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Computer implementation of shape grammars has been of interest for some considerable 
time. Although there have been implementations of grammar interpreters for two dimensional 
shapes (Gips, 1975; Krishnamurti, 1982; Krishnamurti and Giraud, 1986; Chase, 1989; Tapia, 
1996; 1999; McCormack and Cagan, 2002), none have been implemented for three 
dimensional shapes apart from the few that are restricted to certain kinds of shapes 
(Piazzalunga and Fitzhorn, 1998), or based on representations that do not readily provide for 
‘emergent’ or unanticipated subshape relationships (Longenecker and Fitzhorn, 1991; 
Heisserman, 1991; 1994), or were developed for specific purposes (see for example, 
Flemming, 1987; Agarwal and Cagan, 1998). The technical machinery required for shape 
grammar implementations is given in (Krishnamurti, 1992a, on maximal representations of 
shapes; Krishnamurti, 1992b, on shape arithmetic in U23; Krishnamurti and Earl, 1992, on 
shape recognition in U13; Krishnamurti and Stouffs, 1993; 1997 respectively on shape 
recognition in U23, and in the cartesian product U0 × U1 × U2 × U3). The notation Uij refers to 
linear shapes made up of i-dimensional elements in j-dimensional Euclidean space, and Ui is 
shorthand when the dimensionality of the space is known (Stiny, 1991). In this paper, we 
consolidate this body of work by presenting a unified foundation for arithmetic in any shape 
algebra. Much of the material presented here was originally developed in Stouffs’ doctoral 
dissertation (1994). In a related work, Earl (1997) has investigated the description of shapes 
and their boundaries from closure structures. 
Algebraically, shapes have the structure of a Boolean ring (Arnold, 1962). For a shape 
algebra Σ, Σ ≡ (Σ, 0, ≤, (+, ⋅, –, ⊕)), the least element 0 is the empty shape, ≤ is the part or 
subshape relation and +, ⋅, – and ⊕ are the following operations: for any shapes x and y, sum 
x + y is their least upper bound, product x ⋅ y is their greatest lower bound, difference x – y is 
the least shape z that solves the equation x = z + x ⋅ y, and symmetric difference x ⊕ y is the 
shape given by (x – y) + (y – x) = x + y – x ⋅ y. 
For any shape to be a subshape of another, every spatial part of the first shape is part of the 
second. See Stiny (1986) who has written extensively on this notion. The terms ‘part’ and 
‘subshape’ are synonymous, and occasionally, used interchangeably. Generally, when a shape 
is given or is otherwise known, and is used in context of the subshape relation with respect to 



another shape, we will say that the given shape is ‘part’ of the other shape. Disjoint shapes 
have no parts in common – that is, an empty product – and a shape x can always be 
partitioned relative to any other shape y into disjoint shapes: x = (x – y) + x ⋅ y. 
Stiny (1991; 1992) has examined specific models of shape algebras, namely, U, V and 
weighted algebras W defined for linear shapes in a Euclidean geometry. We consider shape 
algebras in which shapes are collections of spatial elements of limited but nonzero measure. 
We say that a shape is of the same type as its elements. For example, line shapes are 
collections of finite lines; plane shapes are collections of finite planes; solids are collections 
of finite volumes; curved shapes of a given type are collections of finite curves of the same 
type. A shape from a cartesian product of shapes has the ‘compound’ type of its constituent 
shape types. The element type acts as a filter for distinguishing categories of shapes. 
Additionally, an element is specified by its ‘form’, which is described by a shape. For 
example, the form of a finite line is defined by its pair of (end) points, the form of a finite 
rectilinear plane is defined by one or more polygonal line shapes and so on. The shape that 
describes the form of an element is necessarily of a different type, typically, that of a shape of 
a lower dimensional type. 
A spatial element is thus specified by two shapes: a carrier, c(x), and a boundary, b(x). The 
carrier is a shape in which the element is embedded and is of the same type as the element. 
The boundary represents the form of the element and is a shape of a different type. In 
principle, this model of shape algebra is independent of any underlying geometry. Particular 
models of shape algebras can be realized by mapping shapes to geometries in a specified 
way. Figure 1 illustrates a line shape, exemplar carriers and boundaries (sets of points) of its 
finite lines. 

 
Figure 1. A line shape with its segments, exemplar carriers and boundary. 

The mathematical treatment of shapes given in this paper relies on the following definition 
for a segment. A spatial element or shape is a segment if it has no nonempty proper subshape 
the boundary of which is a subshape of the boundary of the segment. That is, x is a segment if 
and only if there is no shape y ≠ 0, y ≠ x, such that y ≤ x and b(y) ≤ b(x). A segment is thus a 
shape with a ‘minimal’ boundary with respect to the shape. Figure 2 illustrates this definition 
for plane segments. 



 
Figure 2. Exemplar plane segments and their boundary shape. 

For any shape x that is not a segment, one can always find a shape y with y ≠ 0, y ≠ x, y ≤ x 
and b(y) ≤ b(x). Suppose y and x – y are sums of disjoint segments: y = y1 + … + yn' and x – y 
= z1 + … + zn''. From y ⋅ (x – y) = 0, yi ⋅ zj = 0 for all i ≤ n' and j ≤ n''. Thus, x = y + (x – y) = y1 
+ … + yn' + z1 + … + zn'' = x1 + … + xn with n = n' + n" and all xi (yi and zi–n') are pair-wise 
disjoint. By similar arguments, both y and x – y can be written as a sum of disjoint segments. 
This induction is finite because both y and x – y are parts of x, neither are equal to x, and the 
boundary of x is bounded (a boundary is a shape and any shape is bounded). 
For any shape algebra Σ, let Σseg

 denote its shapes that are segments. Let connectives ∧ and ∨ 
denote logical and and or respectively. Consequently: 

(1) Every shape is the sum of a finite set of disjoint segments. 
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Since the xi’s are disjoint, x = x1 ⊕ … ⊕ xn. This identity motivates the following definition. 
A set {x1, …, xn} of disjoint segments xi constitutes a representation for shape x if the xi’s 
satisfy (1). x and {x1, …, xn} are two alternative views of the same shape, one algebraic and 
the other representational. 
Every segment can be identified with a carrier, indeed, indefinitely many carriers (although it 
is convenient to define carriers uniquely, especially for computer implementations.) In 
principle, carrier shapes possess structurally and topologically interesting properties for 
shapes. For example, a line segment is carried by every line in which that segment can be 
embedded, a plane segment is carried by every plane in which that segment can be embedded 
and so on. For segment x, let c(x) denote any of its carriers. Then, c(x) minimally satisfies the 
following conditions: c(0) = 0 and x ≤ c(x). Carriers for segments can always be specified so 
that for any segment y, x ≤ y ⇔ c(x) ≤ c(y). Two segments are coequal (i.e., collinear, 
coplanar, cohyperplanar, etc.) if there is a carrier that carries both shapes. Note that all 
carriers of a segment are coequal. Carriers can always be specified so that for coequal 
segments, c(x ⋅ y) ≤ c(x) ⋅ c(y). 
Carriers extend to shapes in which case c(x) is the sum of the carriers of its segments. A 
shape is coequal if all its segments are coequal. A segment is necessarily coequal. Carriers 
for shapes can be specified so that c(x ⋅ y) ≤ c(x) ⋅ c(y). Note that for shapes x and y with 
representation {x1, …, xn} and {y1, …, yn'} respectively, the subshape relation can be 
expressed in terms of the segment carriers: 
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can impose a topology on the carriers of a shape by requiring that c(c(x)) = c(x) for each x. 



