
THE DEFINITIVE, PEER-REVIEWED AND EDITED VERSION OF THIS ARTICLE WILL APPEAR IN:
Yue K, Krishnamurti R, Forthcoming, "Developing a tractable shape grammars" Environment and Planning B: Planning
and Design, vol. 42, 2015

Developing a tractable shape grammar

Ramesh Krishnamurti (1)

ramesh@cmu.edu, Carnegie Mellon University, Pittsburgh, PA 15213-3890

Kui Yue

kuiyue@microsoft.com, Microsoft, Redmond, WA 98052

Abstract

Previously, we examined tractable parametric shape grammars (Yue and Krishnamurti,

2013), and developed a general paradigm for implementing classes of such grammars

(Yue and Krishnamurti, 2014). A tractable shape grammar has polynomial computing

complexity, and is specified in a way that is readily transformable to a computer program.

By contrast, traditionally, shape grammars have been typically developed without a

computer implementation in mind, either requiring ambiguity to be clarified, or it is

hardly possible for the grammar to be implemented by a polynomial algorithm. Each

tractable shape grammar is tied to a particular framework, which is backed by a data

structure and supports a meta-language. In this paper, we illustrate the development of

tractable shape grammars by transforming a shape grammar developed, essentially, in

traditional fashion for the Baltimore Rowhouse (Hayward 1981; Hayward and Belfoure,

2005). The development is for a specific application context, namely, to determine the

interior layout of a building given its external features; and the process serves as a general

strategy for developing tractable shape grammars.

Keywords: shape grammars, implementation, Baltimore rowhouse

(1) Author for correspondences

Developing a tractable shape grammar

 -2-

1 Introduction

Tractable shape grammars have polynomial time and language space complexity (Yue

and Krishnamurti, 2013). Grammars exhibit a variety of characteristics thereby rendering

impossible a single uniform shape grammar interpreter. Instead, a strategy for

implementing tractable shape grammars has been advocated, in which the grammar is

specified within a specific representational framework (Yue and Krishnamurti, 2014).

Each framework has its own underlying data structure, a set of basic manipulation

algorithms, and a meta-language for describing shape rules. In that paper, three distinct

frameworks were considered: rectangular, for grammars that are primarily directed at

generating plans; polygonal, for designs essentially determined by subdivision; and

graph, for shapes specified by topological relationships. Other frameworks are possible.

This paper completes the sequence, in which we consider the development of a simple

but exemplar tractable shape grammar, namely, for the Baltimore Rowhouse on the

rectangular framework.

The development proceeds in the following manner. Firstly, shape rules that focus

on capturing the style of the Baltimore Rowhouse are developed. Secondly, the shape

rules are recast in terms of the chosen implementation framework, incorporating

knowledge about constraints into the rules so that the entire grammar is tractable.

Thirdly, the implementation of the interpreter is outlined.

2 Creating a shape grammar

The process has three steps: identifying a set of patterns that most succinctly constitutes

the objects; formalizing the patterns as a set of shape rules; and organizing the shape rules

so that the grammar generates as many valid designs as possible while producing as few

invalid design as possible.

Developing a tractable shape grammar

 -3-

We look to real examples in order to find patterns within a set of designed objects.

However, it should be noted that examples alone do not suffice; factors that motivate the

designs must be considered. Such information helps to identify a minimal set of patterns

that characterizes the design process. Patterns that have been so identified translate into

shape rules.

The goal is to employ as few rules as possible to create as many valid designs as

possible while keeping the rules as simple as possible. The criteria by which one

establishes how well a grammar meets this goal is subjective, although it is typically not

hard to identify the better solution from among possible candidates. At present, one

cannot always determine a priori whether a grammar correctly generates all valid objects

of a type; likewise, one cannot always determine a priori whether a grammar creates valid

design objects. As a result, one generally evaluates the validity of a shape grammar

through trial and error: applying every possible sequence of rules to the initial shape. In

reality, the number of configurations generated by a sufficiently powerful grammar is so

large that one cannot test every possible design. It is instructive to note the parallels and

agreement between the above observations and the well-known fact that parsing a

configuration against a shape grammar is computationally unsolvable in general (Gips,

1975; Stiny, 1975).

3 The Baltimore Rowhouse

The rowhouse became the dominant house type in Baltimore after its adoption in the

eighteenth century (Hayward and Belfoure, 2005). Earlier rowhouses were found in other

American cities like Boston, Philadelphia, New York, Richmond, and St. Louis; but few

are like those in Baltimore in that the spirit and identity of the city are closely tied to this

particular architectural form, whence the name—the Baltimore Rowhouse. The rowhouse

Developing a tractable shape grammar

 -4-

had been persistently and tirelessly developed across two centuries, blossoming with

prosperity prior to World War II, suffering from discrimination of postwar planners, and

their recent redemption as humanely scaled housing. The two-story, three-bay house was

an English invention in the beginning, plain in design without useless ornamentation,

representing an efficient development policy that proved viable over decades of use. This

house form had been modified across time to meet the needs of different population

groups of the city. Those for the wealthy were architect-designed; those for everyone else

were built on speculation and, for the most part, designed by the builders themselves. To

attract customers, and to make their product stand out among the thousands of rowhouses

available, builders kept up with the latest styles, making modifications to cornice designs,

window treatments, and the brick façade itself, adding bay windows, peaked roofs, stick-

style porches, and carved or modeled embellishments. Across two centuries, the

rowhouse history of Baltimore involves both changes and lack of changes; the changes

relate to the development of the city, and the lack of changes forms the style of the

Baltimore Rowhouse. Figure 1 shows the photographic images of rowhouses from the

Federal Hill district of Baltimore.

There are two main resources used to develop the rowhouse grammar: the article

Urban Vernacular Architecture in Nineteenth-Century Baltimore by Hayward (1981) as

the primary source providing detailed information about rowhouse morphology; and the

monograph The Baltimore Rowhouse by Hayward and Belfoure (2005) as a secondary

source providing more detailed discussion of the cultural factors that have influenced the

morphology. We focus on the first floor configuration based on the information available

although the mechanism can apply to developing the grammar for the other floors.

