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Abstract: Shape grammars are, in general, intractable. Even amongst tractable shape 

grammars, their characteristics vary significantly. This paper describes a paradigm for 

practical general shape grammar interpreters, which aim to address computational 

difficulties posed by parameterization. The paradigm is expressed in terms of frameworks 

each comprising an underlying data structure, manipulation algorithms and a meta-

language. The approach is illustrated through three exemplar frameworks. 

1 Introduction 

Shape grammars provide a rule-based, visual and algorithmic approach to spatial designs 

(Stiny, 2006).  Remarkably, since their inception (Stiny and Gips, 1971), there have been 

few computer programs that assist with using shape grammars in design. In the previous 

paper (Yue and Krishnamurti, 2011), we show that shape grammars may not halt and can 

have exponential language space. Moreover, even practical shape grammars—halting 

grammars with polynomial language space—can be intractable. This implies that 
                                                        
(1) Author for correspondences 
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algorithms to interpret shape grammars fall into two categories: those that handle special 

shapes, and others, more general, algorithms with worst case exponential time complexity, 

which are practical only for shapes of small size. The implication is that the best we can 

achieve, in practice, is to design and implement a shape grammar interpreter capable of 

handling a subset of grammars. In this paper, we describe an approach to implementing a 

class of tractable shape grammars.  

Even amongst tractable shape grammars, their characteristics vary significantly. One 

possible explanation for this is that the shape grammar formalism covers a wide spectrum 

of designs stemming from different disciplines. This richness in variety is shown 

indirectly by a number of well-known categories of shape grammars such as subshape-

driven versus marker-driven, non-parametric versus parametric, rectilinear versus 

curvilinear, etc. The variety can also be observed in the details of basic operations of t, -, 

+, ≤, and R; their diversity forms different algebras, for example U0, U1, U2 and U3 (Stiny, 

1991), on top of which further categories of shape grammars can be defined.  For 

example, Knight (1999) examines a variety by criteria of restrictions on rule format and 

ordering; six types of shape grammars are distinguished, namely, basic, nondeterministic, 

sequential, additive, deterministic, and unrestricted grammars. Such varieties are tangibly 

noticeable even when we focus on a specific subset of tractable grammars, for example, 

those based on two-dimensional rectilinear (with limited curved) shapes. The following is 

a comparison of three such examples, each based on the square or rectangle as the 

dominant vocabulary shape. 

The Baltimore Rowhouse grammar (Yue and Krishnamurti, 2008) captures a specific 

building style. Other examples of this type include the Queen Anne grammar (Flemming, 

1987) and Frank Lloyd Wright’s Prairie House grammar (Koning and Eizenberg, 1981). 
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These are all parametric shape grammars, in which rule application does not depend on 

emergent shapes. Markers drive shape rule application, and configurations are rectangular 

or can be approximated as such. Moreover, parameterization is often limited to the height 

or width of a room, or to the ratio of a room partition. The central manipulation unit is a 

room (or space). Shape rules typically add a room, partition a room, or refine a room by 

adding windows, doors, etc.  Figure 1 illustrates typical generic schema. 

 

Figure 1     Typical schema found in parametric grammars describing floor plan layouts 

Figure 2 illustrates the rules and a sample derivation of a polyomino (Golomb, 1994) 

grammar based on a structure grammar (Carlson et al., 1991), an augmented variation of 

a formalism known as a set grammar (Stiny, 1982).  The grey square in rule 3 depicts an 

exclusionary condition.   
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Figure 2     Rules of a polyomino grammar and sample derivations  

The Kindergarten grammar (Stiny, 1980b) is another example in this type of 

grammar. These grammars treat designs as symbolic objects; designs are enforced to be 

elements of sets from which they are formed. Thus, integrity of the compositional units in 

designs is preserved, as these parts cannot be recombined and decomposed in different 

ways. This is in contrast to those grammars, where shape elements are decomposed and 

recombined freely so that new shapes can emerge, for example, the shape grammar 

shown in Figure 3.  Here we are essentially manipulating symbols in a two dimensional 

space, thus making these grammars amenable to computer implementation. The resulting 
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shapes are simply replacements of internal symbols that occur at the final stage, for the 

purpose of visualization. 

