
Tessellating A Freeform Surface with Irregular Boundary
Conditions

Abstract
In this paper, we explore the surface tessellation problem, in particular, the problem of meshing a surface

with the added consideration of incorporating constructible building components. When a surface is

tessellated into discrete counterparts, there are certain conditions that usually occur at the boundary of the

surface, especially, when the surface is being trimmed, for example, irregularly shaped panels form at the

trimmed edges. To reduce the number of irregular panels that may form during the tessellation process,

this paper presents an algorithmic approach to optimize the surface tessellation by investigating irregular

boundary conditions. The objective of this approach is to provide an alternative way for freeform surface

manifestation from a well-structured discrete model of the given surface.

1. INTRODUCTION
There is increasing interest in exploring complex freeform shapes in contemporary architectural and design

practice. Frank Gehry [1] and Zaha Hadid [2] are prime examples of pioneering avant-garde designers who

have incorporated freeform shapes into their designs. The development of manifesting freeform designs

relies heavily on a core geometry, which is used from early conceptual form finding to final detailed

building assembly. Among the various techniques for freeform shape construction, a NURBS (Non-

Uniform Rational Basis Spline) surface is perhaps the most commonly exploited geometrical model—to

manifest a NURBS surface, a discrete mesh model is employed. The meshing process generates an

approximation of a given freeform geometry. In design practice, the modeling and subsequent, fabrication

of an intriguing, sometimes intricate, freeform shapes requires an extension of the meshing process to

include considerations of incorporating constructible building components. This is referred to as the surface

tessellation problem, which is the subject matter of this paper. There is a close relationship and analogy

between elements of a mesh and components of a freeform design, for example, faces associate with

panels, edges to structural frames, and so on.

1.1. Objective
The features of a given surface boundaries are essential for surface tessellation. For example, boundaries

(also called edges) delineate the appearance of a freeform shape, and indicate where surface analysis starts

and where it ends. Boundaries also identify whether a surface has been trimmed, that is, parts of the surface

have been removed. Trimming can occur in the interior, or exteriorly. When tessellating a surface into its

discrete counterparts, certain conditions usually emerge at the surface boundaries, which result from the

trimming operations, for example, the formation of irregularly shaped panels at the trimmed edges. This is

a commonly seen problem in freeform architectural designs, where, for instance, an opening for an entrance

has been introduced. By exploring the surface boundary conditions for tessellation-based patterns, we

present an algorithmic approach to generating boundary-driven meshes. Specifically, the quadrilateral

mesh is used to exemplify the approach applied to the formation of pattern-based freeform structures with

irregular boundary conditions. Our objective is to present a general algorithmic solution to discretizing

freeform surfaces with pattern-based elements, and to develop strategies for solving constraints from

irregular surface boundaries.

1.2. Background
In applying principles from computational geometry to the manifestation of freeform design there is

emphasis placed on meshing arbitrary surfaces into discrete building components. Each component is

procedurally constructed from a base polygonal pattern, typically, a triangle or quadrilateral [3].

There has been shift away from using triangles as the base pattern to approximate freeform shapes towards

using quadrilateral patterns, which is gaining increasing interest in both constructive geometry theory as

well as in architectural practice and research. For reasons of physical construction, it is often preferable to

convert a curvilinear surface into planar elements. There are published techniques for such conversions. For

example, Pottmann et al. [4] presents a fine-tuned approach to discretizing the freeform surface with planar

quadrilateral elements. However, the proposed process of providing a well-structured representative mesh

may not always be possible, and often requires manual remodeling of the original surface. This reverse-

engineering process relies heavily on the preparation of an initial coarse mesh and on how well this initial

mesh represents the target shape [5].

An alternative approach presented by Cutler and Whiting [6] looks at a re-meshing technique by iteratively

clustering neighboring mesh elements and fitting them onto the closest planes. Their result demonstrates an

algorithmic approach to post-restructuring an originally triangulated mesh into planar elements for

architectural fabrication. The bubble mesh [7] purports a physics-based algorithm to automate mesh

generation by simulating bubble packing. The strength of this algorithm lies in its ability to control size,

anisotropy and orientation of mesh formation. In one sense, these approaches explore how to restructure the

mesh elements by optimizing the constraints of interest such as planarity, sizing, etc. However, none

address the problem of formulating a well-structured mesh for freeform surface tessellation in a way that a

variety of pattern-based tessellations can be constructed and explored. The tessellation problem becomes

even more challenging as the complexity of boundary conditions grow as does the complexity of design

operations. Although the emphasis in this paper is in automating the meshing process (from an underlying

NURBS surface), we focus more on minimizing irregular regions that emerge from the given boundary

conditions. Our contention is that by examining boundary conditions of a target surface, a well-structured

mesh can be generated, and thus provide a coherent tessellation pattern for further freeform design.