Developing a tractable shape grammar

 -5-

(a) 1-11 East Montgomery Street

(1 is on the right)

(b) 202-208 East Montgomery Street

(c) 815-829 South Charles Street

(815 is on the left)
(d) 3-25 East Wheeling Street

Figure 1 Photographic images of Baltimore rowhouses (Source: Kui Yue)

 Abstract shape representation 3.1.

To identify patterns in the rowhouses, we employ a specific shape representation, which

is essentially an abstracted form of the actual plan. See Figure 2. The representation

emphasizes topological information, e.g., relationship between spaces, rather than details

Developing a tractable shape grammar

 -6-

(a) 821 S Charles Street (b) 43 E Hamburg Street (c) 21 E Wheeling Street

(d) 1028 Patapasco Street (e) 401 Grindall Street (f) 1029 S Hanover Street

Figure 2 Sample shape representation for the Baltimore Rowhouse

Developing a tractable shape grammar

 -7-

(g) 208 E Montgomery Street (h) 236 E Montgomery Street (i) 14 W Cross Street

(j) 819 S Charles Street (k) 3 E Montogomery Street

Figure 2 (continued)

Developing a tractable shape grammar

 -8-

of the building itself. Spaces are simplified for clarity while certain building features,

e.g., wall thickness, are eliminated from consideration. The representation emphasizes

topological information, e.g., relationship between spaces, rather than details of the

building itself. Spaces are simplified for clarity while certain building features, e.g., wall

thickness, are eliminated from consideration. Pertinent exterior features are represented

through graphic icons: a window is represented by a circle; a door, by a hollow rectangle;

a fireplace as a solid rectangle; and a staircase as a solid grey area. Interior features, such

as doorways between rooms, are shown as dashed lines. For the purposes of this paper,

other interior features are not incorporated.

 Variation in interior configuration 3.2.

Hayward (1981) suggests that the Baltimore Rowhouse show little morphological

variation. The lack of significant variation is clearly visible when comparing the three

buildings in Figure 2a~c. The building in Figure 2a, located at 821 South Charles Street,

constructed in 1818, is of the ‘two-and-a-half-story federal style.’ The building in Figure

2b, located at 43 East Hamburg Street, constructed in 1838, is of a later variation of the

federal style. The building in Figure 2c, located at 21 East Wheeling Street, constructed

in 1850, is of the ‘two-story-plus-attic Greek revival style.’

Although these three buildings were constructed decades apart, and nominally, of

distinct styles, each follows the same basic plan. This is not to suggest that the rowhouse

shows no variation. Rather, the variations are fairly uniform and follow well-defined

patterns. At least five major variations across the entire corpus can be identified:

i) Rowhouses are divided into two blocks: a main block toward the street and a kitchen

block toward the rear (Figure 3). The two blocks may be directly adjacent to one another,

as diagrammed in (a) or they may connect to one another through a short corridor, as

diagrammed in (b).

Developing a tractable shape grammar

 -9-

a. b.

Figure 3 Block configurations

ii) The main block of a rowhouse is two or three bays wide. A bay, in this context, is

defined by a single window or door on the front façade. See Figure 4. In a two-bay-wide

house, as diagrammed in (a), the front door enters directly into a parlor. In a three-bay-

wide house, as diagrammed in (b), the front door enters into a hallway, which is directly

adjacent to a parlor.

a. b.

Figure 4 Width configuration

iii) The main block of a rowhouse is either one or two rooms deep. See Figure 5. In a

two-room-deep main block, as diagrammed in (a), the front room is a parlor and the back

room is a dining room. In a one-room-deep main block, as diagrammed in (b), the parlor

may serve as a dining room.

Developing a tractable shape grammar

 -10-

a. b.

Figure 5 Depth configuration

iv) The main staircase exists in an assortment of locations within a rowhouse. These are

diagrammed in Figure 6: in the parlor toward the back of the house; in the dining room

toward the front of the house; between the dining and parlor; in the hallway occupying its

entire width; in the hallway toward the outer side of the house; and in the kitchen block

toward the front of the house.

Figure 6 Stair configurations

v) Rowhouses follow an assortment of story and basement configurations: two full

stories, but no attic or dormer story; two full stories and a dormer story; two full stories

and an attic; with a full basement partially underground; with a full basement entirely

underground; and with no basement.

 Identified patterns 3.3.

0 shows the patterns that were identified. Of the different patterns visible within a

rowhouse, stairs present the most intriguing set of combinations. In general, stairs exist

in a distinct space that can take one of two forms, a literal room, separated

Developing a tractable shape grammar

 -11-

Pattern Illustration in Figure 2

Style
Federal
Greek Revival
Italianate

a, b, j, k
c, g
e, f, h

Division between main block and kitchen block
Front and back portions connected by mutual wall – more common
Front and back portions connected by a corridor – less common
Isolated front portion – relatively rare

a~f, i~k
g, h

Overall width
Two bays width – more common
Three bays width – less common

a~e, g, i, j
f, h, k

Entryway configuration
Enter into parlor – all two-bay-wide houses follow this pattern
Enter into dedicated hallway that runs full depth of front block
Enter into dedicated hallway that runs partial depth of front block

a~e, g, i, j
h, k
f

Location of dedicated dining room
In main block – more common
In kitchen block – less common

a~f
g, h

Depth of front portion
One space deep –parlor (g,h) or combined parlor dining room (i-k)
Two spaces deep –parlor and dining room
Three spaces deep –parlor, dedicated stair, and dining room

g, h, i~k
a~c
d~f

Stair location
In the front division

On the other side of the front entrance
Between the separate parlor and dining room
Within combined parlor dining room, toward the back
Within separate dining room, toward the front

On the same side of the front entrance
In the hallway

In the back division
Within the kitchen, toward the front

In the connection between front and back
On the same side as the front entrance

d~f
i
a~c

k

j

g, h

Stair shape
U-shaped
L-shaped
Straight, bound by a wall on one side

a~f, i
g, h, j
k

Above-ground floor variations
Two stories
Two full stories and a ‘half’ dormer storey
Two full stories and an attic
Three stories

d, e
a, b, j, k
c, i
g, h

Figure 7 Patterns in the Baltimore Rowhouse

Developing a tractable shape grammar

 -12-

from other rooms by walls, or in a ‘phenomenal’ room, which exists within a literal room

and is defined by the stair itself. Within the representations illustrated in Figure 2, the

boundaries of phenomenal rooms are designated by dotted lines.