Figure 3 shows the rules and sample derivations of a classic Stiny (2011) shape 

grammar comprised of three shape rules. The first rule replicates a square forming 

squares overlapping a central square; the second rotates a square, and the third moves a 

square.  In rule application sides of squares are cut into meaningful pieces of various 

lengths, that are related in a definite sequence, and squares move wherever one wants–left 

or right and up or down–yielding a variety of shapes that exceed expectations that might 

be associated with the square.  This is an example of the kind of shape grammars where 

shape elements are free to be decomposed and recombined so that shape emergence is an 

important feature during shape rule application.  In the Knight and Stiny (2001) 

nomenclature, computation here is non-classical. 

Table 1 Comparison of characteristics important for computer implementation 

Grammar Driver Emergence Manipulation unit Parametric Context 

Rowhouse Marker No Room Yes Sensitive 

Polyomino Marker No Symbol No Sensitive 

Stiny classic  Subshape Yes Shape element No Free 

 

Table 1 shows a comparison of certain characteristics of the three grammar examples 

discussed above, of their importance to computer implementation. The variety in this 

table shows that, even for tractable shape grammars, it is still difficult to come up with 

the design of a single uniform interpreter.  Remarkably however, of the three grammars, 

the classic Stiny grammar is the most straightforward to implement (Krishnamurti, 1982); 

shapes rules, although subject to similarity transformations, are non-parametric—that is, 
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shapes are fixed in their geometry. The polyomino grammar can be realized, symbolically, 

as shapes associated with symbols, and thus, implemented in a straightforward fashion 

using attributed strings.  Parametric shape grammars as exemplified by the Rowhouse 

grammar require further consideration. 

 

Figure 3      Rules and derivations of a grammar with emergence 

Redrawn by the authors.  Adapted from Stiny (2011) 
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2 An approach to practical grammar interpreters 

More often than not it is relatively straightforward to implement an interpreter for a 

special class of shape grammars, for example, grammars that capture building styles. As 

we cannot handle intractable shape grammars, why not focus on dealing with as many 

tractable shape grammars as possible, employing a concept, in spirit, comparable or 

similar to approximation algorithms (Cormen et al., 2004). Following this idea, we 

propose an approach for practical, ‘general’ shape grammar interpreters, as shown in 

Figure 4. The approach comprises a set of sub-interpreters, one for each class of tractable 

shape grammars. In this way, collectively, most parametric shape grammars can be 

covered.  

 

Figure 4     An approach for a practical ‘general’ shape grammar interpreter 

This approach is a perfect subject for applying techniques of object-oriented design, 

in particular, modularity, polymorphism and inheritance (Grady et al., 2007). The top-

level formalism of shape grammars can be implemented as abstract classes and methods, 

which are materialized in the sub-interpreter for each class. The shared functionalities—
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for example, interfaces, can be implemented as part of the top-level infrastructure such 

that developers for the subclass interpreters are free from unnecessary redundant work. 

The approach can be promoted to follow the successful model of the Eclipse project 

(2012), which aims at an open development platform comprising extensible frameworks, 

tools and runtimes for building, deploying and managing software across the lifecycle. 

By building a similar platform backed up by the above approach, researchers 

geographically dispersed around the world can collaboratively work on the same platform; 

each freely developing their idea as an add-in, thus contributing to their effort. Designers 

can freely download and exploit up-to-date grammar systems, testing new design ideas, 

suggesting new features and reporting bugs. Such a platform fundamentally changes the 

past discrete structure of the research of implementing a shape grammar interpreter (Chau 

et al., 2004); duplicated work is significantly reduced, and the scope of the users, greatly 

expanded. 

It should be noted that the approach proposed depends on a classification of shape 

grammars into subclasses. Moreover, the classification is considered to be ‘better’ when 

the number of subclasses is smaller, and when, simultaneously, the scope covered, 

collectively, is larger. Here, the following research question immediately emerges: what 

is the most optimal way of classifying shape grammars?  

3 Classification of shape grammars 

There are many different ways of classifying shape grammars, each from a distinct 

perspective. For instance, shape grammars could be classified based on relatively obvious 

shape properties such as, two- versus three-dimensional shapes, rectilinear versus 

curvilinear shapes, and so on. Classification could be based on definition, for example, 
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structure grammars (Carlson et al., 1991), set grammars as defined in (Stiny, 1982). 

