rhe-loop =  <Rhe-edge-half, (Rhe-loop)2, Rhe-face>
Rhe-edge =  <(Rhe-edge-half)

2, (Rhe-edge)
2>

Rhe-edge-half =  <Rhe-vert, (Rhe-edge-half)
2, Rhe-loop, Rhe-edge>

Rhe-vert =  <Rvert, (Rhe-vert)
2, Rhe-edge-half>

The structures in the half-edge representation may not be apparent.  Solids, faces, loops, edges, edge-halves
and vertices are each contained in a doubly-linked list.  A solid references a face, edge and vertex from the
appropriate lists.  A face has a single outer loop and a reference into a list of inner loops.  Each face, loop, edge-
half and vertex points back to its parent solid, face, loop and edge-half, respectively.

The half-edge representation includes faces bounded by multiple loops.  It does not include nested shells.  It
can have derivations that triangulate each of its faces, as implemented in many graphical display algorithms
[14].  Thus, it can derive Paoluzzi’s winged-triangle representation, but does not subsume it (see below).

Representation Edge-based boundary representation

Elements Solid, face, loop, edge, edge-half and vertex. These are all explicit and unique. 
The topology is attached to edges, and the geometry to vertices (and faces)

Topology solid: the first element in the list of faces, edges and vertices
the previous and next solid in the list of solids

face: one outer boundary loop and a list of inner boundary loops
the previous and next face in the list of faces, the parent solid

loop: one of the edge-halves that form the boundary
the previous and next loop in the list of loops, the parent face

edge: two edge-halves
the previous and next edge in the list of edges

edge-half:  the starting vertex of the line segment in the direction of the loop
the previous and next edge-half in the list, the parent loop

vertex: the previous and next vertex in the list of vertices

Geometry face: equation of plane
vertex: 3D coordinates

Scope regular:  only regular 3D solids
connected surfaces: bodies with only a single shell
pseudo-manifold:  manifold representation of non-manifold solids.

Each edge has exactly two edge-halves part of two face boundaries; 
however, an edge may coincide with another edge or a face, and a 
vertex may coincide with another vertex, an edge or a face

Table 3.  Half-edge representation.
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The half-edge representation subsumes Baumgart’s winged-edge representation as described below.
Winged-edges are the aggregation into one record of two half edges.  It can also derive the vertex back-pointers
of the winged-edge.

Rwe-edge =  <aorientation, (Rwe-vert)
2, (Rwe-face)

2, (Rwe-edge)
4>

≤  <(Rhe-vert)
2, (Rhe-face)

2, (Rhe-edge)
4>

≡eq  <(Rhe-vert)
2, (Rhe-loop)2, (Rhe-edge)

4>
≡eq  <(Rhe-edge-half)

2, (Rhe-edge)
2>

=  Rhe-edge

Moreover, the half-edge representation can define faces made up of multiple loops of edges, which the
winged-edge structure cannot represent.  Thus, the subsumption ordering relation is one-way and the two
representations are not equivalent.

6.3    Paoluzzi’s winged-triangle representation  

The winged-triangle representation is an example of a vertex-based boundary model that explicitly and
uniquely represents triangular faces and vertex elements.  Edges are represented implicitly, as defined by
adjacent vertices.  The topological structure is only partially represented.  The basic representational element is
the triangular face.  Each face has two 3-tuples representing the adjacent faces and bounding vertices.  A shell is
composed of a (ordered) set of faces.  A polyhedron is canonically composed of a maximal number of shells,
such that non-manifold polyhedra are represented as manifolds with local non-manifoldness.  The face polygons

Representation Vertex-based boundary representation

Elements Polyhedron, shell, face, edge and vertex. All, except edges, are explicit and 
unique. Edges are implicitly defined. The topology is attached to faces, and 
the geometry to vertices

Topology polyhedron:  an (ordered) list of shells
shell: list of faces and vertices
face: 3 (ordered) bounding vertices

3 (ordered) adjacent faces

Geometry face: an exterior pointing normal vector
vertex: 3D coordinates

Scope regular:  only regular 3D polyhedra
pseudo-manifold:  (multi-shell) manifold representation of non-manifold 

polyhedra
unbounded:  infinite volumes with finite surface
linear polyhedra or linearized representations of curved surfaces