 The Baltimore Rowhouse grammar (2) 3.4.

The Rowhouse grammar comprises 52 shape rules that generate first floor configurations

with features of stairs, fireplaces, windows, exterior doors and interior doors. The shape

rules are given in the Appendix. It should be noted that the shape grammar description

contained therein is nonstandard. There is redundancy in the grammar. For this we make

no apologies, as our ultimate objective is the implementation of a grammar as a

generative device, more so, than for its value as an explanatory device. The derivation for

236 East Montgomery Street is shown in Figure 8.

Figure 8 Derivation of 236 East Montgomery Street by the rowhouse grammar

4 A tractable rowhouse grammar

A shape grammar is not tractable without explicitly quantifying conditions on parameters.

Quantification eliminates the kind of ambiguity necessary for implementation. Even

when shape rules are well quantified, shape recognition may be computationally

(2) The Baltimore Rowhouse grammar described in this paper is derived from a version developed by Casey

Hickerson, a member of the AutoPILOT project team.

Developing a tractable shape grammar

 -13-

intractable. The sub-frameworks (Yue and Krishnamurti, 2014) offer a way of ensuring

tractability of the grammar. As with any traditional shape grammar the focus here is on

generating all possible designs without necessarily fully specifying all conditions under

which shape rules apply. This is particularly evident when shape grammars are applied in

specific situations. Desired features posit constraints over possible designs; this further

posits constraints on which shape rules apply when comparing the conditions on the

shape rules against the constraints on a current configuration.

A tractable encoding of the rowhouse grammar enables effective and efficient use of

the grammar. To distinguish, the original and tractable versions of the grammar are

respectively referred to as the old and new rowhouse grammar. In making the old

grammar new, for ease, we consider only a subset of the corpus, namely, working-class

rowhouses, in the process excluding large luxurious rowhouses, which were included in

the original old grammar. Unlike their luxurious counterparts a working-class rowhouse

usually has a unique staircase on the first floor (Hayward, 1981). All rowhouses in

Figure 1 fall into this category.

 An application context 4.1.

The shape grammar interpreter was originally developed for a specific problem context

(Yue, 2009), namely, to determine the interior layout of a building given three pieces of

information: i) the footprint and number of stories of a building; ii) a reasonably complete

set of exterior features, e.g., windows, chimneys and surrounding buildings; and iii) a

shape grammar, which describes the building style. Clearly, the implementation of a

grammar interpreter is essential to solving this problem. For the remainder of this paper

we consider the grammar interpreter in the context of this problem.

For the specific problem context, not all rules were needed and thus, were not

encoded, although the general approach itself does not preclude any rule. The features

Developing a tractable shape grammar

 -14-

that are assumed given a priori such as windows and exterior doors dictate which rules

are relevant. Thus, shape rules to generate windows and exterior doors are not needed and

hence, were not considered. For convenience, as the mechanism to generate a fireplace is

essentially identical to that of generating an interior door or staircase, tractable fireplace

rules are omitted. The new tractable shape grammar is constrained to the allowable

transformations, which for the grammar are translation, horizontal reflection, and a

combination of the two. Shape rule application is sequential.

 New tractable shape grammar for the Baltimore Rowhouse 4.2.

The encoded new tractable shape grammar is based on the rectangular framework (Yue

and Krishnamurti, 2014) and comprises five phases: block generation: rules (1∼4); space

generation: rules (5∼10); stair generation: rules (11∼16); space modification: rules

(17∼20); and interior door generation: rules (21∼26). We describe the rule encodings for

each phase.

Initial Shape

Figure 9 shows two possible initial shapes (3) that lead to either a two-block or three-block

rowhouse design. A set of input dimensions describes the basic building footprint, which

is given as a list of rectangular blocks. All lines are aligned to the X- or Y-directions. The

line at the bottom corresponds to the front of the building.

(3) From pre-processing the feature input. See Section 5 for more details.

Developing a tractable shape grammar

 -15-

Figure 9 Initial shapes

Block Generation

Rules 1 and 2 assign names to the front, back, and middle blocks. createRoom is a meta-

language function within the rectangular framework (Yue and Krishnamurti, 2014).

// Rule 1
if (numOfBlocks() == 2) {

createRoom(rect = getBackBlock(), name = ‘Rbs’)
createRoom(rect = getFrontBlock(), name = ‘Rfs’)

 }

// Rule 2
if (numOfBlocks() == 3) {

createRoom(rect = getBackBlock(), name = ’Rbs’)
createRoom(rect = getMidBlock(), name = ’Hm’)
createRoom(rect = getFrontBlock(), name = ’Rfs’)

}

Figure 10 Naming the blocks: rules 1 and 2

Rowhouse blocks are either left- or right- aligned, which is captured by the Boolean,

isRightAligned. Likewise, the front door being to the right is captured by the Boolean,

isFrontDoorRight.	
 	
 These attributes are set by rules 3 and 4 respectively.

Developing a tractable shape grammar

 -16-

// Rule 3
rbs = getRoom(‘Rbs’)
rfs = getRoom(‘Rfs’)

if (rbs.cornerLR.X == rfs.cornerLR.X) { isRightAligned = true }

// Rule 4
rfs = getRoom(‘Rfs’)
front = getDoor(‘frontDoor’)

if (| rfs.cornerLL.X - front.cornerLL.X | >
 | rfs.cornerLR.X - front.cornerLR.X |) { isFrontDoorRight = true }

Figure 11 Right aligning rowhouse blocks: rules 3 and 4

Space Generation

The front block is divided into two public rooms as shown in rules 5 and 6. Additionally,

if block depth permits (≥ 29'-4"), a staircase area is introduced (rule 5).

// Rule 5: d ≥ 29'-4''
if (numOfBlocks() == 2 && getRoom(‘Rfs’).depth ≥ 29'-4'') {

rfs.verSplit (name=’Rfb’, depth = *, name=’SfS’, depth = 6',
 name=’Rff’, depth = *)

}

// Rule 6: 17'-4' ≤ d < 29'-4''
if (numOfBlocks() == 2 && (17'-4'' ≤ getRoom(‘Rfs’), depth < 29'-4'')) {

rfs.verSplit (name=’Rfb’, depth = *, name=’Rff’, depth = *)
}

Figure 12 Creating public rooms in the front in a 2-block layout: rules 5 and 6

Likewise, in a three-block design, the front or back block is divided into two rooms

depending on which has more depth. That is, combined depth of the subdivided room is

always larger than undivided room. These are captured by rules 7 and 8.