2. SURFACE PANELIZATION
Panelization is the process of realizing a freeform surface by a collection of constructible components, in

particular, by face-based panels and supporting structures. In architectural applications, this process

describes how panels are utilized to construct designated freeform shapes. Here, each panel is procedurally

built from a given base polygonal shape that specifies a pattern of the local boundary representation. For

example, underlying a four-sided panel are four vertices that define the local boundary, namely, a

quadrilateral face.

Contemporary digital approaches to modeling panels are primarily based on isoparameters from the surface

domains, U and V. Isoparameterization is a process of mapping two-dimensional parameters, u and v, to a

three-dimensional manifold. Figure 1 demonstrates one such a mapping illustrating a sub-surface patch

formed by the intervals, [u4, u6) along U and [v2, v4) along V.

Figure 1: Mapping from a two-dimensional

UV parametric system onto a three-dimensional surface domain.

These approaches are both simple and efficient; at the same time, they are limiting. For instance,

isoparameters cannot control the size of sub-surface generation. Nor can the parameters distinguish

boundary conditions well, particularly at trim edges, which might affect both aesthetic appearance and final

manifestation. Normally, a uniform parametric interval is employed; this usually results in non-uniform

sub-surface generation. The size of each panel, in fact, is closely related to the initial control polygons.

Control polygons govern control points, which are used to interpolate ultimate surface presentation. If the

vertices of the control polygons are uniformly distributed, an equi-dimensional patch is more likely to be

generated. However, given the freedom with which control points can be modified in any modeling

environment, they rarely remain uniformly distributed once designers start to manipulate the meshing in

some arbitrary fashion.

There is no general way of dividing a surface into uniform sub-surfaces. Current tessellation applications

rely mainly on uniform isoparametric control. That is, patches are generated according to the isoparametric

domains. Figure 2 illustrates two possible segmentation schemes that generate vastly different sub-surface

patches with variations in size. The left side figure illustrates initial surface subdivision by uniform

isoparameters, with equal intervals along both the U and V domains. The right side figure illustrates an

attempt to equalize the actual size of each sub-surface patch. Using a different tessellation scheme, another

different exclusive mesh can be created. Yet, for architectural applications, if one takes into consideration

the machining of parts, equi-dimensional surface patches are the more practical.

Figure 2. Two types of surface subdivision.

Left: Uniform iso-parametric intervals. Right: Optimizing face sizes via equi-dimensional intervals.

To construct equi-dimensional sub-surface regions, one possible solution is to iteratively optimize cell sizes

until they reach a specified threshold. However, with the growing complexity of irregular boundary

conditions, the task of converting an arbitrarily trimmed surface into well-structured sub-surface regions is

challenging. Figure 3 showing the west façade of Zaha Hadid’s Next-Gene Museum in Taiwan [8]

illustrates this complexity. The figure illustrates boundary conditions formed by trimming the freeform

surface for various purposes, such as entrance, view, and skylight. Our hypothesis is that by taking the

boundary conditions into consideration, irregular-shaped panels at these trim edges can be removed, and a

coherent underlying tessellation scheme can be achieved.

Figure 3: Illustrating trimmed boundaries

(Image modified from the West façade of the Next-Gene Museum by Zaha Hadid, 2008 [8]).

In order to solve the problem of tessellating surfaces with irregular boundary conditions, we propose a

workflow based on an optimization process with the following three major stages (as shown in Figure 4).

The workflow depends on the formation of three boundary-driven components: BDTensor, BDCurve, and

BDMesh. The workflow is divided into the following three stages.

• Feature Selection: The first stage is to identify the featured boundaries from a given surface to be

meshed. This step retrieves both the existing and trimmed boundaries from the surface of interest.

• Mesh Construction: The meshing process initiates from a seed, a starting BDTensor node, within

the target surface domain. This can be supplied by user input, or stochastically picked from the

initial feature boundaries. Accordingly, a network of BDCurves are generated and sorted by

intersections. The last step in the second stage is to fit the mesh faces by iteratively traversing the

sorted curve network.

• Optimization: After the initial mesh has been constructed, a post-optimization process is executed

to optimize with the designated constraints. For example, a mesh-smoothing algorithm is

implemented to optimize the dimension of mesh edges through the constructed mesh topology.