Remarks (possibly) canonical:
Polyhedron has maximal number of shells
Canonical re-triangulation of face polygons based on ordered vertices 
Ordered lists of shells, faces and vertices

Table 4.  Winged-triangle representation.
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are re-triangulated after each (Boolean) operation.  As such, the number of triangles is minimized, and a
canonical triangulation based on the ordered boundary vertices is possible.  The geometry is represented in the
vertices.  Faces contain exterior/interior information.  This allows for the representation of unbounded solids
(infinite volume) with bounded (finite) surface.  The triangulation only allows for linear polyhedra or linearized
approximations of polyhedra with curved surfaces.  

The winged-triangle representation can be represented abstractly as:

Rwinged-triangle  =  <(Rwt-polyhedron)>
Rwt-polyhedron=  <(Rwt-shell)>
Rwt-shell =  <(Rwt-face), (Rvert)>
Rwt-face =  <Vnormal, (Rvert)

3, (Rwt-face)
3>

The winged-triangle representation consists of multiple shells, each made up of a list of faces.  Each face is a
sequence of three vertices.  The Rwt-face may have derivations that include defining the polygonal boundaries of
coplanar adjacent triangular faces.  These face polygons may be matched to identify opposite matching edge
pairs, which may be defined with an additional record and point to the matching pair.  The resulting boundaries
may define faces that have multiple loops bounding them.  Loops adjacent to the same face may be matched and
put in the same face record.  These allow the derivation of the half-edge data structure:

Rwt-shell  =  <(Rwt-face), (Rvert)>  →  <((Rvert)
3)>  →  <(Rhe-face), (Rhe-edge), (Rvert)>  →  Rhe-solid

Therefore, Paoluzzi’s winged-triangle representation subsumes Mäntylä’s half-edge representation.  (The
derivations are presented in three steps for illustrative simplicity only.)

6.4    Krishnamurti and Stouffs’ maximal element representation 

The maximal element representation is an example of a polygon-based boundary model.  It is a canonical
representation in which the topology is mostly implicitly represented.  The basic representational element is the
face in the representation of a solid or volume segment, an edge in the representation of a face or plane segment
and a vertex in the representation of an edge or line segment.  That is, solids, faces, edges and vertices are
recursively defined by their boundary of a lower dimensionality and all elements can be part of a shape without
necessarily being part of the boundary of a shape.  That is, non-regular shapes can be represented; yet, the
operations on shapes are always regular within their dimensionality.  These operations of sum, difference,
intersection and symmetric difference define a generalized Boolean algebra (or Boolean ring) on shapes.  A
general solid consists of one or more disjoint (maximal) volume segments that share no faces but may share
edges and/or vertices.  Thus, solids may be non-manifold.  The boundary of a volume segment is composed of
one outer shell and zero, one or more inner shells, constituting holes in the solid.  Each shell is composed of a
set of (maximal) plane segments, canonically ordered according to the face equation.  Similarly, each plane

f

f1

f2
f3

v1
v2

v3

Figure 4.  Winged-triangle data structure.
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segment has a single outer boundary and zero, one or more inner boundaries of (maximal line segments).  A line
segment is defined by its two endpoints.  The geometry is represented in the vertices and partially duplicated in
the edge and face equations.

The maximal element representation can be described as follows:

Rmaximal-element  =  <(Rme-segment)>
Rme-segment =  <Rme-volume | Rme-plane | Rme-line | Rme-point>
Rme-volume =  <(Rme-shell)>
Rme-shell =  <(Rme-plane)>
Rme-plane =  <Eplane, (Rme-bound)>
Rme-bound =  <(Rme-line)>
Rme-line =  <Eline, (Rme-point)

2>
Rme-point =  <Rvert>

The algebraic approach can be extended to non-geometric and non-graphical information.  The maximal
element representation is fundamental to shape grammars.  Different grammar formalisms exist that include non-
geometric information such as color and line thicknesses.  Non-graphical information such as labels or other
types of weights can also be included.  A simple example is shown below:

Rme-point =  <Rvert, [Rweight]>

Representation Polygon-based boundary representation

Elements Volume segment, shell, plane segment, boundary, line segment and point
All are explicit, all are unique, except line segment and point
The topology is explicit top-down only; the geometry is attached to points 
(and line and plane segments)