In practice, carriers are specified by equations. In this paper, we will regard the carrier of any 
segment as specified and identified, uniquely, by its equation. The equation of a carrier can 
be used to define coincidence of a shape with a carrier if the former satisfies the equation of 
the latter. The carriers of segments act as a filter in our process of distinguishing categories of 
shapes. 
In this model of shape algebra, pictorial equivalence does not imply shape equality. Figure 3 
shows a curve segment s that is embedded in two different (curved) carriers given by 
equations g(x, y) = 0 and h(x, y) = 0. Although the curve segment s of type g is pictorially 
identical to the curve segment s of type h, the two are not the same shape. Pictorial 
equivalence assumes a pictorial scale and resolution at which equivalence is assessed. 
Equality between shapes requires that their carriers have identical equations and their 
boundaries are identical. In other words, the embedding character of a shape is integral to its 
identity. It is this embedding character of a shape rather than its point set equivalence that 
distinguishes the approach in this paper from conventional geometrical modeling. For linear 
shapes defined on a Euclidean geometry, this distinction between pictorial equivalence and 
shape equality does not arise since for any linear segment its carriers can be carried by a 
single largest carrier. The algebraic approach applies to linear as well as curved segments on 
condition that carriers are selected in such a way that pictorially identical segments always 
have the same carrier. This applies to all carriers that are equationally defined, because two 
curves with equationally defined carriers can never have more than a finite number of 
intersection points (within a finite area), and thus can never be pictorially identical (at the 
right level of detail). Otherwise, pictorial equivalence can only be assessed through 
approximation and it is generally considered only for a subset of potential carriers, e.g., 
NURBS. 

 
Figure 3. Two unequal curved segments that are pictorially the same. 

Boundary and neighborhoods of a segment 
The boundary defines the ‘outline’ or ‘form’ of a shape. For computational purposes, we need 
to know which part of the shape lies inside the boundary and which lies outside. For this we 
specify certain provisions on shapes to make this notion precise. To this end, we introduce 
the notion of a neighborhood of a segment as a shape within the proximity of the segment. A 
neighborhood of a segment is a shape such that the segment is a part of the boundary of the 
shape; notationally, Δ(x) is a (shape) neighborhood of x whenever x ≤ b(Δ(x)). By definition, 
Δ(0) = 0. The neighborhood of a segment is of a higher dimensional type than the segment, 
but the boundary of the neighborhood is of the same type as the segment. For instance, for 
point segments the neighborhoods are line shapes, for line segments these are plane shapes, 
for plane segments these are volumes and so on. The neighborhood of a line segment is 
illustrated in Figure 4. 



 
Figure 4. A line segment x and possible neighborhoods Δ(x). Notice that x ≤ b(Δ(x)). Notice 
that x is coincident with its neighborhood shape. 

A neighborhood signifies a ‘side’ of the segment with respect to the neighborhood shape. On 
the other hand, a segment has indefinitely many neighborhoods. However:  

(2) No three neighborhoods of a segment can be both mutually disjoint and coequal. 
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In other words, each segment has two sides defined by a pair of mutually disjoint coequal 
neighborhoods. We extend this notion of neighborhood to a collection of segments that make 
up the boundary of a segment to be the composition of coequal neighborhoods of the 
individual segments. See Figure 5. Again, there cannot be three mutually disjoint coequal 
neighborhoods. The boundary (and by extension, any subshape of it) divides its coequal 
neighborhoods into two categories, one which is ‘inside’ the segment, and the other ‘outside’. 
That is, 

(3) For any subshape of the boundary of a segment, there are two neighborhoods coequal 
with the segment, one contained in the segment and the other disjoint from it. 
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Figure 5. A shape x, its boundary b(x) and two possible neighborhoods Δ(b(x)) coequal to x. 

Figure 6 illustrates this provision for a line shape to be a subshape of the boundary of a plane 
segment. Neighborhoods Δ1(l) and Δ2(l) are necessarily disjoint, since 
    

! 

"1(l ) # x $"2(l ) % x = 0&"1(l ) % "2(l ) = 0. We note that every shape is a neighborhood of its 
boundary. We can now state the condition that suffices for a shape to be a subshape of the 
boundary of a segment:  



(4) Any subshape of the boundary of a segment is also a subshape of the boundary of any 
other segment that contains the given segment provided there is a neighborhood coequal and 
disjoint from the latter segment. 
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Figure 6. A subshape l of the boundary b(x) of a segment x and two neighborhoods Δ1(l) and 
Δ2(l) coequal to x. 

By comparing a neighborhood of a segment with any shape coequal with this neighborhood it 
follows that:  

(5) A segment and each of its neighborhoods can always be partitioned, with respect to any 
other shape coequal to the neighborhood, into two shapes and corresponding neighborhoods 
one contained in the second shape and the other disjoint from it. 
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Figure 7 illustrates this proposition for a pair of plane segments. 
 

 
Figure 7. Two plane segments x and y and subshape l of the boundary of x, with the three 
possible partitions of l and x with respect to y: (i) m = 0, (ii) m ≠ 0 ∧ m ≠ l, (iii) m = l. 

Consider a shape x {x1, …, xn}. 
When n = 1, b(x) = b(x1). 
When n = 2, consider a segment     
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l " (b(x1) # b( x2 ))$ l " b(x1). There are two coequal 
disjoint neighborhoods Δ1(l) and Δ2(l) with Δ1(l) ≤ x1 ≤ x = x1 + x2 and Δ2(l) · x1 = 0. By (5), 
partition Δ2(l) with respect to x2 into neighborhoods Δ2(m) and Δ2(l – m) with m ≤ l, Δ2(m) ≤ 
x2 and Δ2(l – m) · x2 = 0. Δ2(l – m) ≤ Δ2(l) and Δ2(l – m) · x1 = 0 imply that Δ2(l – m) · x = 0. 
Further, since Δ2(m) ≤ Δ2(l), then Δ2(m) · x1 = 0. Given m · b(x2) = 0 and Δ2(m) ≤ x2, consider 



a shape neighborhood Δ*(m) with Δ*(m) · Δ2(m) = 0 and Δ*(m) ≤ x2. Provision (2) specifies 
that Δ*(m) · x1 ≠ 0, which implies that x1 · x2 ≠ 0, in turn, contradicts the assumption that x1 
and x2 are disjoint. Therefore, m = 0 and Δ2(l – m) is a neighborhood of l, or Δ2(l – m) = Δ(l). 
Given Δ1(l) ≤ x and Δ(l) · x = 0, it follows by provision (3) that l ≤ b(x). 
Likewise, for a segment     
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l " (b(x2 ) # b( x1))$ l " b(x2 ). Whence, (b(x1) – b(x2)) + (b(x2) – 
b(x1)) = b(x1) ⊕ b(x2) ≤ b(x). 
Consider a segment l ≤ b(x). There are two coequal disjoint neighborhoods Δ1(l) and Δ2(l) 
with Δ1(l) ≤ x and Δ2(l) · x = 0. By (5), partition Δ1(l) with respect to x1 into neighborhoods 
Δ1(m) and Δ1(l – m) with m ≤ l, Δ1(m) ≤ x1 and Δ1(l – m) · x1 = 0 and, therefore, Δ1(l – m) ≤ x2. 
Consider Δ2(m) ≤ Δ2(l); since Δ2(l) · x = 0 it follows that Δ2(m) · x1 = 0 and, by (3), m ≤ b(x1). 
Consider Δ2(l – m) ≤ Δ2(l); since Δ2(l) · x = 0 it follows that Δ2(l – m) · x2 = 0 and, by (3), l – 
m ≤ b(x2). Thus, b(x) ≤ b(x1) + b(x2). 
Lastly, consider a segment     
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l " (b(x1) # b( x2 ))$ l " b(x1), There are two coequal disjoint 
neighborhoods Δ1(l) and Δ2(l) with Δ1(l) ≤ x1 and Δ2(l) · x1 = 0. By (5), partition Δ2(l) with 
respect to x2 into Δ2(m) and Δ2(l – m), with m ≤ l, Δ2(m) ≤ x2 and Δ2(l – m) · x2 = 0. Consider 
Δ1(m) ≤ Δ1(l) ≤ x1; since Δ2(m) ≤ x2 and x1 · x2 = 0, it follows from the negation of (2) and (3) 
that Δ1(m) ≤ x, Δ2(m) ≤ x and Δ1(m) · Δ2(m) = 0 and, therefore, m · b(x) = 0. Since Δ1(l) ≤ x1 
and x1 · x2 = 0, it follows that Δ1(l) · x2 = 0. Consider Δ1(l – m) ≤ Δ1(l) ≤ x1; then, Δ1(l – m) · x2 
= 0, Δ2(l – m) · x2 = 0 and Δ1(l – m) · Δ2(l – m) = 0. Again, from the negation of (2) and (3) it 
follows that     
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l "m / # b( x2 ), which contradicts l ≤ (b(x1) · b(x2)). Thus, m = l and l · b(x) = 0 
and, therefore, (b(x1) · b(x2)) · b(x) = 0. Whence, b(x) ≤ b(x1) + b(x2) – (b(x1) · b(x2)) = b(x1) ⊕ 
b(x2) and, thus, b(x) = b(x1) ⊕ b(x2). 
When n > 2, x = x' (= x1 + … + xn–1) + xn and b(x) = b(x') ⊕ b(xn). By induction, this yields 
b(x) = b(x1) ⊕ … ⊕ b(xn–1) ⊕ b(xn), thus establishing the following identity and illustrated in 
Figure 8. 