Developing a tractable shape grammar

 -17-

// Rule 7: d1 > d2
if (numOfRooms() == 3 &&

 getRoom(‘Rbs’).depth > getRoom(‘Rfs’).depth) {
rbs.verSplit (name=’Rbb’, depth =*, name=’Rbf’, depth =*)

}

// Rule 8: d1 < d2
if (numOfRooms() == 3 &&
 getRoom(‘Rbs’).depth < getRoom(‘Rfs’).depth) {

rbs.verSplit (name=’Rfb’, depth =*, name=’Rff’, depth =*)
}

Figure 13 Creating public rooms in a 3-block layout: rules 7 and 8

Rules 9 and 10 add a hallway centered about the front door provided the front block is 3-

bays wide and the front space has not yet been divided.

// Rule 9
if (numberOfBays() == 3 && roomExists(‘Rfs’)) {

rfs = getRoom(‘Rfs’)
w = hallwayWidth(getDoor(‘frontDoor’), rfs)
rfs.horSplit (name=’rfs’, width=*, name=’Hf’, width=w)

 }

// Rule 10
if (numberOfBays() == 3 && roomExists(‘Rfs’)) {

rooms = getRoomsBetween(‘Rfb’, ‘Rff’)
w = hallwayWidth(getDoor(‘frontDoor’), getRoom(‘Rfs’))
foreach (room in rooms) {

room.horSplit(name=room.getName, width=*,
 name=’tmp’, width=w)
hf.merge(getRoom(‘tmp))

}
hf.name(‘Hf’)

}

Figure 14 Adding a hallway centered about the front door: rules 9 and 10

It is instructive to note that the shape rules of the new shape grammar quantitatively

specify the conditions that apply to the configuration or to the rule. Some conditions are

Developing a tractable shape grammar

 -18-

straightforward, for example, the number of spaces in terms of blocks (rules 1 and 2), a

value in a specific range (rules 5 and 6), and a relationship of two or more values (rules 7

and 8). Others require not only reasoning based on common design knowledge, but also

certain threshold values, statistically determined. The following illustrates the

complexity, using as exemplars, the rules for generating staircases.

Staircase Generation

Figure 15 gives the staircase generation rules (11~16). The rules are not necessarily

mutually exclusive. For example, for layouts with room Rfs and Rbs, where no exclusive

condition has been specified as to when to apply each rule, both rules 11 and 16 are

applicable. Since we are considering only the working-class rowhouse, each has a single

staircase on its first floor. Therefore, for each layout, just one of the shape rules for

generating staircases applies and only once.

If there is a staircase room labeled SfS, then rule 12 applies. As a result, an implicit

condition for Rule 11, 13, 14, 15, and 16 is that the current layout has no staircase room

labeled SfS.

Rule 14 adds a staircase to a hallway. Obviously, the hallway needs to be wide

enough to hold the staircase, hence the width of the front block. From the samples (see

Figure 16), 18 ft is a good threshold value to distinguish whether or not rule 14 can apply.

To ensure the exclusive application of rule 14, an implicit condition for rules 11, 13, 15

and 16 is that the width of the front block is smaller or equal to 18 ft.

// Rule 11
if (not stairExists() && roomExists(‘Rfs’) &&

 roomNotExist([‘SfS’,‘Rfb’, Hm’]) && getFrontBlock().width ≤ 18' &&
 getKitchenArea() ≤ 130) {

room (‘Rfs’).addStaircase (position=’crossFrontDoor’,
width=4, depth=6, getFrontDoor())

stairFront = true
}

Developing a tractable shape grammar

 -19-

// Rule 12
if (not stairExists() && not roomExists(‘SfS’) &&
 roomExists(‘Rfb’) && getFrontBlock().width ≤ 18') {

room(‘Rfb’).addStaircase(position = ’bottom&crossFrontDoor’,
width = 6, depth = 4, getFrontDoor())

stairFront = true
}

// Rule 13
if (not stairExists() && not roomExists(‘SfS’) &&
 roomExists(‘Rfb’) && getFrontBlock().width ≤ 18') {

room(‘Rfb’).addStaircase(position = ’bottom&crossFrontDoor’,
width = 6, depth = 4, getFrontDoor())

stairFront = true
}

// Rule 14
if (not stairExists() && roomExists(‘Hf’) &&
 not roomExists(‘SfS’) && getFrontBlock().width > 18') {

room(‘Hf’).addStaircase(position = ’nextToExterior’,
width = room(‘Hf’).width/2)

stairFront = true
}

// Rule 15
if (not stairExists() && roomExists(‘Hm’) &&
 roomsNotExist([‘SfS’, ‘Rfb’]) && getFrontBlock().width ≤ 18') {

room(‘Hm’).addStaircase(position = ’straightSide’,
depth = room(‘Hm’).depth)

stairMiddle=true
}

// Rule 16
if (not stairExists() && roomExists(‘Rbs’) &&
 roomsNotExist([‘SfS’, ‘Rfb’, ‘Rfb’]) && getFrontBlock().width ≤ 18'
 && getKitchenArea() > 130) {

room(‘Rbs’).addStaircase(position = ’bottom&crossFrontDoor’,
width = 4, depth = 6, getFrontDoor())

stairBack= true
}

Figure 15 Staircase generation rules 11~16

Developing a tractable shape grammar

 -20-

Figure 16 Quantifying the shape rules generating staircases

For rules 11, 13, 15, and 16, if there is an Rfb room in the layout, then rule 13 should

be applied to add a staircase there. Accordingly, an implicit condition for rule 11, 15 and

16 is that there is no Rfb room. For rules 11, 15, and 16, if there is a middle block Hm,

rule 15 should be applied to add a staircase in the middle block. Thus, an implicit

condition for rules 11 and 16 is that there is no Hm room.

It remains to distinguish between rules 11 and 16. The implicit conditions added by

rules 12, 13, 14, and 15 can be summarized as: if there are only a Rfs room (the front

block) and a Rbs room (the black block) in the current layout, then possibly rules 11 and

16 can be applied. Rule 16 adds a staircase to an Rbs room, which is actually a kitchen.