Classification from the field of formal linguistics could be introduced, for example, finite 

versus infinite grammars based on the size of the underlying language, that is, based on 

the size of the design space.  Classification could also be based on properties of shape 

rules and/or their rule application. For example, non-parametric versus parametric shape 

grammars based on how shape rules are specified, marker-driven versus subshape-driven 

shape grammars based on how shape rule application is controlled, context-free versus 

context-sensitive shape grammars based on neighbourhood dependency when shape rules 

are applied, etc.  Knight’s (1999) six types falls into this latter category.  However, none 

of the categories are truly appropriate.  This is because that each category is so broad as 

to comprise grammars with even greater variety.  In other words, the criteria upon which 

shape grammars have been classified have not been based on elements that are 

fundamental to grammar interpretation or implementation. 

Elements fundamental to any computer program are algorithms and data structures; 

this is evident from the title of Niklaus Wirth’s (Niklaus, 1978) classic textbook 

Algorithms + Data Structure = Programs. This is equally true for shape grammar 

implementations. An implementation is, in essence, a computer program that manipulates 

the internal representation of a design—data structure—by a set of operations. The basic 

shape grammar operations of t, –, +, ≤, and R operate on a data structure, and details vary 

from one data structure to another. The exact procedure of searching for matching 

candidates depends on the data structure, so too does exact match verification. The 

underlying data structure, in turn, determines how to carry out these operations, and how 

efficient they are.  Moreover, data structure pre-fixes the power of the shape rules built on 

top of them. Stiny (1994) remarks, “the antecedent definition of meaning parts and units 
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limits the subsequent possibilities for inquiry … Descriptions fix things in computations, 

and nothing is ever more than its description anticipates explicitly.” 

The argument can also be seen from a cognitive standpoint. The design of a data 

structure is simply a particular view of the underlying subject, which is present-at-hand. 

According to Winograd and Flores (1986), “whenever we treat a situation as present-at-

hand, analyzing it in terms of objects and their properties, we thereby create a blindness.”  

Things covered by any current data structure correspond to those that are seen; the blind 

parts are left to other data structures.  

In line with this argument, the underlying data structure used to support algorithms 

for the implementation fundamentally characterizes the corresponding class of shape 

grammars. Assuming that there is always a power difference between any two data 

structures adopted, and if no other data structure subsumes any of the adopted data 

structures, then we have reached an optimal classification.  

4 Augmented practical ‘general’ approach 

The ‘general’ approach comprises a set of sub-interpreters, one for each class of shape 

grammars. Moreover each class is backed up by a data structure, which reflects the 

internal characteristics of the corresponding subset of shape grammars. 

Apart from the internal characteristics of shape grammars, there are other factors that 

influence computational tractability, for example, how shape grammars are designed and 

described. Traditionally, a shape grammar is designed to simply and succinctly describe 

an underlying building style, with little consideration on how the grammar can be 

implemented. For example, as is often found in the literature, such descriptions of the 

form “If the back or sides are wide enough, rule 2 can be used…” are inherently counter-
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computable. As a result, in order to translate this into programming code, shape rules 

have to be quantitatively specified; furthermore, there has to be enough precision in the 

specification to disallow generation of ill-dimensioned configurations. 

Closer examination also shows that there may be more than one way to describe a 

particular shape rule; it is possible that a certain way is easier to compute, and another 

might be computationally intractable. As a result, it is desirable to design an application 

programming interface -like framework to support the design of shape grammars; then, 

shape grammars that follow the framework are guaranteed to be computationally tractable. 

Such a framework is built on top of an underlying data structure and basic manipulation 

algorithms. Moreover, for the ease of code translation, a meta-language built on top of the 

basic manipulation algorithms should also be developed. As grammars in different 

classes typically have differing underlying structures, the appropriate underlying data 

structure for the framework will be different. Consequently, the overall framework 

comprises a series of sub-frameworks, one for each class of shape grammars, as shown in 

Figure 5. 

 

Figure 5     A sub-framework for each subclass of tractable grammars 
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5 Three exemplar sub-frameworks  

In this section, we examine three sub-framework exemplars as a way of illustrating the 

approach to practical, ‘general’ interpretation of shape grammars.   