(6) The boundary of a coequal shape equals the symmetric difference of the boundaries of the 
segments in its representation. 
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Figure 8. A coequal shape x, its representation {x1, …, xn} and the symmetric difference b(x1) 
⊕ … ⊕ b(xn). 

Consider a boundary shape l ≤ b(x). Then, l has a shape neighborhood Δ(l) disjoint from x. 
Consider a shape y such that l · b(y) = 0 and x ≤ y. Define a partitioning on l and Δ(l) with 
respect to y as follows: l = m + (l – m), Δ(m) = Δ(l) · y and Δ(l – m) = Δ(l) – y. From Δ(l – m) 
· y = 0 and (4), l – m ≤ b(y). Since l · b(y) = 0, it follows that m = l and Δ(m) equals some 
neighborhood Δ*(l), with Δ*(l) = Δ(l) · y. We then have Δ*(l) · x = 0, Δ*(l) ≤ y, and thus, 
Δ*(l) ≤ y – x. 



Conversely, suppose there is a neighborhood Δ(l) ≤ y – x. Since l ≤ b(x), x is a neighborhood 
of l, and (y – x) · x = 0. Hence, it follows from (4) that l ≤ b(y – x), or y – x is a neighborhood 
of l. Suppose l ≤ b(y). Then, there is a neighborhood Δ*(l) with Δ*(l) · y = 0. Hence, Δ*(l) · (y 
– x) = 0. Since x ≤ y, Δ*(l) · x = 0 which violates provision (2). Therefore,     
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l / " b( y). Since 
this holds for an arbitrary l such that l ≤ b(x), l · b(y) = 0 for all such l. This establishes the 
necessary and sufficient condition for a shape to be a part of the boundary of a segment. 

(7) Any subshape of the boundary of a segment is not a part of the boundary of any other 
shape that contains the segment if and only if there is a neighborhood, of the subshape, that 
is a subshape of the difference of the shape and the segment. 
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Consider a segment l ≤ b(x + y). Construct two coequal disjoint neighborhoods Δ1(l) and Δ2(l) 
such that Δ1(l) ≤ (x + y) and Δ2(l) · (x + y) = Δ2(l) · x + Δ2(l) · y = 0 and, therefore, Δ2(l) · x = 0 
and Δ2(l) · y = 0. Define a partitioning on l and Δ1(l) with respect to x as follows: l = m + (l – 
m), Δ1(m) = Δ1(l) · x and Δ1(l – m) = Δ1(l) – x. Consider Δ2(m) ≤ Δ2(l); since Δ1(m) = Δ1(l) · x 
and Δ2(l) · x = 0, it follows that Δ1(m) ≤ x and Δ2(m) · x = 0 and, by (3), m ≤ b(x). Consider 
Δ2(l – m) ≤ Δ2(l); since Δ1(l – m) = Δ1(l) – x ≤ (x + y) – x ≤ y and Δ2(l) · y = 0, it follows that 
Δ1(l – m) ≤ y and Δ2(l – m) · y = 0 and, by (3), l – m ≤ b(y). Whence, l = m + (l – m) ≤ b(x) + 
b(y) and, thus, b(x + y) ≤ b(x) + b(y). 
Consider a segment l ≤ b(x · y). Construct a neighborhood Δ(l) such that Δ(l) · (x · y) = Δ(l) · x 
· y = 0. Define a partitioning on l and Δ(l) with respect to x as follows: l = m + (l – m), Δ(m) = 
Δ(l) · x and Δ(l – m) = Δ(l) – x. From m ≤ l ≤ b(x · y), x · y ≤ y is a neighborhood of m and 
Δ(m) · y = (Δ(l) · x) · y = 0. Then, it follows by provision (3) that m ≤ b(y). From l – m ≤ l ≤ 
b(x · y), x · y ≤ x is a neighborhood of l – m and Δ(l – m) · x = (Δ(l) – x) · x = 0. Then, it 
follows by provision (3) that l – m ≤ b(x). Whence, l = (l – m) + m ≤ b(x) + b(y) and, thus, 
b(x · y) ≤ b(x) + b(y). 
Consider a segment l ≤ b(x – y). Construct a neighborhood Δ(l) such that Δ(l) · (x – y) = 0. 
Define a partitioning on l and Δ(l) with respect to y as follows: l = m + (l – m), Δ(m) = Δ(l) · y 
and Δ(l – m) = Δ(l) – y. From m ≤ l ≤ b(x – y), x – y is a neighborhood of m with (x – y) · y = 
0 and Δ(m) – y = (Δ(l) · y) – y = 0. Then, it follows by provision (3) that m ≤ b(y). From l – m 
≤ l ≤ b(x – y), x – y ≤ x is a neighborhood of l – m with (x – y) – x = 0. Since Δ(l – m) · y = 
(Δ(l) – y) · y = 0 and Δ(l – m) · (x – y) ≤ Δ(l) · (x – y) = 0, it follows that Δ(l – m) · x = 0. 
Then, by (3), l – m ≤ b(x). Whence, l = (l – m) + m ≤ b(x) + b(y) and, thus, b(x – y) ≤ b(x) + 
b(y). 
Finally, b(x ⊕ y) = b((x – y) + (y – x)) ≤ b(x – y) + b(y – x) ≤ b(x) + b(y). It follows that: 

(8) For any arithmetic operation on shapes the boundary of the resulting shape is a part of 
the sum of the boundaries of the two shapes. For a shape operation *, 
b(x * y) ≤ b(x) + b(y). 

See Figure 9. From an implementation stand point, this result indicates that one never need 
inspect beyond the boundary of individual segments in order to obtain the boundary of a 
shape resulting from a shape arithmetical operation. A variation of this result is the start point 
for Earl’s (1997) examination of shape boundaries and their properties. 



 
Figure 9. Two shapes x and y, the sum of their boundaries and the boundaries under the 
operations of sum, product, difference and symmetric difference. 

Maximal segment representation 
A shape is a set of disjoint segments each specified by a carrier and boundary. The boundary 
of each segment is, in turn, a shape (or composed of a set of shapes) subject to the following 
maximality condition on the segments in the representation. A segment is maximal if it 
cannot be combined under sum with any other segment in the representation to form a single 
segment. 
Consider the sum x + y of coequal segments x and y. If either b(x) ≤ b(x + y) or b(y) ≤ b(x + 
y), then x + y cannot be a segment. There are two cases to consider: when x and y are disjoint 
and when these are not. 
(i) x and y are disjoint. Then, b(x + y) = b(x) ⊕ b(y) = (b(x) + b(y)) – (b(x) · b(y)). If 
boundaries b(x) and b(y) are also disjoint, then, b(x + y) = b(x) ⊕ b(y) = (b(x) + b(y)). 
Therefore, b(x) ≤ b(x + y) (and b(y) ≤ b(x + y)), and thus, by definition, x + y is not a segment. 
If the boundaries are not disjoint, i.e., b(x) · b(y) ≠ 0. Then,     
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b( x) / " b(x + y) and 
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b( y) / " b(x + y) . Assume there exists a shape z ≠ 0 with z ≠ x + y, z ≤ x + y and b(z) ≤ b(x + 
y) ≤ b(x) + b(y). Consider shapes u = z · x and v = z · y, then u · v = 0 and z = u + v. Thus, b(u) 
≤ b(x) + b(z) ≤ b(x) + b(y). A similar result holds for b(v). Consider a segment l ≤ b(u) · b(y). 
Since u · y = 0, there are two coequal disjoint neighborhoods Δ1(l) and Δ2(l) with Δ1(l) ≤ u 
and Δ2(l) ≤ y. Therefore, Δ1(l) ≤ x and Δ2(l) · x = 0, or l ≤ b(x). Whence, b(u) ≤ b(x), which 
contradicts the definition of a segment (given u ≤ x). We have a similar result for v. Thus, no 
such shape z exists and, by definition, x + y is a segment. 