Figure 4. Proposed workflow for boundary-driven mesh optimization

By default, all boundary curves of the given surface are considered for the optimization. However, specific

customized sources, such as partial curve(s) from the surface boundary, can also be specified. Further

details on how to incorporate single to multiple boundaries in the meshing process is discussed in Section

4.

2.1. Boundary-driven tensor
A boundary-driven tensor (BDTensor) is a weighted geometric entity that pertains to information on a

location of interest relative to the given surface. The output of a tensor node yields directional projections,

which are used to navigate the given surface domain. The Inverse Distance Weighting (IDW) method [9] is

adopted in interpolating the BDTensor by taking a given number of sampled values from the feature

boundaries. The equation for BDTensor interpolation is as follows:

T (u) = wi (u) ui
wi (u)i=0

N
!i=0

N
! (1)

wi (u) =
1

d(u,ui)
!
, 0 ! i ! N (2)

N is the number of source nodes in the interpolation; this could be potentially less than number of boundary

edges. u denotes the target node. Each wi is a weighting function. Each ui is a local interpolation node on

a feature boundary edge. d represents the distance function from a boundary node ui to the target node u. ρ

is the power parameter to smooth out the influence of the sampled boundary nodes.

Figure 5 illustrates a BDTensor P, which is interpolated using locally influential nodes, pA, pB, pC, and pD

on the feature boundaries, respectively E_A, E_B, E_C and E_D. Each node has vectors calculated in two

conjugate directions with associated weights. These directional vectors are remapped onto their local

reference coordinate system where the Z-axis is normal to the node location. After iteratively moving the

node toward its next location along the interpolated direction, a boundary-driven curve is constructed. Also

illustrated in Figure 5 is the difference between the underlying curve (derived from uniform iso-parameters)

and the interpolated curve (computed by local boundary influences). The iso-parametric curves are shown

shaded green using a dashed pattern. Boundary-driven curves are shown with arrows colored blue or red.

Figure 5: Conjugate curves derived from boundary-driven computations and underlying isoparametric grid.

2.2. Boundary-driven curve intersection
When boundary-driven curves (BDCurves) are created, they are grouped by origin, namely, by the

directions along which they were derived. As shown in Figure 6, there are three kinds of curves: the

original edge curve (shown shaded in green) and two directional curves in a conjugate relationship (shown

shaded in blue and red).

Figure 6: BDCurve generation and curve-curve intersection to construct boundary-driven mesh nodes.

For the constructed BDCurves, curve-to-curve intersections are evaluated. These intersections are used to

formalize the unsorted BDCurves through the formation of an interconnected network. In Figure 6 above,

ItP_X3Y2 is a mesh node created by intersecting BDCrv_X03 with BDCrv_Y02. Each mesh node in the

network is connected to its neighboring nodes in the parametric order on the curves to which they belong.

For instance, ItP_X3Y2 is connected to mesh nodes, ItP_X2Y2 and ItP_X4Y2, in their parametric order on

BDCrv_Y02, and is also connected to mesh nodes, ItP_X3Y3 and ItP_X3Y1, along BDCrv_X03.

The parametric order of each node along the associative curve is determined by its parameter, t, which is

often utilized for interpolating points on the governing curve domain. For practical reasons, the parametric

domain of a given curve is normalized; thus, the end points of a normalized curve have t = 0.0 and t = 1.0

respectively. In Figure 7, the graph node P1 (t = 0.3) has a predecessor node P0 (t = 0.2) and a successor

node P2 (t = 0.4) on Curve_01; likewise, P1 also maintains connectedness information to its predecessor

and successor nodes, P3 and P4, along Curve_02. These generated nodes in the network are not necessarily

the same as the sampled BDTensors created in the first step. Instead, they are remapped nodes on the curve

network, which governs the formation of the boundary-driven mesh (BDMesh). More detail on how these

sorted nodes are revisited to build the corresponding mesh edges and faces by the mesh topology solver is

given in Section 3.1.

Figure 7: Sorting intersecting nodes by their parametric order on the associative curve.

2.3. Meshing with the boundary-driven curve network
To optimize a target surface with discrete elements, we start from a representative curve network derived

from the feature boundary conditions. A mesh topology solver is then employed to construct the

corresponding mesh faces and edges from this interconnected curve network. The algorithm we propose

initiates a search by visiting sorted intersecting nodes in the network and consecutively determines the

shortest path between its current neighboring nodes to form corresponding faces. In a sense, an intersecting

node from the sorted curve network is regarded as a mesh vertex in the mesh topology. By examining the

topological connectives between intersecting nodes, mesh faces are constructed and therefore mesh edges.