Topology volume segment: ordered list of shells
shell: ordered list of plane segments
plane segment: ordered list of boundaries
boundary ordered list of line segments
line segment: two bounding points

Geometry plane segment: equation of plane
line segment: equation of line
point: 3D coordinates

Scope non-regular:  mixed-dimensional shapes as arrangements of volume, plane, 
line segments and points

intrinsically non-manifold
holes: multiple shells (boundaries) for a single volume (plane) segment, of 

which one outer and all other inner

Remarks canonical:
maximal volume, plane and line segments 
ordered lists of elements

Table 5.  Maximal element representation.



15

7    Subsumption lattice

The four representations taken together can be diagrammed by their subsumption ordering relations, as shown in
Figure 5.  The representations are classified abstractly, by the conditions each is able to represent.  It is
instructive to note that the subsumption lattice defined here differs from inheritance lattices used in object-
oriented languages and databases: entities with more attributes are higher in the lattice than those without the
attributes. 

The four representations, namely the winged-edge, half-edge, winged-triangle and maximal element
representations are respectively denoted by Rwe, Rhe, Rwt, and Rme.  The ordering is specified by the rules in
Table 6.  

As can be seen, the maximal element representation subsumes all the others, meaning that it can represent all
individuals of the other representations.  The winged-edge representation is the most limited and cannot
represent many conditions found in the other representations.  It is subsumed by all three representations.  The
winged-triangle representation subsumes the half-edge representation: they both allow for non-manifold solids

non-regular,
non-manifold

non-manifold with nested shells,
with faces bounded by multiple loops

2-manifold with a single shell,
with faces bounded by multiple loops

2-manifold with a single shell,
with faces bounded by a single loop

Figure 5.  The subsumption lattice for the four solid modeling representations.

Rme

Rwt, Rme

Rhe, Rwt, Rme

Rwe, Rhe, Rwt, Rme

2-manifold with nested shells,
with faces bounded by multiple loops

Rwt, Rme

non-manifold with a single shell,
with faces bounded by multiple loops

Rhe, Rwt, Rme
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and for faces with holes, but the winged-triangle representation also allows for nested shells, whereas a half-
edge solid is composed of a single shell.  The reason for this is that the half-edge representation does not have a
shell element.  However, the representation can easily be extended to include a shell element.  The resulting,
extended, half-edge representation is then equivalent to the winged-triangle representation.

8    Discussion

Exact translations can always be made from one representation to another that subsumes it.  That is, a
representation lower in the lattice can always translate its data into one above it, either directly or based on the
transitivity relation.  Notice that under restricted conditions, translations may be made from a more general
representation to one that it subsumes.  For example, a maximal shape that carries only a regular solid may be
translated, with no loss of information, to the half-edge; if it also is a 2-manifold and has only a single shell and
faces with single loops, to the winged-edge.  Predicate checking for these conditions can ascertain for a set of
objects to be translated, which ones can and cannot be translated without information loss.  Only exact
translations can be treated in this way.  Thus, the approximation of a B-spline surface with a facetted
(polygonal) surface cannot be directly dealt with using the concepts presented.

The rules of derivation in a representation are domain specific.  In the arc example, rules of geometry define
the derivations that can be applied.  Those derivations are the core of a translation process.  The extension of a
representation R is those derivations that are needed to generate another equivalent representation R'. The
process of translation then becomes the process of generating the base representation for representation R' by
regrouping the attributes in both the base and the derived sets of attributes in R.

The ordering of representations also addresses the generality and limitations of the various representations,
allowing them to be rigorously defined and compared.  The comparison is at the semantic or content level, with
no consideration given to other issues, such as performance.

Note

The work by Charles Eastman and Hisham Assal was partially supported by the National Science Foundation,
grant number IRI-9319982.  These authors benefitted from discussion with George Stiny.

subsumption rules explanation

Rwt  ≤  Rme rule 1.6 Rme includes non-regular geometries

Rhe  ≤  Rwt rules 2.2 and 2.3 Rwt allows for nested shells

Rwe  ≤  Rhe rules 2.2 and 2.3 Rhe includes non-manifold solids and 

allows multiple loops on faces

Table 6.  Subsumption relations between the four representations.
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