(ii) x and y are not disjoint. There is a set {u1, …, un} of disjoint segments such that x + y = 
u1 + … + un. Let ui and uj, i < j, be two segments such that b(ui) · b(uj) ≠ 0. From the above 
argument, ui + uj must be a segment. Thus, {u1, …, ui–1, ui+1, …, uj–1, uj+1, …, un, ui + uj} is a 
set of disjoint segments that represents x + y. This process can be repeated replacing in the 
representation of x + y any two segments s and t, with b(s) · b(t) ≠ 0 by the sum s + t. This 
results in a representation of x + y by a set {v1, …, vn'} of disjoint segments, with b(vi) · b(vj) 
= 0 for all i ≠ j. Thus, x = v1 · x + … + vn' · x. Assume that for some i ≠ j, b(vi · x) · b(vj · x) = l 
≠ 0. Then, there are two coequal disjoint neighborhoods Δ1(l) and Δ2(l) with Δ1(l) ≤ vi · x ≤ vi 
and Δ2(l) ≤ vj · x ≤ vj. Since vi · vj = 0, we have l ≤ b(vi) · b(vj), which contradicts the fact that 
b(vi) · b(vj) = 0 for all i ≠ j. Thus, b(vi · x) · b(vj · x) = 0 for all i ≠ j. However, this contradicts 
the fact that x is a segment. Hence, the representation of x + y must consist of a single 
segment, which equals x + y. We have established the conditions under which two coequal 
segments combine to form a segment under sum. 

(9) The sum of two coequal segments is a segment if and only if either the segments are not 
disjoint or their boundaries are not disjoint. 

    

! 

"x, y # $seg : x + y # $seg % x & y ' 0(b(x) & b( y) ' 0. 

Figure 10 illustrates these conditions for reducing a pair of volume segments to a single 
volume segment. Note that segments that are not coequal cannot combine to form a single 
segment. 

 
Figure 10. The sum of two segments is a segment if the segments are not disjoint (cases a, b); 
or if their boundaries are not disjoint (case c); and is not a segment otherwise (cases d, e, f). 

We are ready to describe a shape as the sum of a unique set of disjoint segments with disjoint 
boundaries. We first show that such a set exists. Consider any shape x {x1, …, xn} represented 
by disjoint segments with x = x1 + … + xn. 
If b(xi) · b(xj) = 0 for all i ≠ j, then this set exists. Otherwise, any two segments xi and xj (i < j) 
with b(xi) · b(xj) ≠ 0 specify that y = xi + xj is a segment. Thus, {x1, …, xi–1, xi+1, …, xj–1, xj+1, 
…, xn, y} is a set of disjoint segments with x = x1 + … + xi–1 + xi+1 + … + xj–1 + xj+1 + … + xn 
+ y. By induction, this results in a set {y1, …, yn'} of disjoint segments with disjoint 
boundaries such that x = y1 + … + yn'. 
Secondly, assume there are two representations for x by sets of disjoint segments with 
disjoint boundaries, {x1, …, xn} and {y1, …, yn'}. Then, at least one segment yi is different 
from all segments xj and we can write yi = yi · x1 + … + yi · xn = z1 + … + zn'' (with z1 equal to 



the first yi · xj that is different from 0, and so on). z1, …, zn'' are disjoint segments with not all 
disjoint boundaries (otherwise, yi is not a segment). Suppose b(zk) · b(zl) ≠ 0. Consider a 
segment l ≤ b(zk) · b(zl). Then, given that zk · zl = 0, there exist two coequal disjoint 
neighborhoods Δ1(l) and Δ2(l) with Δ1(l) ≤ zk and Δ1(l) · zl = 0, and, Δ2(l) ≤ zl and Δ2(l) · zk = 
0. Suppose zk = yi · xk' and zl = yi · xl'. Since Δ1(l) ≤ zk ≤ yi, we have Δ1(l) · zl = Δ1(l) · yi · xl' = 
Δ1(l) · xl' = 0 and Δ2(l) ≤ zl ≤ xl', and similarly for xk'. Thus, l ≤ b(xk') · b(xl'), which contradicts 
our assumption. Whence, the following proposition which forms the basis of the maximal 
segment representation of shapes (Krishnamurti, 1992a). 

(10) Every shape is the sum of a unique finite set of disjoint segments with disjoint 
boundaries. 

Boundary shapes 
Previously, we defined a segment as a shape with a minimal boundary. As such this 
definition does not lend itself to easy computer implementation. Instead, we now provide a 
semi-constructive definition of a segment using the notion of a simple boundary, that is, a 
‘minimal’ boundary shape as a part of the boundary shape, however, not relative to the 
defined shape. A shape l is a boundary shape whenever there is a shape x such that l = b(x). 
The boundary shape l defines the shape x and this is expressed as x = Γ(l). Γ may be viewed 
as a ‘constructor’ function. Note that the empty boundary shape defines only the empty 
shape; Γ(0) = 0. A boundary shape x is a simple boundary if and only if there is no boundary 
shape y, y ≠ 0 and y ≠ x, that is a subshape of x. It immediately follows that a simple 
boundary x defines a segment Γ(x). However, the boundary shape of a segment is not always 
a simple boundary. Figure 11 illustrates this for planar segments. On the other hand, the 
boundary of a coequal shape can always be described as composed of a finite set of disjoint 
simple boundaries. We show that the boundary of any segment can be decomposed into 
disjoint simple boundaries. 

 
Figure 11. Examples of segments (a) with a simple boundary; and (b, c) without a simple 
boundary. 

Let x denote the boundary of a segment Γ(x). If x is a simple boundary, then the proposition is 
immediate. Otherwise, there exists a boundary shape y ≠ 0 with y ≠ x and y ≤ x. Since b(Γ(y) · 
Γ(x)) ≤ x + y ≤ x and Γ(x) is a segment, then by the definition of a segment either Γ(y) · Γ(x) = 
0, or Γ(y) · Γ(x) = Γ(x). If Γ(y) · Γ(x) = 0, then Γ(x) + Γ(y) = Γ(x) ⊕ Γ(y) and b(Γ(x) + Γ(y)) = 
x ⊕ y = x – y (y ≤ x). Thus, x – y is a boundary shape. 
Otherwise, Γ(x) · Γ(y) = Γ(x). We show that x – y = b(Γ(y) – Γ(x)). Consider a segment l ≤ x – 
y. Then l ≤ x and l · y = 0. Since Γ(x) ≤ Γ(y), there are coequal disjoint neighborhoods Δ1(l) 
and Δ2(l) with Δ1(l) ≤ Γ(x) ≤ Γ(y), Δ2(l) · Γ(x) = 0 and Δ2(l) ≤ Γ(y). Therefore, Δ1(l) · (Γ(y) – 



Γ(x)) = 0 while Δ2(l) ≤ (Γ(y) – Γ(x)) and, thus l ≤ b(Γ(y) – Γ(x)), or x – y ≤ b(Γ(y) – Γ(x)). 
Proposition (8) specifies that b(Γ(y) – Γ(x)) ≤ x + y ≤ x. 
Now consider a segment l ≤ b(Γ(y) – Γ(x)). Then, l ≤ x. Since Γ(x) ≤ Γ(y), there are coequal 
disjoint neighborhoods Δ1(l) and Δ2(l) with Δ1(l) ≤ (Γ(y) – Γ(x)), i.e., Δ1(l) ≤ Γ(y) and Δ1(l) · 
Γ(x) = 0, Δ2(l) · (Γ(y) – Γ(x)) = 0 and Δ2(l) ≤ Γ(x). Therefore, Δ1(l) ≤ Γ(y) and Δ2(l) ≤ Γ(x) ≤ 
Γ(y). Whence, l · y = 0; or, l ≤ x – y, with b(Γ(y) – Γ(x)) ≤ x – y. We conclude that b(Γ(y) – 
Γ(x)) = x – y; or, x – y is a boundary shape. By induction and (10), it follows that the 
boundary of any shape, i.e., any boundary shape, can be decomposed into disjoint simple 
boundaries. In other words:  

(11) Every boundary shape is the sum (and symmetric difference) of a set of disjoint simple 
boundaries.  