In selecting sub-frameworks to illustrate the approach, it was deemed advantageous 

to initially select a sub-framework for a subclass of shape grammars with the largest 

population. It turns out that shape grammars that capture building style happens to be 

good choice. Of all the shape grammar applications reviewed by Chau et al. (2004), about 

half deal with architectural plans. Moreover, conventional buildings, namely, buildings 

with rectangular spaces or dominated by such spaces, are often the subject matter. 

Consequently, a sub-framework for shape grammars capturing corpora of conventional 

building types, namely, the rectangular sub-framework, is chosen. 

Two-dimensional polygons are another kind of shape widely used in shape grammars, 

for example, Chinese ice-ray lattices (Stiny, 1977) and Hepplewhite-style chair back 

grammars (Knight, 1981). Thus, a sub-framework for two-dimensional polygonal shapes 

is also chosen. From the appearance, such a sub-framework can be viewed as an 

extension of the rectangular sub-framework. Yet, as is shown in Section 7, the extension 

is not straightforward. In fact, both application context and basic manipulations are quite 

different. 

The rectangular sub-framework relies on a graph-like data structure.  This suggests 

that might be a relationship between shape and graph grammars; the former has been 

mainly investigated in the field of design, in particular, architectural design; the latter has 

been widely studied in computer science. The comparison in Section 7.1.3 shows that 

both differ significantly although there is noticeable commonality. Graph grammars are 
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most useful when dealing with those shape grammars, which are dimensionless and 

context-free. Accordingly, we consider graph grammars as a sub-framework for 

implementing dimensionless, context-free shape grammars. For reasons of space, the 

rectangular sub-framework is explained in detail, while the other two sub-frameworks are 

discussed in brief with less detail. 

6 Rectangular sub-framework 

Conventional buildings are buildings with rectangular spaces or dominated by such. A 

rectangular space is specified by a set of walls in such a way that the space is considered 

rectangular by the human vision system. Amongst many variations, a space can be 

specified by four walls jointed to one another, four disjoint walls, three walls, or framed 

by four corners.  See Figure 6. 

 

Figure 6     Examples of a rectangular space  

Spaces (rooms) are central to buildings—whence, to shape grammars that describe 

building styles. For shape grammars capturing corpora of conventional building types, 

shape rules are parametrically specified in such a way that parametric subshape 

recognition consists, typically, of searching a special room under certain constraints, and 

actually matching labels.  Such grammars generally start with a rough layout; details, 

such as openings and staircase, are added at a subsequent stage.  There are two main 
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ways of generating a layout: space subdivision and space aggregation.  Combination of 

the two is also possible. 

6.1 A graph-like data structure 

The interpreter needs a data structure to represent layouts with rectangular spaces; that is, 

a data structure that contains both topological information of spaces as well as concrete 

geometry (in this paper, two-dimensional) data of a layout including walls, doors, 

windows, staircase, etc.  It needs to support viewing a layout as a whole, viewing a layout 

from a particular room with its neighbourhood, or simply focusing on a particular room 

itself.  Moreover, the data structure needs to support Euclidean transformations 

augmented by both uniform and anamorphic scaling. 

A graph-like data structure has been designed to specify such rectangular spaces. 

There is a boundary node (coloured blue and tagged by the label B) for each corner of the 

rectangular space, as well as a node for each endpoint of a wall. These nodes are 

connected by either a wall edge (solid line) or an empty edge (dotted line). A central node 

(coloured red and tagged by the label R) represents the room corresponding to the space, 

and connects to the four corners by diagonal edges (dashed lines). It is needed for 

manipulating boundary nodes of room units, such as dividing a wall through node 

insertions (coloured green and tagged by the label G), creating an opening in a wall by 

changing the opening’s edge type to empty, and so on. More information about a room is 

recorded in the room node, e.g., a staircase within the space. Windows and doors are 

assigned as attributes of wall edges. Further, unlike traditional graph data structures, the 

angle at each corner is set to be right angle. A node has at most eight neighbours.  Figure 
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7 illustrates the graph-like data structure for the different variations of a space given in 

Figure 6. 