Mesh topology solver

To create a mesh using the sorted curve network, a topology solver is employed to construct mesh face

from only local neighbor relationships. Figure 8 illustrates the topology solver. V4 is the origin of the

search, and it is connected to V1, V3, V7, and V5 in counter-clockwise order. (When mesh nodes are sorted,

their topological relations are also structured in a counterclockwise fashion along the normal direction).

The shortest path approach is adopted to fit a best-matched mesh face. For instance, to construct faces

connected to mesh node V4, the process examines potential paths connecting pairs of its neighboring nodes,

for example, [V7, V5]. The objective is to find the shortest path from V4 to V5 via V7. To create the mesh

face—F1, the algorithm searches depth first by looking at the connected neighbors of V7 and finds three

potential paths consisting of neighbors, V6, V10 and V8. By continuously advancing to their consecutive

nodes in the network, a shortest path of [V4, V7, V8, V5] can be found and nodes found at this path are then

utilized as the vertices for a new mesh face. This searching process terminates immediately when a valid

shortest path is found, for instance path of V4- V7- V8- V5, or, when a face element that shares the same

nodes in the initial search set already exists. By sweeping through all mesh nodes in the network, the initial

mesh is constructed. The pseudo-code for this process is given in Figure 9.

Figure 8: Fitting mesh faces by shortest path search.

1

2

3

4

5

/* Constructing the mesh topology by shortest path search on the sorted curve network */

MeshTopologyConstruction(Nodes)

for each sorted node, N, in the curve network:

 for each pair of connected nodes, [NStart, NEnd], of the current node (N):

 if P ß shortestPathExist (N, NStart, NEnd):

 then MFnew ß MeshFace (P)

 Update (MFnew) in the mesh topology

Figure 9: Pseudo-code for the mesh topology construction.

3. MESH REFINEMENT
For practical purposes, we choose the quadrilateral mesh as the exemplar to demonstrate the process of

mesh automation with boundary-driven optimization. Owing to the possible complexity of boundary

conditions associated with arbitrary surfaces, the preliminary boundary-driven mesh will be potentially

composed of triangles, quadrilaterals and other polygonal face elements. To ensure a quad-dominant mesh,

additional mesh refinement functions are required to remove skewed triangles, and to construct quad-

dominant faces from arbitrary polygonal faces. Lastly, a mesh-smoothing operator is introduced to relax

the constructed mesh topology. The conditions and procedures for refining the BDMesh elements to a well-

structured quad-dominant mesh are discussed below.

3.1. Removing skewed triangles
To control whether a triangular face is skewed for removal is specified by a threshold parameter, which is

calculated by the ratio of the smallest and largest interior angles of a triangle face. The threshold parameter

may also be set by user input. When the ratio is less than the specified value, the triangle is tagged for

removal. Figure 9 illustrates skewed triangle removal carried out by vertex replacement. The vertex with

the largest interior angle of the triangle is removed, and is replaced by its nearest vertex in the triangle. All

topological entities associated with this tagged vertex, such as edges and faces, are updated accordingly.

For instance, after replacing the vertex (colored in dark grey) by the existing vertex (shaded in light grey) in

the network, edges e1, e5 and face F1 are removed and a new edge, enew, is inserted to form the new mesh

face F’1.

Figure 10: Skewed triangle removal.

3.2. Mesh quadrangulation
When tessellating the given surface with the constructed curve network, polygonal face elements may be

produced at points where multiple boundaries meet. These polygonal faces are subdivided to convert the

initial mesh into a quad-dominant mesh containing only quadrilateral faces in the network. The subdivision

process is carried out by edge mid-point and face center vertex insertions. Figure 11 illustrates new

quadrilateral faces being formed by recursively connecting the center of an existing polygonal face to the

mid-point of the edges together with the original face vertices. A polygon with N edges will yield N

corresponding quadrilateral faces. This mechanism can be applied to any arbitrary polygonal shape.

Figure 11: Quad meshing by face center and edge midpoint insertion.

 Left: Quadrangulate a triangle face. Right: Quadrangulate a 5-sided polygon face.

3.3. Mesh Smoothing
The quality of the resulting quad-mesh can be improved by mesh smoothing, also called mesh relaxation.