Consider a simple boundary y that is a subshape of the boundary x defining the segment Γ(x). 
From the arguments above, we can conclude that either Γ(x) · Γ(y) = 0 or Γ(x) ≤ Γ(y). If the 
latter, we say that y is an outer boundary; otherwise, y is an inner boundary. Figure 12 
illustrates the classification into inner and outer boundaries of a set of nonintersecting simple 
line shape boundaries. 

 
Figure 12. Inner and outer boundaries among a set of non-intersecting, simple boundaries. 
Outer boundaries are drawn solid, inner boundaries dashed. 

A simple boundary y that is a part of the boundary of a segment x is an outer boundary for x 
if x ≤ Γ(y), and an inner boundary for x, otherwise. A segment has a single outer boundary, 
and either zero or more inner boundaries. Figure 13 illustrates this with planar segments and 
shapes. 
 

 
Figure 13. Outer and inner boundaries for planar shapes: (a) a segment with a single outer 
boundary; (b) a segment with a single outer and multiple (two) inner boundaries; (c) a shape 
(with two segments) with two outer and a single inner boundary; (d) a shape with four outer 
boundaries. 

There is at least one outer boundary for a segment, which we can show by the following 
reasoning. There is a set of disjoint simple boundaries, {s1, …, sn}, such that b(x) = s1 + … + 
sn. If none of the shapes s1, …, sn is an outer boundary, then Γ(si) · x = 0 for all i ≤ n. 



Consider x' = x + Γ(s1) + … + Γ(sn). We have b(x') ≤ b(x) = s1 + … + sn. Consider a segment l 
≤ b(x') ≤ b(x). There are two coequal disjoint neighborhoods Δ1(l) and Δ2(l), with Δ1(l) · x' = 0 
and therefore, Δ1(l) · x = 0, and Δ2(l) ≤ x ≤ x'. It follows that both Δ1(l) · Γ(si) = 0 (because 
Δ1(l) · x' = 0) and Δ2(l) · Γ(si) = 0 (because Δ2(l) ≤ x) for all i ≤ n. Thus, 

i
sl !/  and     

! 

l / " b( x)= 
s1 + … + sn. Given that x' ≠ 0, either it must be that b(x) ≠ s1 + … + sn, or not all s1, …, sn are 
inner boundaries. 
Assume there exist two outer boundaries s and s' for x. x ≤ Γ(s) and x ≤ Γ(s'). Consider 
    

! 

"(s) / # "(s©) , i.e., Γ(s') – Γ(s) ≠ 0. Since s is a simple boundary, it follows that 
    

! 

b("(s©) #"(s)) / $ s . Further, since Γ(s') – Γ(s) ≠ Γ(s), b(Γ(s') – Γ(s)) ≠ s. Thus, there is a 
boundary segment l ≤ b(Γ(s') – Γ(s)) – s and a neighborhood Δ1(l) with Δ1(l) ≤ Γ(s') – Γ(s). 
Since Δ1(l) · Γ(s) = 0 and l · s = 0, a neighborhood Δ2(l) exists with Δ1(l) · Δ2(l) = 0 and Δ2(l) · 
Γ(s) = 0. Therefore, both Δ1(l) · x = 0 and Δ2(l) · x = 0, or   

! 

l / " x , which contradicts our 
assumption. We can argue in the same way for the case when     

! 

"(s©) / # "(s) . Hence: 

(12) Every segment has a unique simple outer boundary. 

A canonical representation of a shape constitutes a unique representation of the shape as a set 
of segments and a unique representation of each segment as a set of simple boundaries. 
Denote the unique outer boundary of x as s0. Consider the shape s = b(x) – s0. By (11), there 
is a finite set {s1, …, sn–1} of disjoint simple boundaries such that b(x) = s0 + s = s0 + s1 + … 
+ sn–1. Consider the set {Γ(s1), …, Γ(sn–1)} of segments defined by s1, …, sn–1. If the segments 
are all disjoint, it then follows from (10) that this decomposition into simple boundaries is 
unique. 
Assume there are two non-disjoint segments Γ(si) and Γ(sj), i ≠ j; that is, Γ(si) · Γ(sj) ≠ 0. 
Then, there is a segment l ≤ b(Γ(si) · Γ(sj)) ≤ si + sj ≤ x and two coequal disjoint 
neighborhoods Δ1(l) and Δ2(l) such that Δ1(l) ≤ Γ(si) · Γ(sj) and Δ2(l) · Γ(si) · Γ(sj) = 0. 
By (5) we can partition Δ2(l) with respect to Γ(si) + Γ(sj) into disjoint neighborhoods Δ2(m) 
and Δ2(l – m) with Δ2(m) ≤ Γ(si) + Γ(sj) and Δ2(l – m) · (Γ(si) + Γ(sj)) = 0. Since product 
distributes over sum, we have (Δ2(l – m) · Γ(si)) + (Δ2(l – m) · Γ(sj)) = 0, or Δ2(l – m) · Γ(si) = 
0 and Δ2(l – m) · Γ(sj) = 0. This implies that both l – m ≤ si and l – m ≤ sj, which contradicts 
the hypothesis of disjoint boundaries. Therefore, Δ2(m) = Δ*(l) ≤ Γ(si) + Γ(sj), while Δ1(l) ≤ 
Γ(si) · Γ(sj) and Δ1(l) · Δ*(l) = 0. Since si and sj are inner boundaries, i.e., x · Γ(si) = 0 and x · 
Γ(sj) = 0, it follows that both Δ1(l) · x = 0 and Δ*(l) · x = 0, implying that xl !/ . This 
contradicts the assumption l ≤ si + sj ≤ x. Thus, Γ(si) and Γ(sj) must be disjoint. In other 
words: 

(13) The boundary of any segment is the sum of a unique finite set of disjoint simple 
boundaries. 

Note that this proposition holds only for segments. As Figure 14 shows, the boundary of a 
shape can be interpreted in two ways each as a set of disjoint simple boundaries. The set of 
simple boundaries representing the boundary of a segment defines a set of segments that 
relate in a unique way to the original segment. 



 
Figure 14. Two different interpretations for the boundary of a plane shape. Both 
interpretations result in two simple boundaries: (a) two outer boundaries and (b) one outer 
and one inner boundary. 

Let x be a segment with b(x) = s0 + s1 + … + sn–1. Suppose s0 is the outer boundary for x and 
s1, …, sn–1 are the inner boundaries for x. We have x ≤ Γ(s0) and x · Γ(si) = 0 for all 1 ≤ i ≤ n–
1, or, x ≤ Γ(s0) – (Γ(s1) + … + Γ(sn–1)). 
Conversely, consider the shape y = Γ(s0) – (Γ(s1) + … + Γ(sn–1)) – x. We have y · x = 0. If y ≠ 
0, then, there is a segment l ≤ b(y) ≤ b(x) and two coequal disjoint neighborhoods Δ1(l) and 
Δ2(l) with Δ1(l) ≤ y, Δ2(l) ≤ x, Δ1(l) · x = 0, and Δ2(l) · y = 0. Given x ≤ Γ(s0) – (Γ(s1) + … + 
Γ(sn–1)), we have Δ2(l) ≤ x ≤ Γ(s0) and Δ1(l) ≤ y ≤ Γ(s0), such that 

0
sl !/ . In a similar fashion, 

for all 1 ≤ i ≤ n–1, it holds that Δ1(l) · Γ(si) = 0 and Δ2(l) · Γ(si) = 0, such that   

! 

l / " s
i
. Since 

i
sl !/  for all 0 ≤ i ≤ n–1 and given b(x) = s0 + s1 + … + sn–1, it follows that     

! 

l / " b( x) , which 
contradicts the assumption. Thus, y must be the empty shape and x = Γ(s0) – (Γ(s1) + … + 
Γ(sn–1)). Hence, we have the following specification for a segment: 

(14) Each segment is the shape difference of the shape defined by its simple outer boundary 
and the shape resulting from the sum of the shapes defined by its simple inner boundaries. 