 

Figure 7     Graph-like data structure representation of a space  

A set of such graph units can be combined to represent complex layouts comprising 

rectangular spaces.  See Figure 8. 

 

Figure 8     A layout represented by a set of graph units 
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6.2 Transformations of the graph-like data structure 

The target layout is assumed to comprise only rectangular spaces, and the allowable 

transformations are Euclidean with uniform and anamorphic scaling. As shape rule 

application is label-driven, translation is automatically handled. The graph-like data 

structure is capable of easily handling uniform and anamorphic scaling, by firstly 

matching room names, then labels on corner nodes, and lastly, by comparing possible 

room ratio or dimension requirements. 

As a result, only rotations and reflections remain to be considered. As the spaces are 

rectangular, rotations are limited to multiples of 90° and reflections are either horizontal 

or vertical. Moreover, a vertical reflection can be viewed as a combination of a horizontal 

reflection and a rotation. Hence, any combination of reflections and rotations is 

equivalent to a combination of horizontal reflections and rotations. Consequently, the 

following transformations are all we actually need to consider: 

• R0: default; no rotation, with possible translation and/or scale. 

• R90, R180, R270: a rotation of 90°, 180°, and 270°, respectively, with possible 

translation and/or scale. 

• RR0, RR90, RR180, RR270: (first a rotation of 0°, 90°, 180°, and 270°, 

respectively, followed by a horizontal reflection) horizontal reflection, 

vertical reflection, or their combination, with possible translation and/or scale. 

As shown in Figure 9, transformations can be implemented on the data structure by 

index manipulation. Each of the eight possible neighbours of a node is assigned an index 

from 0 to 7; indices are then transformed simply by modulo arithmetic. For example, 

index+2 (modulo 8), counterclockwise rotates neighbour vertices through 90°. Other 



A paradigm for interpreting parametric shape grammars 

 
 

-17- 

rotations and reflections are likewise achieved. By viewing the original neighbour 

relationship for each node with the transformed indices, we obtain the same 

transformation of the whole graph. By taking advantage of this fact, we need to 

manipulate only the interior layout instead of the left hand side of every shape rule. 

Consequently, we only need to consider how to apply shape rules with the default 

transformation, which is automatically applicable to the configuration under different 

possible transformations. This gives the same results, but is much simpler to achieve. 

 

Figure 9     Transformations of the graph-like data structures 

6.3 Common functions for the graph-like data structure 

With the graph-like data structure, a layout is represented by an eight-way doubly linked 

list formed by nodes and edges. Shape rule application manipulates this structure, and a 

set of common functions shared by the shape rules can be identified.  

Some common functions are relatively easy to carry out, for example, splitting a 

room into two and merging two rooms into one, finding a room with a given name, etc. 

Others are more complicated; examples include finding the north neighbour(s) of a given 
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room, finding the shared wall of two given rooms, etc. The sequel describes the algorithm 

and pseudo code for these examples. 

6.3.1 Finding the north neighbour(s) of a given room 

A room may have zero, one, or more north neighbours (Figure 10), which can be 

represented by a list of room nodes. Intuitively, to find the north neighbour(s) of A, we 

start by finding A’s north-east corner node, nodeNE, and north-west corner node, 

nodeNW. Then, we traverse through each corner node from nodeNE (inclusive) to 

nodeNW (exclusive) along the westerly direction to find its north-west neighbours. All 

north-west neighbours found are desired room nodes. For example, in Figure 10c, the 

north neighbours found are B, and C. However, as shown in Figure 10d, this intuitive 

algorithm will miss the rightmost neighbour room, that is, when two neighbour rooms 

only partially overlap so that nodeNE is on the south edge of that neighbour room, and is 

not the desired end node. Therefore, we need to modify the intuitive algorithm to have the 

correct start and end nodes to loop through.   

 

Figure 10     Different cases for the north neighbour(s) of a room 
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Figure 11     The start and end nodes for finding neighbour room(s) 

It can be proven that nodeNW is always the correct end node as a north neighbour B 

has to overlap with room A, which means room B must has a south-east corner node, 

nodeSE, at the right side of nodeNW (Figure 11a), or is nodeNW (Figure 11c). Otherwise, 

B is not a north neighbour of A. 