We consider a Laplacian smoothing algorithm [10] with local vertex perturbation to ensure that the

smoothed result conforms to the original input surface. To start, we compute new vertex locations by a

finite difference approximation of the Laplace operator, which moves a mesh vertex toward the centroid of

the connected vertices. The equation for this is as follows:

Pnew =
1

n
!ii=0

n
! Pi (3)

where !i is the weighting factor for each connected mesh vertex.

As the initial BDCurve network is generated from the conjugate relationship, the connected vertices of a

BDMesh vertex will likely form a convex polyhedron. (Exceptions occur at vertices on the surface

boundaries). For interior vertices bounded by convex hulls, the new locations derived from centroids of

these polygons remain inside the original boundary. This property ensures homogeneous mesh generation

and maintains the original anisotropic configuration. However, for peripheral vertices on the original

surface boundaries, special treatment is needed. For example, vertices that are moved away (inside or

outside) the original boundaries will need to be adjusted so that the mesh stays as close as possible to the

original surface. Two cases of mesh vertex replacements are illustrated in Figure 12. Corner vertices belong

to the third scenario where they will not be modified in order to keep the original boundaries intact.

Figure 12: Mesh vertex replacement.

Left: Interior mesh vertex replaced by the centroid of a convex polyhedron.

Right: Boundary mesh vertex moved from the original boundary and then adjusted by vertex perturbation.

After smoothing the mesh vertices, local modulation of mesh vertex location is executed through vertex

perturbation. There are two types: vertex-to-edge and vertex-to-face perturbations. Vertex-to-edge

perturbation moves the mesh vertex back to the closest boundary (shown in the right side image in Figure

12). Likewise, vertex-to-face perturbs the vertex onto the input surface. By so perturbing mesh vertices

either to the nearest location on the boundaries or onto the surface, the refined BDMesh can represent the

given surface better. It also conforms to the given boundary conditions.

4. EXAMPLE: MESHING A TRIMMED SURFACE
We illustrate the algorithm presented above on a trimmed surface as the target surface for boundary-driven

mesh optimization. The left side image in Figure 13 shows the original untrimmed surface and the right

image delineates the relationships between the original surface and the trimming curves. The resulting

trimmed surface, as shown in the right side image of Figure 13, has new boundary edges formed by: (i)

original untrimmed edges (shown shaded in green); (ii) exterior trimming edges (shown shaded in red); and

(iii) interior trimming edges (shown shaded in blue).

Figure 13: The original (left) untrimmed and trimmed (right) surface.

By taking these boundary edges into consideration, a BDCurve network is first created, as shown in the left

image in Figure 14. The right image in Figure 14 illustrates the preliminary result of meshing the trimmed

surface with the constructed curve network (shown shaded red and blue lines in the left image of Figure

14). In Figure 15, two smoothed mesh results are given. On the left is the smoothed result of the

preliminary BDMesh, and on the right is a qaudrangulated result of the smoothed BDMesh.

Figure 14. Left: The conjugate curve network. Right: Preliminary BDMesh.

Figure 15: Mesh smoothing.

Left: Smothed BDMesh. Right: Smoothed Quadrangulated BDMesh.

From single to multiple boundary consideration

Given a tessellation scheme that caters to the inherent boundary conditions, we examine the influences of

the complex boundary conditions incrementally. In this experiment, we remodeled the west façade of Zaha

Hadid’s Next-Gene Museum in Taiwan to demonstrate the potential use of the technique in a real

architectural application. The constructive procedure is initiated from a partial cone surface and then a

series of trimming operations are applied to form the targeted freeform surface. In Figure 16, there are a

total of six curves utilized for the trimming operations; the resulting surface has the new boundary formed

by the partial trimming curves and original boundary edges.

In Figure 17, a series of trimming operations coupled with the corresponding BDMesh results are

illustrated. The BDMesh results are displayed in counter-clockwise order, starting from the top-left corner

to the top-right corner. As shown in steps 4, 5 and 6 in Figure 17, irregular regions start to emerge where

multiple boundaries meet and thus polygon face elements, such as pentagons, are generated at these

regions. These polygonal elements are later refined as quad-dominant elements.

Figure 16: Applying trimming operations on a partial cone surface for the experiment.

Figure 17: The variations of BDMesh results from single to multiple boundary conditions.

The optimized boundary-driven mesh for the west façade of the Next-Gene Museum is shown in Figure 18.

Figure 18: Optimized BDMesh for the west façade of the Next-Gene Museum.