Maximal shapes 

A segment xi in the representation of a shape x {x1, …, xn} is maximal if and only if it is 
disjoint with all other segments xj, i ≠ j, in the representation and its boundary is represented 
as a set of simple boundaries each of which is a maximal shape. A shape x {x1, …, xn} is 
maximal if and only if each of its segments is maximal. A shape of distinct points is always 
maximal. From (10) and (13) we posit that the maximal segment representation is canonical. 
A canonical representation offers certain computational advantages, in particular, a shape x 
{x1, …, xn} is a subshape of a maximal shape y {y1, …, yn'} if and only if each segment xi is 
part of a maximal segment yj. Moreover, 

(15) The boundary of a maximal shape is the sum (and symmetric difference) of the 
boundaries of its maximal segments. 

The difference between propositions (6) and (15) is that the latter applies to any shape not 
just coequal shapes. The proof is straightforward. It is important to note that for Figure 14, 
the interpretation that is consonant with the definitions of maximal shape and segment is the 
shape consisting of two maximal segments each defined by a single outer boundary (namely, 
Figure 14a). 



Comparing boundaries 

As the preceding development indicates, in computing the result of a shape arithmetical 
operation, it is important to know which subshapes of the boundary of both shapes contribute 
to the boundary of the resulting shape. We can do this by classifying the boundary of each 
shape with respect to the other. In this sense, boundary segments can be considered to be 
inside or outside the other shape, or shared between shapes. We examine each category 
separately. 

Shared segments 

A boundary segment is deemed shared between two shapes if it is a subshape of the 
boundaries of both shapes. Let s(x, y) denote the shape formed by the shared boundary 
segments of shapes x and y. Then, s(x, y) = b(x) · b(y) = s(y, x). Figure 15 illustrates the 
shared boundary segments for two volume shapes. Shared boundary segments can be further 
classified. 

 
Figure 15. Two shapes x and y and their shared boundary segments. 

A boundary segment is shared between two coequal shapes in the same way if and only if it is 
shared between the two shapes and it has a neighborhood that is a subshape of both shapes. 
Let m(x, y) denote the shape formed by the same-shared boundary segments of shapes x and 
y. Then, by (3), m(x, y) = s(x, y) · b(x · y) = m(y, x). A boundary segment is shared between 
two coequal shapes in the opposite way if and only if it is shared between the two shapes and 
it has a neighborhood that is a subshape of the first shape and disjoint from the second. Let 
n(x, y) denote the shape formed by the oppositely-shared boundary segments of shapes x and 
y. It is straightforward to show that: n(x, y) = s(x, y) · b(x – y). 
We have m(x, y) + n(x, y) = s(x, y) · b(x · y) + s(x, y) · b(x – y) = s(x, y) · (b(x · y) + b(x – y)) = 
s(x, y) if and only if s(x, y) ≤ b(x · y) + b(x – y) which is the case since x = x · y + (x – y) and 
by (5). Assume m(x, y) · n(x, y) ≠ 0. Then,     

! 

"l # m(x, y) $ n(x, y), l % 0 . 

    

! 

l " m( x, y)#$%1(l ) :%1(l ) " x &%1(l ) " y.  

    

! 

l " n( x, y)#$%2(l ) :%2(l ) " x &%2(l ) ' y = 0.  
Combining,     

! 

(("1(l ) # y $"2(l ) % y = 0&"1(l ) % "2(l ) = 0)$"1(l ) # x $"2(l ) # x)     

! 

" l / # b( x). 
But this implies that l has three coequal disjoint neighborhoods which is impossible and 
hence, m(x, y) · n(x, y) = 0. In short, 

(16) The same-shared and oppositely-shared boundary segments partition the shared 
boundary segments. 
s(x, y) = m(x, y) + n(x, y) ∧ m(x, y) · n(x, y) = 0. 

An interesting corollary is that n(x, y) = n(y, x). That is, s(x, y) · b(x – y) = s(x, y) · b(y – x), 
which is not immediately intuitive from the appearance of the formulae. Figure 16 illustrates 
the same-shared and oppositely-shared boundary segments for two shapes. 



 
Figure 16. The same-shared and oppositely-shared boundary segments of two shapes x and y. 

In the sequel, we use the letters S, M and N to denote the shapes formed by the shared, same-
shared and oppositely-shared boundary segments when the context of the shapes can be 
assumed. That is,  
S ≈ s(x, y) = s(y, x); M ≈ m(x, y) = m(y, x); and N ≈ n(x, y) = n(y, x). 

Inner and outer segments 

We next examine boundary segments that are not shared between two shapes. A boundary 
segment of a shape is said to be inner relative to another shape if the segment is not shared 
and it has a neighborhood that is a subshape of the second shape. Let i(x, y) denote the inner 
boundary segments of x relative to y. Then,     

! 

l " i( x, y)# l $ S = 0%&'(l ) :'(l ) " y . 
Consider a boundary segment l ≤ b(x). Then there is a neighborhood Δ(l) ≤ x. By (5) we can 
partition l and Δ(l) with respect to y as follows: l = m + (l – m), Δ(m) = Δ(l) · y and Δ(l – m) = 
Δ(l) – y. If m ≤ i(x, y), we have Δ(m) ≤ Δ(l) ≤ x and Δ(m) ≤ y and, therefore, Δ(m) ≤ x · y. If l 
– m ≤ i(x, y), then by definition of i(x, y), l – m has a neighborhood Δ*(l – m) ≤ y. But, Δ(l – 
m) = Δ(l) – y which implies that Δ(l – m) · y = 0. Therefore, l – m must be a subshape of the 
boundary of y, which contradicts the assumption that l – m ≤ i(x, y). Thus,     

! 

l " i( x, y)#  
    

! 

"#(l ) :#(l ) $ x % y . 
Consider a boundary segment l ≤ (b(x · y) · b(x)) – S. Then, l · b(x) · b(y) = 0 ⇒ l · b(y) = 0, l 
≤ b(x · y) and l ≤ b(x). From l · b(y) = 0 and x · y ≤ y, (4) specifies that there is a neighborhood 
Δ(l) such that Δ(l) ≤ y. That is, l ≤ i(x, y). 
Conversely, from l ≤ i(x, y) we have l ≤ b(x), l · b(y) = 0 and     

! 

"#1(l ) :#1(l ) $ x % y. From l ≤ 
b(x),     

! 

"#2(l ) :#2(l ) $ x = 0  and, therefore, Δ2(l) · (x · y) = 0. Then, provision (3) specifies that l 
≤ b(x · y). Since l · S = 0, we have l · b(x) · b(y) = 0. Therefore, l ≤ b(x · y) · b(x) – b(x) · b(y). 
Hence, i(x, y) = b(x · y) · b(x) – b(x) · b(y) = (b(x · y) – b(y)) · b(x) = b(x · y) – b(y). 
A boundary segment of a shape is said to be outer relative to another shape if the segment is 
not shared and it has a neighborhood that is disjoint from the second shape. Let o(x, y) denote 
the outer boundary segments of x relative to y. Then,     

! 

l " o( x, y)# l $ s( x, y) = 
    

! 

0"#$(l ) :$(l ) % y = 0. 
As before, consider a boundary segment l ≤ b(x). Then     

! 

"#(l ) :#(l ) $ x  and we can partition l 
and Δ(l) with respect to y as follows: l = m + (l – m), Δ(m) = Δ(l) · y and Δ(l – m) = Δ(l) – y. 
If m ≤ o(x, y), then by definition of o(x, y), m has a neighborhood Δ*(m) · y = 0. But, Δ(m) ≤ 
y; that is, m must be a subshape of the boundary of y which contradicts the assumption that m 
≤ o(x, y). If l – m ≤ o(x, y), we have Δ(l – m) ≤ Δ(l) ≤ x and Δ(l – m) · y = 0, hence, Δ(l – m) ≤ 
x – y. In other words,     

! 

l " o( x, y)#$%(l ) :%(l ) " x & y . 
Consider a boundary segment l ≤ (b(x – y) · b(x)) – S. Then l · b(x) · b(y) = 0 ⇒ l · b(y) = 0, l 
≤ b(x – y) and l ≤ b(x). Thus, x – y is a neighborhood of l and (x – y) · y = 0, or l ≤ o(x, y). 
Conversely, l ≤ o(x, y) implies l ≤ b(x), l · b(y) = 0 and a neighborhood Δ1(l) with Δ1(l) ≤ x – 
y. l ≤ b(x) implies a neighborhood Δ2(l) with Δ2(l) · x = 0. Therefore, Δ2(l) · (x – y) = 0. By 



provision (3), either l ≤ b(x · y) or l ≤ b(x – y) · b(x). Since l · S = 0, we have l ≤ b(x – y) · b(x) 
– b(x) · b(y). Hence, o(x, y) = b(x – y) · b(x) – b(x) · b(y) = (b(x – y) – b(y)) · b(x) = b(x – y) – 
b(y). Figure 17 and Figure 18 respectively illustrate the inner and outer boundary segments of 
two volume shapes. 
 