The algorithm for finding the north neighbours of a given room is shown in Figure 

12.  Finding the north neighbour(s) of a given room is a special case of finding any 

neighbour(s) of a given room.  It turns out all that finding neighbour functions in the 

other three directions can be implemented as finding the north neighbour(s) under a 

certain transformation.  For example, the east neighbour(s) of a given room is the same as 

the north neighbour(s) of the given room under a R90 transformation. 
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findNorthNeighbours (A, T) 

(All operations related to directions are under transformation T) 

endNode  ← north-west neighbour of A  

nodeNE ←north-east neighbour of A  

startNode ← nodeNE 

if nodeNE has neither a north-west nor north-east neighbour 

search for a right neighbour, node, of nodeNE, with a north-west neighbour 

if found, startNode  ← node 

go through each node between startNode (inclusive) and endNode  (exclusive),  

and get all north-west neighbours, neighbours 

return neighbours 

findEastNeighbours (A)  // Other neighbours are likewise defined 

 return findNorthNeighbours(A, R90) 

 

Figure 12 Algorithm for finding the north neighbour(s) of a room 

6.3.2 Finding the shared wall of two given rooms 

In the data structure, the shared wall of two given rooms is represented as a list of nodes 

connected by edges; the simplest form of a shared wall is given by two nodes connected 

by an edge.  The pseudo-code for the algorithm is given in Figure 13. 

For any two given input room nodes, A and B, in general, the rooms may not be 

neighbouring rooms at all.  If, however, A and B are real neighbours, B can be in any one 

of four directions from A. Therefore, it is necessary for the algorithm to test all four sides 

of A; for each particular side, it is simply to test whether B is in the north neighbours 

under a given transformation T.  
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findSharedWall (A, B) 

transformations ← {R0, R90, R180, R270} 
for each transformation in transformations 

results ← findSharedNorthWall (A, B, transformation) 

if results is not null 
return {results, transformation} 

return null 
 
findSharedNorthWall (A, B, transformation) 

if B not in neighbours ← findNorthNeighbours(A, transformation) 

return null 

nodeNE ← north-east neighbour of A 

nodeNW ← north-west neighbour of A 

wStart ← null 

wEnd  ← null 
for each node, node, from nodeNE to nodeNW 

if north-west neighbour of node is A 

wStart ← node, and break 

if wStart is null, then wStart ← nodeNE (Figure 14b) 

for each node, node, from nodeNW to nodeNE 

if north-east neighbour of node is B 

wEnd ← node, and break 

if wEnd is null 

wEnd ← nodeNW (Figure14b) 

  return {wStart, wEnd} 
 

Figure 13     Algorithm for finding the shared wall of two neighbouring rooms 

If B is determined as a neighbour of A at a given side, the exact start node, wStart, 

and end node, wEnd, need to be further determined. The edge from the north-east node, 

nodeNE, to the north-west node, nodeNW, of room A under transformation T is 

guaranteed to be the wall of room A, but not necessarily the wall of room B (Figure 14a). 
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As a result, wStart may be actually a node to the right of nodeNE. This node is found by 

traversing from nodeNE to nodeNW testing whether B is its north-west neighbour or not. 

Similarly, wEnd may be actually a node to the left of nodeNW.  This node is found by 

traversing from nodeNW to nodeNE testing whether B is its north-east neighbour or not.    

 

Figure 14 Finding wStart and wEnd 

6.4 Meta-languages 

All common functions collectively form an API (application programming interface), 

which expresses the capability of its underlying data structure. Such an API facilitates the 

design of shape rules, in a way similar to how a programming language API, say, the Java 

API helps in building Java applications. Moreover, grammar designers can apply the API 

to ensure the computability of their designed grammars.  

A meta-language is a language with which to describe another language.  We employ 

a meta-language to express shape rules. Normally, shape rules are described pictorially, 

which is inherently ambiguous, and difficult to translate to a computer program.  Equally, 

describing shape rules in a programming language is likewise cumbersome for the typical 

designer who is creating the shape grammar.  A meta-language serves as a middleman 

helping to express shape rules in a manner formally more rigorous than pictorial 
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description, yet closer in form to natural language.  Every meta-language is defined 

relative to its sub-framework.  A meta-language facilitates manual translation to 

computer code. Ultimately, of course, it would be preferable to have the meta-language 

be automatically translated into the target programming language, similar in spirit to 

MetaL (2012).  The API supports descriptions of grammars via expressions in the meta-

language; that is, shape rules can be designed in a rigorous fashion so as to be easily 

translated into pieces of code, the ultimate format by which to interpret shape rules.  