Therefore, the kitchen space has to be large enough to hold a staircase as well as function

as a kitchen.

In the sample available, only one uses rule 11 and one uses rule 16. Because of this,

the related statistical data for all samples is computed as a reference: the average area of

kitchens without a staircase is 127.7 ft2, the minimum is 92.8 ft2, and the maximum is

Developing a tractable shape grammar

 -21-

185.4 ft2. The area of a staircase is about 26~30 ft2. The kitchen area of the case that uses

rule 11 is 94.4 ft2, and the kitchen area of the case that uses rule 16 is 165.5 ft2. The

average of these two cases is about 130 ft2, which is close to the average of kitchens

without staircases. So, 130 ft2 is used as the threshold value. As a result, an added

condition for rule 16 is that the area of kitchen is greater than 130 ft2. An additional

condition for rule 11 is that the area of the kitchen is smaller or equal to 130 ft2. Figure 17

gives a summary of implicit conditions to make rules for generating staircases exclusive.

 Rule 12 Rule 14 Rule 13 Rule 15 Rule 11 Rule 16

Rule 12 With ‘SfS’ No ‘SfS’ No ‘SfS’ No ‘SfS’ No ‘SfS’ No ‘SfS’

Rule 14
 Front block

width > 18'
Front block
width ≤ 18'

Front block
width ≤ 18'

Front block
width ≤ 18'

Front block
width ≤ 18'

Rule 13 With ‘Rfb’ No ‘Rfb’ No ‘Rfb’ No ‘Rfb’

Rule 15 With ‘Hm’ No ‘Hm’ No ‘Hm’

Rule 16 Kitchen ≤ 130 ft2 Kitchen > 130 ft2

Figure 17 Implicit conditions to make staircase rules exclusive

Space Modification

These rules create openings. Rules 17 and 18 open shared walls between the staircase

area and neighboring rooms, respectively the front hallway or public rooms in the front,

in which case there is no hallway sharing a wall with the stair area. Rules 19 and 20

create an opening between the front hallway and the middle or back blocks.

Developing a tractable shape grammar

 -22-

// Rule 17
if (roomsExist([‘Hf’, ‘SfS’]) && areNeighbors(‘Hf’, ‘SfS’)) {

openSharedWall(‘Hf’, ‘SfS’)
}

// Rule 18
if (roomsExist([‘Hfb’, ‘Hfs’, ‘SfS’]) && not roomExists(‘Hf’)) {

room(‘SfS’).createOpening(
position = ’northWall&crossFrontDoor’, getFrontDoor())

room(‘SfS’).createOpening(
position = ’southWall&crossFrontDoor’, getFrontDoor())

}

// Rule 19
if (roomsExist([‘Hf’, ‘Hm’])) {

openSharedWall(‘Hf’, ‘Hm’)
}

// Rule 20
if (roomsExist([‘Hf’, ‘Rfb’]) && not areNeighbors(‘Hf’, ‘Hm’) &&
 not areNeighbors(‘Hf’, ‘Rb*’)) {

openSharedWall(‘Hf’, ‘Rfb’)
}

Figure 18 Space modification rules

Interior Door Generation

Rule 21 adds doors to the front and back of the hallway in the middle block. Implicitly,

this hallway must exist and its shared walls are nonempty, that is, without doors. This is

implied by the Boolean attribute ‘connected’, the value of which is returned by the ‘get’

function. Implicit with the connected’ attribute is the fact that when true the shared wall

is non-empty and has a door. Additionally, the wall must be at least 3' wide in order to

insert a doorway. The remaining rules introduce openings in a shared wall between two

disconnected areas. Wall length of at least 3' is implicitly guaranteed. Rule 26 has two

variants one of which considers the situation when there is a staircase in the hallway,

which affects the placement of the door.

Developing a tractable shape grammar

 -23-

// Rule 21
if (not get(‘connected’) && roomExists(‘Hm’)) {

a = sharedWall(‘Hm’, ‘Rf*’)
b = sharedWall(‘Hm’, ‘Rb*’)
if (a.type() ≠ EMPTY && a.length() ≥ 3') { a.addMidDoor() }
if (b.type() ≠ EMPTY && b.length() ≥ 3') { b.addMidDoor() }

}

// Rule 22
if (not get(‘connected’) && not roomExists(‘Hm’) &&
 (not roomExists(‘Hf’) || (roomExists(‘Hf’) &&
 not areNeighbors(‘Hf’, ‘Rb*’))) {

sharedWall(‘Rb*’,‘Rf*’).addSideDoor(position= ’frontDoorSide’,
getFrontDoor())

 }

// Rule 23
if (not get(‘connected’) && roomsExist([‘Rff’, ‘Rfb’]) &&
 areNeighbor(‘Rfb’, ‘Rff’)) {

sharedWall(‘Rfb’, ‘Rff’).addMidDoor()
}

// rule 24
if (not get(‘connected’) && roomExists(‘Hf’)) {

sharedWall(‘Hf’, ‘Rf*).addMidDoor()
}

// Rule 25
if (not get(‘connected’) && roomsExist([‘Rbf’, ‘Rbb’]) {

sharedWall(‘Rbf’, ‘Rbb’).addMidDoor()
}

// Rule 26
if (not get(‘connected’) && roomsExist([‘Rb*’, ‘Hf’]) {

sharedWall(‘Rb*’, ‘Hf’).addDoor()
}

Figure 19 Interior door insertion rules

Figure 20 shows the same derivation as Figure 8 using the rules of the new rowhouse

grammar.

Developing a tractable shape grammar

 -24-

Figure 20 Derivation of 236 East Montgomery Street by the new rowhouse grammar

5 Implementation

A computer implementation of a shape grammar essentially enumerates all possible

designs in the language of the grammar. This enumeration, alternatively, the derivation

structure of the shape grammar, can be viewed as a tree structure. Valid designs

correspond to specific nodes of the tree. Such nodes are mostly leaf nodes, although

certain internal nodes may correspond to possible designs—an internal node usually

corresponds to a design of a smaller size perhaps with unresolved labels or markers,

whilst a leaf node represents a finished design.