 
Figure 17. The boundary segments of two shapes x and y that are deemed inner with respect 
to the other. 

 
Figure 18. The boundary segments of two shapes x and y that are deemed outer with respect 
to the other. 

The inner and outer segments are pairwise disjoint. Assume i(x, y) · o(x, y) ≠ 0. That is, there 
is a segment l ≤ i(x, y) · o(x, y), l ≠ 0. From l ≤ i(x, y), there is a neighborhood Δ1(l) with Δ1(l) 
≤ y, and from l ≤ o(x, y) there is a neighborhood Δ2(l) with Δ2(l) · y = 0. Given Δ1(l) ≤ y and 
Δ2(l) · y = 0, it follows that l must be a boundary segment of y. However, l is a boundary 
segment of x and, thus, l is a subshape of S. By definition i(x, y) · S = 0 and S · o(x, y) = 0, we 
conclude that i(x, y) · o(x, y) = 0. 
Let the symbols Ix ≈ i(x, y) and Ox ≈ o(x, y) denote the inner and outer boundary segments 
when the context of the shapes are known. Consider the sum S + Ix + Ox. 
S + Ix + Ox 
= b(x) · b(y) + (b(x · y) · b(x) – b(x) · b(y)) + (b(x – y) · b(x) – b(x) · b(y)) 
= (b(x · y) · b(x)) + (b(x – y) · b(x)) + b(x) · b(y) 
= (b(x · y) + b(x – y)) · b(x) + b(x) · b(y) 
= (b(x · y) + b(x – y) + b(y)) · b(x). 
By (8), we have b(x · y) + b(x – y) + b(y) ≤ b(x) + b(y). 
Conversely, since b(x) ≤ b(x · y) + b(x – y) (from x = (x · y) + (x – y) and (8)), we have b(x) + 
b(y) ≤ b(x · y) + b(x – y) + b(y). Thus, b(x) + b(y) = b(x · y) + b(x – y) + b(y). Whence, S + Ix + 
Ox = (b(x) + b(y)) · b(x) = b(x). Whence: 
(17) The boundary of any shape is the sum of its shared, inner and outer segments with 
respect to any other shape. Moreover, these segments are mutually disjoint. 
b(x) = S + Ix + Ox ∧ Ix · Ox = 0 ∧ S · Ox = 0 ∧ S · Ix = 0. 



Shape operations 

Previously, in (8), the boundary of the shape resulting from a shape operation is described as 
a subshape of the sum of the boundaries of two shapes. In this section we refine this result 
and show that this boundary equals the sum of the shapes from appropriate classes of 
boundary segments. Table 1 summarizes the inclusion of the classes of boundary segments 
for each of the shape arithmetical operations. 
 
Table 1. Classified boundary segments that make up the shape resulting 
from a shape operation. 

Operation: * x + y x · y x – y x ⊕ y 

Boundary: b(x * y) Ox + Oy + M Ix + Iy + M Ox + Iy + N Ix + Iy + Ox + Oy 
 
The proofs below rely on the construction of two neighborhoods, termed left(l) and right(l), 
for a boundary segment l of the shape x classified with respect to coequal shape y. We 
employ the following notation. For any boundary segment l of x, left(l) denotes a 
neighborhood of l such that left(l) ≤ x and either left(l) ≤ y or the product of left(l) · y = 0. 
Similarly, right(l) denotes a neighborhood of l such that right(l) · x = 0 and either right(l) ≤ y 
or right(l) · y = 0. From the previous discussion these neighborhoods must exist if l is deemed 
inner, outer, same-shared or oppositely-shared with respect to y. In the proofs below we let l 
denote an arbitrary boundary segment of x such that it is deemed inner, outer, same-shared or 
oppositely-shared with respect to y. 
Consider b(x + y). left(l) is a subshape of x + y. Thus, l is a boundary segment of x + y if and 
only if right(l) is not a subshape of x + y, and therefore if right(l) · y = 0. This is the case if l 
is deemed outer or same-shared with respect to y (as illustrated in Figure 19). The proof is 
similar for an arbitrary boundary segment of y with respect to x. That is, b(x + y) = Ox + Oy + 
M. 

 
Figure 19. Inner and outer neighborhoods of a boundary segment l of x with respect to 
shapes x and y. Only if l is deemed outer or same-shared with respect to y, is l also a 
boundary segment of x + y. 

Consider b(x · y). Since right(l) · x = 0, then right(l) · (x · y) = 0. Thus l is a boundary segment 
of x · y if and only if left(l) is a subshape of x · y, and therefore if left(l) ≤ y = 0. This is the 
case if l is deemed inner or same-shared with respect to y. This is illustrated in Figure 20, 



which is derived from Figure 19 by replacing “    

! 

[l outer " left(l ) # y = 0 \  right(l ) # y = 0]” 
by “    

! 

[l inner " left(l ) # y \  right(l ) # y]”. The proof is similar for an arbitrary boundary 
segment of y with respect to x. That is, b(x · y) = Ix + Iy + M. 

  

Figure 20. Inner and outer neighborhoods of a boundary segment l of x with respect to 
shapes x and y. Only if l is deemed inner or same-shared with respect to y, then l is also a 
boundary segment of x + y. 

Remark. There is a more direct proof: 
Ix + Iy + M  
= (b(x · y) · b(x) – S) + (b(x · y) · b(y) – S) + S · b(x · y) 
= ((b(x · y) · b(x) + b(x · y) · b(y)) – S) + b(x · y) · S 
= (b(x · y) · (b(x) + b(y)) – S) + b(x · y) · S 
= (b(x · y) – S) + b(x · y) · S = b(x · y)  
Next consider b(x – y). right(l) · x = 0 implies that right(l) · (x – y) = 0. Thus l is a boundary 
segment of x – y if and only if left(l) is a subshape of x – y, and therefore if left(l) · y = 0. This 
is the case if l is deemed outer or oppositely-shared with respect to y. An illustration can be 
constructed from Figure 19 with “    

! 

[l same - shared " left(l ) # y \ right(l ) $ y = 0]” replaced 
by “    

! 

[l oppositely - shared " left(l ) # y = 0 \ right(l ) $ y]”. The proof is similar, but opposite, 
for an arbitrary boundary segment of y with respect to x. That is, b(x – y) = Ox + Iy + N. 
Finally consider b(x ⊕ y). Since left(l) is a subshape of y, if left(l) · y = 0, then left(l) must be 
a subshape of x ⊕ y. Since right(l) · x = 0, only if right(l) · y = 0 is right(l) · (x ⊕ y) = 0. In 
this case, l is deemed outer with respect to y. Similarly if both left(l) and right(l) are parts of 
y, and therefore l is deemed inner with respect to y, then l is a subset of the boundary of x ⊕ 
y. A similar illustration to Figure 19 can be constructed by replacing 
“    

! 

[l same - shared " left(l ) # y \ right(l ) $ y = 0]” by “    

! 

[l inner " left(l ) # y \ right(l ) # y]”. 
The proof is similar for an arbitrary boundary segment of y with respect to x. That is, b(x ⊕ y) 
= Ix + Iy + Ox + Oy. 

Shape Relations 

The relation between two coequal shapes depends on the distribution of the boundary 
segments of each shape into the four classes. In particular, it depends on whether or not each 
of the classes contains one or more segments. The particular dependencies are stated below. 



The four basic shape relations – contain, overlap, discontiguous and share_boundary – are 
defined in Table 2. 
 