5. DISCUSSIONS AND CONCLUSIONS
Customizing and controlling tessellation schemes for arbitrary surfaces is of interest to the field of

computational geometry and to the architecture community. Conventionally, tessellating a surface is often

limited to iso-parameterization. In this paper, we have presented an approach to automating mesh

generation from a given surface with irregular boundary conditions. Our objective is to provide a distinct

approach to surface tessellation and render a well-structured discretized model for further freeform surface

application.

At first glance, the UV-based curve network (the left image of Figure 19) is in appearance similar to the

boundary-driven curve network (the right image of Figure 19). However, they are very different in their

formation. The former is interpolated solely from the underlying iso-parameters, the latter is computed

from inherent boundary conditions. In a sense, the boundary-driven curve network conforms to the inherent

surface boundary conditions more strictly than the UV-based curve network. This property ensures a well-

configured framework for the tessellation pattern, particularly, at the boundary edges.

Figure 19. Left: Curve networks. Right: UV-based Boundary-driven.

Although our approach looks at the entire boundary condition as the whole to optimize the tessellation

result, it is also possible to specify customized sources to explore varied surface tessellation pattern

generations. Figure 20 demonstrates an example of utilizing an additional curve on the surface as the input

for BDMesh construction. The image on the left side of Figure 20 shows an additional curve (shown

shaded in red) on the given surface domain. The right image illustrates the constructed BDCurve network

derived from this customized source.

Figure 20. Left: Customized input source for surface tessellation. Right: curve network derived from it.

In summary, the capability of supplying customized sources for tessellation offers flexibility to designers to

explore potential pattern generations. The paper highlights an algorithmic approach of how boundary

conditions can be examined for tessellation pattern generation. These boundary constraints can be retrieved

from the underlying surface boundary edges, or can be additionally customized by user input. To make this

approach amendable for real design exploration, user control, from single to multiple boundary sources,

need to be further specified.

As both discussed in Wang [3] and Pottmann [4], the tessellated pattern is seminal for freeform surface

applications and plays an important role in the constructive procedures. Also, the development from a base

tessellation pattern to real architectural manifestation can be treated as a remeshing process, which

subdivides and reconfigure an initial discretized model as finer elements with added physical

considerations. We claim that a well-structured model, which coheres to inherent boundary conditions, will

guarantee success for surface development.

We plan, for future work, to explore other surface tessellation examples to ensure robustness of our

approach. We are considering using Archimedean patterns [11] as exemplars to demonstrate the potential

of subdivision applications for customizable surface tessellation.

References

1. Linsey, B., Digital Gehry, Birkhäuser, Basel, 2001.

2. Jodidio, P., Zaha Hadid: Complete Works, 1979-2009, Rizzoli, 2009.

3. Wang, T.-H., Procedural Reconstruction of NURBS Surfaces for Architectural Exploration, in:

Proceedings of the 14th International Conference on Computer-Aided Architectural Design

Research in Asia, Yulin, Taiwan, 2009, 597-606.

4. Pottmann, H., Schiftner A. and Wallner J., Geometry of Architectural Freeform Structures, in:

International Mathematical News (Internationale Mathema- tische Nachrichten) 209, 2008, 15–28.

5. Pottmann, H., Asperl A., Hofer M., and Kilian A., Architectural Geometry, Bentley Institute

Press, Exton, 2007.

6. Cutler, B. and Whiting E., Constrained Planar Remeshing for Architecture, in: Proceedings of

Graphics Interface 2007, ACM, New York, USA, 2007, 11-18.

7. Shimada, K. and D. C. Gossard (1995). Bubble Mesh: Automated Triangular Meshing of Non-

Manifold Geometry by Sphere Packing, in: Proceedings of ACM Third Symposium on Solid

Modeling and Applications, ACM, Salt Lake City, UT, USA, 1995, 409-419.

8. Hadid, Z., Schematic Design Report for Next-Gene Architecture Museum, Graduate Institute of

Architecture, National Chiao-Tung University, Taiwan, Hsinchu, 2008.

9. Shepard, D., A two-dimensional interpolation function for irregularly-spaced data, in: Proceedings

of the 1968 ACM National Conference, ACM, New York, USA, 1968, 517-524.

10. Herrmann R. L., Laplacian-Isoparametric Grid Generation Scheme, Journal of the Engineering

Mechanics Division, 102(5): 1976, 749-907.

11. Akleman, E., Srinivasan V. and Mandal E., Remeshing schemes for semi-regular tilings, in:

Proceedings of The International Conference on Shape Modeling and Applications, IEEE

Computer Society Washington, DC, USA, 2005, 44-50.