Closer examination of the rules indicates that, as a pure shape grammar, there are

parameters that would need to be set, typically, at the start. Note that the initial shape

corresponds to one of two kinds. For example, in the case of the problem of determining

the layout from footprint, this is specified by the feature input. That is, the depth and

width of the initial shape are parameters that are feature or user specified. Moreover,

there are block generation rules to indicate whether designs are two- or three-blocks deep.

When the rules are applied exhaustively, a shape grammar generates, as a tree, the entire

layout space for the building style. See Figure 21.

Developing a tractable shape grammar

 -25-

Figure 21 The layout tree of the Baltimore Rowhouse grammar

The depth and width dimensions and block type are part of the input—whether

feature or user supplied—and therefore, are considered as constraints. For layout

determination, in order to estimate an interior layout, we have to establish the connection

between the design space of the grammar and input features so that designs consistent

with the input features can be ‘picked out’. The approach begins with an initial layout

estimate based on the constraints given by the input. Spatial and topological constraints

from this estimate are then employed to prune the layout tree, and ‘fix’ possible open

terms in the current configuration. The layouts that remain correspond to possible

required layouts.

The initial shape is a shape from the pre-processing of the features input instead of a

point on a two-dimensional Cartesian coordinate system as implied by the grammar—in

particular, it is a basic footprint with or without augmentation by windows and doors. To

be exact, the initial shape contains a list of rectangular blocks, as well as bounds on

Developing a tractable shape grammar

 -26-

windows and doors. Such an initial shape helps avoid the complexity of pruning and

fixing the underlying layout tree. In the sequel, tree pruning and initial layout estimation

are discussed. The building input features for the Baltimore Rowhouse used in the

description below were taken directly from existing drawings in (Hayward, 1981).

 Space subdivision tree and the Baltimore Rowhouse 5.1.

After applying the shape rules for several steps from the initial shape, the layout must be

one of two shaded nodes or a horizontal reflection of the two shown in Figure 21. On the

other hand, we can achieve the same results by decomposing the input into rectangles

using space subdivision. See Figure 22.

Figure 22 Space subdivision tree for the Baltimore Rowhouse

Developing a tractable shape grammar

 -27-

The first floor is typically decomposed into two or three rectangular blocks: a block

containing a parlor towards the front, a block containing a kitchen towards the rear, and

an optional, smaller central block that connects the two. In a three-block rowhouse, the

central block contains a pantry or a stair, while the front and rear blocks are divided into

one or two rooms. The kitchen is always the rear-most space while the parlor is the front-

most space. The dining room usually appears in the front block behind the parlor or in the

rear block forward of the kitchen. The two cases can be distinguished by comparing the

depths of the front (d2) and rear (d1) blocks.

Two-block rowhouses are more involved. Depending on the depth (d) of the front

block, it can contain a single room, or be divided into a parlor and dining room possibly

separated by a staircase. If the front block comprises two rooms, the staircase can occupy

an enclosed space or it can be open to one or both rooms. If the front block comprises a

single room, the staircase may have multiple possible arrangements. These configurations

are too complicated to be handled by the decision tree, which needs further refinement by

using shape rules.

Regardless of whether the layout has two or three blocks, the front door enters into

the front-most room or a dedicated hallway. This is determined from the width (w) and

area (s) of the front-most room. Layout determination is a process of ‘picking up’ nodes

from the layout tree that are consistent with input features. Pickup is typically achieved

by tree pruning—eliminating nodes inconsistent with certain constraints with the

remainder being the desired results. That is, variables (aka parameters) in the

intermediate configurations have to be ‘fixed’ to match the input features at a certain

stage. Parameters can be fixed at this step, and the desired layouts are then obtained

simply by continued application of the shape rules. For the new tractable version, the

grammar is designed to start from the rectangular decomposition of the footprint input so

Developing a tractable shape grammar

 -28-

that the parameter-fixing step is automatically handled. This situation illustrates the trade-

off between pure shape rule application and the practicalities of problem solving.

 Layout generation for the Baltimore Rowhouse 5.2.

Layout generation is carried out in a single step. That is, layout generation becomes,

simply, rule application on layouts resulting from the initial estimated layout. Figure 23

shows the screenshot of the computer implementation. On top, the left-side window

shows a list of Baltimore rowhouses from a database, and the right-side window shows

the shape rules. At the bottom, from left to right, the first window shows the tree structure

of shape rule application. There is always at least one path in this window. By selecting

an entry in the tree structure, the corresponding shape rule applied is highlighted in the

shape rule window. The second, third and fourth windows respectively show the true

layout, generated layout, and feature input. The rightmost window provides a three-

dimensional view by extruding the two-dimensional generated layout using default

values.

Figure 23 Screenshot of layout determination of the Baltimore Rowhouse

Developing a tractable shape grammar

 -29-

Figure 24 shows sample results from the layout determination for the Baltimore

Rowhouse. For each rowhouse, two layouts are shown: on the left is the ground truth, the

other, the generated layout. Additionally a rendered 3D model of the generated layout is

given along with the derivation sequence. The efficacy of the approach is indicated by

how nearly identical to the actual layout the generated layout is.

⇒ 1 ⇒ 4 ⇒ 14 ⇒ 24 ⇒ 26 ⇒

3 East Montgomery Street

⇒ 2 ⇒ 4 ⇒ 7 ⇒ 9 ⇒15 ⇒ 21 ⇒ 25 ⇒

208 East Montgomery Street

⇒ 2 ⇒ 4 ⇒ 7 ⇒ 9 ⇒15 ⇒ 20 ⇒ 21 ⇒ 24 ⇒ 25 ⇒

236 East Montgomery Street

⇒ 2 ⇒ 4 ⇒ 7 ⇒ 9 ⇒12 ⇒ 17 ⇒ 19 ⇒ 22 ⇒ 24 ⇒

1029 South Hanover Street

Figure 24 Layout results for the Baltimore Rowhouse

(Shown in order of ground truth, generated layout, and 3d model)

Developing a tractable shape grammar

 -30-

The layouts shown in Figures Figure 23 and Figure 24 all employ the following

terminating labeling rules: Hm → Entry, Hf → Hallway, Rfs → Parlor, Rff → Parlor,

Rfb → Dining, Rbf → Dining, Rbs → Kitchen, Rbb → Kitchen and SfS → Stair.