Table 2. The basic shape relations. 

x · y = 0 x · y ≠ 0 

b(x) · b(y) = 0 b(x) · b(y) ≠ 0 y ≤ x xy !/  

discontiguous share_boundary contain overlap 
 
A shape x contains a shape y if and only if y is a subshape of x and, therefore, if and only if 
the difference of y with respect to x equals 0. Since b(y – x) consists of the boundary 
segments in Ix + Oy + N, y – x = 0 if and only if these three classes are empty. 
Two shapes x and y are disjoint (possibly with non-disjoint boundaries) if and only if x · y = 
0. Since b(x · y) consists of the boundary segments in Ix + Iy + M, x · y = 0 if and only if these 
three classes equal 0. For disjoint shapes x and y to share boundary, the class of oppositely-
shared boundary segments has to be nonempty. For x and y to be discontiguous, that is, 
disjoint with disjoint boundaries, the class of oppositely-shared boundary segments has to be 
empty; it follows, naturally, that the boundary segments of each are outer with respect to the 
other shape. 
Two shapes x and y have a shape in common if and only if x · y ≠ 0. If the difference of each 
shape with respect to the other is nonempty, then neither contains the other. Thus x and y 
overlap, without containment, if and only if (x · y ≠ 0) ∧ (x – y ≠ 0) ∧ (y – x ≠ 0). By 
simplifying 

    

! 

(x " y # 0)$ (x % y # 0)$ ( y % x # 0)& ( Ix + I y + M # 0)$ (Ox + I y + N # 0)$ 

    

! 

( Ix + Oy + N " 0), we get the following condition 

    

! 

( Ix " 0#Ox " 0)$ ( I y " 0#Oy " 0)$ ( Ix " 0# I y " 0)$ 

    

! 

(Ox " 0#Oy " 0# M " 0)$ ( Ix " 0#N " 0)$ ( I y " 0#N " 0)$ ( M " 0#N " 0). 
Table 3 summarizes the dependencies between the shape relations and conditions on the 
classified boundary segments. The necessity for a particular class of boundary segments to be 
nonempty is indicated by the symbol . Figure 21 graphically illustrates that each of the 
conjunctions (i through vii) is necessary as a sufficient condition for two shapes to overlap. 



 
Figure 21. Examples showing that each of the conjunctions i through vii is necessary as a 
(sufficient) condition for two shapes to overlap. The heavy-shaded area represents the 
overlapping region. 



Table 3. Conditions satisfied by the classified boundary segments for the 
shape relations. 

Relation contain share_boundary discontiguous 
Conditions Ix = Oy = N = 0 Ix = Iy = M = 0 ∧ N ≠ 0 Ix = Iy = M = N = 0 

 
 
 Conditions for overlap 

Segment classes i ii iii iv v vi vii 

Inner (Ix | Iy)  | – – |   |  – | –  | – – |  – | – 

Outer (Ox | Oy)  | – – |  – | –  |  – | – – | – – | – 

Same-shared – – –  – –  

Oppositely-shared – – – –    

Concluding remarks 

We have shown that shape operations defined over a Boolean ring – independent of its 
underlying shape type – can be preprocessed in a unified way by classifying the boundary of 
a shape with respect to another by splitting the boundary segments so that each split segment 
can be identified as inner, outer, shared in the same way or shared oppositely with respect to 
the other shape. Summing appropriate classes of segments provides the boundary of the 
resulting shape. The same classification process can be used to define relations between pairs 
of shapes. This is illustrated by the algorithms (Figure 22) which reflect Table 1 and Table 3. 
(The conventions and the form of the pseudo-code for the algorithms are due to Cormen et al, 
1990.) CLASSIFY returns the split boundary segments of two shapes classified against each 
other. The appropriate segments are combined by CONSTRUCT which constructs the shape 
according to a given boundary. CLASSIFY and CONSTRUCT are geometry dependent. For 
different geometrical realisations, different algorithms for CLASSIFY and CONSTRUCT would 
need to be designed. For shape algebras Un, we employ the following representational 
mapping shown in Table 4. U0 is mapped by an isomorphism to the k-dimensional Euclidean 
space Ek, k ≥ n. Carriers of shapes in Un are mapped to n-dimensional hyperplanes in Ek and 
boundaries are mapped to shapes in Un–1. The details of CLASSIFY and CONSTRUCT for shape 
algebras Un, n = 2, 3 are the topic of a forthcoming paper. Details of other geometrical 
realisations of shape algebras for shape grammar applications remain open, in particular, the 
treatment of Boolean rings of curved shapes. 
 
 
 SUM (x, y) 
 1 (Ix, Iy, M, N, Ox, Oy) ← CLASSIFY (x, y) 
 2 return CONSTRUCT (Ox ∪ Oy ∪ M) 
 
 PRODUCT (X, Y) 
 1 (Ix, Iy, M, N, Ox, Oy) ← CLASSIFY (x, y) 
 2 return CONSTRUCT (Ix ∪ Iy ∪ M) 

 



 DIFFERENCE (X, Y) 
 1 (Ix, Iy, M, N, Ox, Oy) ← CLASSIFY (x, y) 
 2 return CONSTRUCT (Ox ∪ Iy ∪ N) 
 
 SYMMETRIC-DIFFERENCE (X, Y) 
 1 (Ix, Iy, M, N, Ox, Oy) ← CLASSIFY (x, y) 
 2 return CONSTRUCT (Ix ∪ Iy ∪ Ox ∪ Oy) 
 
 SHAPE-RELATION (X, Y) 
 1 (Ix, Iy, M, N, Ox, Oy) ← CLASSIFY (x, y) 
 2 if Ix = 0 and Oy = 0 and N = 0 
 3  then return CONTAIN 
 4  else if Ix = 0 and Iy = 0 and M = 0  
 5    then if N ≠ 0 
 6    then return SHARE-BOUNDARY 
 7    else return DISCONTIGUOUS 
 8   else return OVERLAP 
 

Figure 22. Algorithms for shape arithmetic and relations. ∪ denotes the merge operation on 
collections of segments. 

 Table 4. Mapping shape algebras to geometry. 

Algebra Mapping Representation Embedding 

U0 U0 → Ek 
isomorphism 

coordinates A point is embedded in another if these 
are identical (same coordinates). 
A shape of points is embedded in 
another shape in U0 if each point in the 
first shape is identical to a point in the 
second shape. 

Un → ℘(Ek) descriptor 
≈ tuple of coefficients of 

the equation of the 
carrier hyperplane 

Un 

Un → Un–1 boundary 

Two co-equal segments have the same 
carrier (same descriptor). 
A shape is a finite composition of 
segments under sum (and maximally 
under symmetric difference). 
A shape is embedded in another shape 
in Un if each segment in the first shape 
is embedded in a coequal segment in 
the second shape. 

 
A main distinction between the work presented here and conventional geometrical modeling 
is that the latter is based on a point-set representation of shapes. This representation may 
satisfy a regularised algebra derived from a Boolean algebra with ‘fixes’ that account for 
valid physical interpretations of point-sets resulting from a shape operation (Mäntyla, 1988; 
Hoffman, 1989). Alternatively, operations may not be closed within one dimensionality and, 
instead, be defined across dimensionalities (Gursoz et al, 1991) In the latter case, shapes 
cannot be defined to share boundary. It is possible, however, to construct isomorphisms 
between shapes defined in terms of structured parts as in this paper to regularised point-set 



representations of spatial objects to provide conventional valid physical interpretations of 
shapes and also to validate the neighborhood provisions (2) and (3) (see Stouffs, 1994, for 
these constructions and Henle, 1979, for relevant point-set topology conditions). Further, 
conventional geometrical modeling makes a distinction between manifold and nonmanifold 
spatial objects, which is neither considered nor required in the formulation presented in this 
paper. This distinction arises from continuity and differentiable properties of subspaces of 
Euclidean spaces (Spivak, 1965), and so are relevant for point-set based formulations. 
Moreover, the boundary computations described in Table 1 and Table 3 are independent of 
the dimensionality, type and genus of the shapes involved. 
Lastly, the basic equation of a shape grammar interpreter is v = u – a + b if a ≤ u, which 
implies that v = u – (a – b) + (b – a). If we were to classify u against both (a – b) and (b – a) 
then b(v) = Ou + I(a – b) + O(b – a) + M(b – a) – N(b – a), where Ou are the segments of u outer 
relative to (a – b). In practice, rules are specified so that (a – b) = 0 in which case the 
boundary of v can be directly obtained by classifying u against a representation of the change 
invoked by the shape rule. 
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