6 Discussion

 We have described a strategy for developing and implementing a tractable shape

grammar, based on the fact that the derivation of the language space of a shape grammar

can be represented as a tree structure. Admittedly, the grammar is relatively simple, the

rules conditioned by pragmatic considerations, and is context driven. Nonetheless, the

implementation is based upon a framework, which comprises a data structure, underlying

manipulation algorithms and a meta-language for specifying shape rules. Each

framework offers a uniform approach to developing interpreters for a class of tractable

shape grammars. In this paper, we have illustrated an implementation over the

rectangular framework by developing a simple shape grammar for the Baltimore

Rowhouse, and then encoding the rules so that the grammar is amenable to

implementation.

In general it is neither essential to develop a completely new grammar nor does the

grammar description have to be in the nonstandard form employed in this paper.

Likewise, flexibility of the rules is not an essential for a grammar interpreter; that

depends upon the nature of the application. On the other hand it is possible to take an

existing and flexible shape grammar in standard description, for example, the Queen

Anne grammar (Flemming, 1987), make it tractable, ready for implementation.

The Queen Anne House

Prior to developing the Rowhouse grammar, we tested the framework on the Queen

Anne House. Our analysis, implementation and experimentation were limited to the

Developing a tractable shape grammar

 -31-

layout rules, namely, the first fifteen rules in Flemming (1987: Figures 4, 7 and 10). For

reasons of tractability, Queen Anne shape rules may require additional constraints to be

specified so that different possibilities are clarified.

For example, in Figure 25, Rule 2, shown on top, is applicable to shapes (a) and (b).

The application of the rule to shape (a) produces a reasonable layout, whereas to shape

(b) might produce too small a room. In general, although dimensions are not important in

implementing the Queen Anne grammar; yet, in order to eliminate such cases, pertinent

understanding of dimension is essential. Rule 2 applies directly to shape (b) without

transformation whereas it does so to shape (a) only under a 90º clockwise rotation, or

equivalently, under a 90º counterclockwise rotation of the configuration (Kui and

Krishnamurti, 2014). As the analysis illustrates, in both cases, label B is in a north-west

westerly direction from the hall room node H; likewise, label X (B or F) is in a north-east

easterly direction from H, which is captured in the meta-language description.

Another example is in the interpretation of Rule 8 shown in Figure 26(a). It would

appear that two rooms have to partially overlap in order for this rule to apply. However,

from the sample layouts shown in (Flemming, 1987), it is clear that the rule as shown in

Figure 26(b) is also applicable. Other Queen Anne rules are similarly decompacted and

implementation simply focuses on the task of coding.

Developing a tractable shape grammar

 -32-

// Rule 2: meta-language description
If ((layout.getStatusMarker().isType ('R')) && (layout.existsRoomNodes ('H') == true))
{

foreach (allowableTransformations)
{

roomH = curLayout.getRoomNodes ('H');
if (lookForMarkerAtCornerAndExtension (roomH, NORTH_WEST, WEST, 'B') &&
 lookForMarkerAtCornerAndExtension (roomH, NORTH_EAST, EAST, 'X') &&
 anySideOfNewRoomGreaterOrEqual(hallWayWidth)) {

subDivideTheHallWay ();
}

}
}

Figure 25 Shape rule 2 (Flemming, 1987: Figure 4)—application, analysis and meta-

language description

Developing a tractable shape grammar

 -33-

// Rule 8: meta-language description
if ((layout.getStatusMarker().isType ('K')) && (layout.existsRoomNodes ('K') == true))
{

roomK = curLayout.getRoomNodes ('K');
foreach (allowableTransformations)
{

roomR =
roomK.getNeighborNode(SOUTH_EAST).getNeighborNode(NORTH).getNeighborNode(SOUTH_EAST);
if ((roomR != null) && roomR.isType('R'))
{

roomR.setMarkerName ('D');
curLayout.getStatusMarker().setMarkerName ('S');

}
}

}

Figure 26 Interpretation of shape rule 8 (Flemming, 1987: Figure 7)

The interface of the grammar implementation is shown in Figure 27. The top-left

panel shows the layout tree generated by applying all the shape rules. The top-right panel

is for layout display. When entries in the top-left panel are selected, the corresponding

layout is displayed. The bottom panel is the status bar. Above the status bar is the rule

panel, displaying the rules for the Queen Anne grammar. When an entry of the layout tree

is selected, the current applicable shape rules are highlighted. When a rule is selected a

larger display of the rule is shown. In this implementation, a total of 506 unique possible

layouts were generated.

Developing a tractable shape grammar

 -34-

Figure 27 Screenshot of Queen Anne House grammar implementation

The work on Queen Anne Houses is reported in (Yue et al, 2012) albeit the main

emphasis of that paper was in exploring artificial intelligence and constraint satisfaction

techniques in order to estimate an initial interior layout for actual Queen Anne Houses in

Pittsburgh, Pennsylvania based on their exterior features, less so on the details of a

grammar implementation.

The successful implementation of Queen Anne rules provided a confident base upon

which we set out to develop a tractable shape grammar for the Baltimore Rowhouse. The

mainly restrictive less flexible nature of the rules is conditioned by the application

context and the rowhouses themselves. Nonetheless, without taking advantage of any

specific characteristic of a grammar and its language, the implementation structure is the

same for both the Baltimore Rowhouse and Queen Anne grammars, indeed, for any

grammar based on the rectangular framework—the essential difference lies in the

encoding of the shape rules.

Developing a tractable shape grammar

 -35-

Acknowledgement

This research was supported in part by a grant from US Army Corps of Engineers,

Engineer Research and Development Center – Champaign, IL. Any opinions, findings,

conclusions or recommendations presented in this paper are those of the authors and do

not necessarily reflect the views of CERL.

References

Flemming U (1987) “More than the sum of parts: the grammar of Queen Anne houses”

Environment and Planning B: Planning and Design, 14, 323-350

Gips J, 1974 Shape Grammars and Their Uses PhD dissertation, Computer Science

Department, Stanford University, Stanford, California

Hayward ME (1981) “Urban Vernacular Architecture in Nineteenth-Century Baltimore”

Winterthur Porfolio, 16, 33-63

Hayward ME and Belfoure C (2005) The Baltimore Rowhouse, Princeton Architectural

Press, New York

Yue K (2009) Computation-Friendly Shape Grammars: With Application to Determining

the Interior Layout of Buildings from Image Data, PhD Thesis, Architecture,

Carnegie Mellon University, September.

Yue K and Krishnamurti R (2013) “Tractable shape grammars” Environment and

Planning B: Planning and Design, 40(4), 576-594

Yue K and Krishnamurti R (2014) “A paradigm for interpreting tractable shape

grammars” Environment and Planning B: Planning and Design, 41(1), 110-137

Developing a tractable shape grammar

 -36-

Yue K, Krishnamurti R and Grobler F (2012) “Estimating the Interior Layout of

Buildings Using a Shape Grammar to Capture Building Style” Journal of

Computing in Civil Engineering, 26(1), 113-130

Stiny G, 1975 Pictorial and formal aspects of shape and shape grammars and aesthetic

systems PhD dissertation, System Science, University of California, Los Angeles,

CA

Appendix: The Baltimore Rowhouse Grammar

The shape rules for the Baltimore Rowhouse Grammar are organized into eight phases,

progressing from major configurations that constrain the design process to minor

configurations that follow logically from other configurations, namely: Block generation

rules (1~4); Space generation rules (5~7); Stair generation (rules 8~17); Fireplace

generation rules (18~22); Space modification: rules (23~24); Front door and window

generation rules (25~29); Middle and back door and window generation rules (30~39);

and Interior door generation rules (40~52). See Figure 28.

Rule description is nonstandard. Rules are marked as either required (req) or optional

(opt). Required rules are applied wherever applicable whilst optional rules are applied at

the interpreter’s discretion. The decision whether to apply an optional rule directly

impacts the overall design—in effect, the final design is determined by the set of optional

rules that were applied. Whenever a rule is applied, it is applied exhaustively; that is, the

rule is applied to every subshape that matches the rule’s left-hand-shape. Moreover, rules

are applied in sequence: only after Rule n has been applied exhaustively, can Rules n+1

and greater be applied.

Developing a tractable shape grammar

 -37-

Labels are used in two ways: to control where shape rules may apply, and to ensure

that mutually exclusive rules cannot be applied to the same design. Spaces and stairs are

labeled with two or three characters that indicate the general location of the space or stair

within the house. For instance, Rfb indicates a room in the front block of the house that is

oriented toward the back, a dining room. Walls are labeled using expressions of the form

x(y) where x is a label for a space that the wall bounds and y is a one letter code

indicating the side of the space the wall defines, namely, f(ront), b(ack), l(eft) and r(ight).

For example, the front wall of the room labeled Rfb is labeled Rfb(f). Shared walls have

multiple labels. Given a space, its wall labels can be easily reconstructed. Wall labels are

omitted in the description except when needed or assigned, for example, perimeter walls,

which are identified by the letter P.

Within some rules, variables are used to match more than one label: the character *

matches any string of characters while the string {x | y} matches the strings x or y.

Boolean global labels are used to ensure that mutually exclusive rules are not applied

with default value false.

Rule 18 ensures that there is at least one fireplace in the front block. Rule 22 ensures

that there is always a fireplace in the back block.

Lastly, we note that rule 46 is applicable only when the front hallway contains a full-

width stair and when the front block contains a separate service stair.

Developing a tractable shape grammar

 -38-

1. Generate the front block 2. Mirror the front block 3. Generate the back block

4. Generate the middle block 5. Generate a hallway in the front block 6. Generate two spaces in the front block

7. Generate two spaces in the back block 8. Generate stair at the back wall of a single-

spaced front block
9. Generate stair between the two spaces of
a double-spaced front block

10. Modify the stair generated by Rule 9 if it
runs the entire house width

11. Generate partial-width stair in the front
hallway

12. Generate full-width stair in the front
hallway

13. Generate stair in the middle block 14. Generate stair at the front of a single-

spaced back block
15. Generate partial-width stair between
two spaces of a double-spaced back block

Figure 28 Baltimore Rowhouse Grammar

Developing a tractable shape grammar

 -39-

16. Generate full-width stair between the
spaces of a double-spaced back block

17. Generate accessory stair on the back wall of
the back room of a back block

18. Generate required front-block fireplaces

19. Generate optional front-block fireplaces 20. Generate back-block fireplaces 21. Generate back-block fireplaces on the

back wall

22. Generate back-block fireplaces on a side
wall

23. Modify the back room of a front block if the
front hallway does not adjoin the middle or back
block

24. Generate a service stair behind a partial-
width stair in the front hallway

25. Generate a hall way in the front of the back
block, removing the fireplace

26. Generate the exterior door into front hallway
of a three-bay configuration

27. Generate an entry vestibule in the front
hallway of a three-bay configuration

28. Generate the front windows of a three-bay
configuration

29. Generate the front door and window for a
two-bay configuration

30. Generate a window on the back wall of the
front block

31. Add a second window on the back wall of
the front block

32. Generate a window into the back block
spaces

33. Add a second window in the back-block
spaces

Developing a tractable shape grammar

 -40-

34. Add a third window in the back-block
spaces

35. Generate an exterior door into the
middle block

36. Generate an exterior door on the side
wall of the back-most space when there is a
stair on the back wall

37. Generate an exterior door on the ‘right’
side of a back wall

38. Generate an exterior door on the ‘left’
side of a back wall

39. Generate an exterior door in a back block
with partial-width stair

40. Generate interior doors connecting the
front, middle and back blocks

41. Generate an interior door between the
front hallway and back block when there is
no middle block

42. Generate an interior door between the
front and back blocks when there is a stair on
the front wall of the back block

43. Generate a left-side interior door
between the front and back blocks when
there is no middle block nor front hallway

44. Generate a right-side interior door
between front and back blocks when there
is neither a middle block nor front hallway

45. Generate an interior door between the
front and back spaces in the front block

46. Generate interior doors between a front
space and front hallways when them front
block contains two divided hallways

47. Generate asymmetric interior doors
between hallway and spaces in front block

48. Generate symmetric interior doors
between hallway and spaces in front block

49. Generate interior doors when the back
block has a hallway

50. Generate an interior door between the
front and back spaces in the back block

51. Generate interior doors between front,
middle and back spaces in the back block

52. Generate an interior door between
adjacent front hallways (after Rule 46)