Essentially, the meta-language is a set of function calls, which are predefined in the API. 

Figure 15 shows two such examples.  The meta-language is in the form of an if-then 

statement; the if-part determines whether the rule is applicable or not; the then-part 

specifies how to do the rewriting.  
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This rule adds a hall way centered about the front door to the front block 

 

Precondition: ‘Rff’ exists, and is three-bay  
 (2 windows and 1 door). 
Transformation: N/A 
 

if (roomExists(‘Rff’) && numberOfBays() == 3) 

then { 

  rooms=getRoomsBetween(‘Rfb’, ‘Rff’) 

  w = hallwayWidth(getDoor(‘frontDoor’), getRoom(‘Rfs’)) 

  foreach (room in rooms){ 

      room.horSplit(name=room.getName, width=*, name=’tmp’, width=w) 

      hf.merge(getRoom(‘tmp)) 

    } 

    hf.name(‘Hf’) 

} 

 

This rule adds a staircase to room ‘Rfb.’ 

 

Explicit condition: No staircase.  
‘Rfb’ and ‘Rff’ exist and are neighbours. 

Implicit condition: No ‘SfS.’   
Width of front block is ≤ 18'. 

Overall condition: stairFront is false.  ‘Rfb’ exist.  No 
‘SfS.’ Width of front block is ≤  18'.  

Transformation: N/A 

 

if (!stairExists() && !roomExists(‘SfS’) &&  

   roomExists(‘Rfb’) && getFrontBlock().width ≤ 18') 

then  

   room(‘Rfb’).addStaircase(position=’bottom&crossFrontDoor’,  

                            width=6, height=4, getFrontDoor()) 

 

Figure 15     Example rules in the rectangular sub-framework and their meta-language 
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7 Polygonal sub-framework 

Geometrically, the polygonal sub-framework may appear, quite simply, to be an 

extension of the rectangular sub-framework. Closer examination actually tells a different 

story; both the typical application context and basic manipulations of this polygonal sub-

framework are distinct from the rectangular sub-framework.  

While the rectangular sub-framework works for shape grammars describing building 

layouts, the polygonal sub-framework does not. The reason is that the majority of 

building spaces are rectangular rather than polygonal. Instead, shape grammars involving 

polygonal shapes are more common in describing other kinds of designs, for example, 

Chinese ice-ray lattices (Stiny, 1977), Hepplewhite-style chair backs (Knight, 1981), as 

well as abstract paintings (Knight, 1989), see for example, the nonrepresentational 

paintings of Fritz Glarner.  Such shape grammars are typically parametric and marker-

driven. The central manipulation is subdivision, which is the theme selected for the 

polygonal sub-framework. Besides subdivision, there are other auxiliary manipulations, 

such as filling colours, inscribing to the initial shape with a shape of triangle, pentagon, 

hexagon, and so on (Stiny, 1977). Such auxiliary manipulations cannot be generated by 

subdivision and are handled in a special way, by adding extra functions, or by other 

means, for example, treating the shape to be inscribed as part of the initial shape. 

Subdivision is a procedure for dividing a polygon into two smaller ones by a ‘cutting’ 

line, which is a straight-line segment, a joint line of two segments, or a polyline of 

multiple line segments. As a result, transformations become unnecessary, since an equal 

effect can be achieved by changing the coordinates of the endpoints of the cutting line.  

For example, Figure 16 shows a shape rule in which a triangle is subdivided into a 
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smaller triangle and a quadrilateral.  Shape rule (b) is a vertical reflection of the shape 

rule (a). 

 

Figure 16       A subdivision shape rule and its vertical reflection 

The determination of the position of a cutting line starts with inserting a point or 

multiple points in the interior of a polygon or on its boundary; then the cutting line is 

generated by connecting new inserted points to other existing points of the polygon, 

possibly involving line extensions and intersections, or by simply interconnecting the 

new inserted points. There are typically constraints over the candidate position of a new 

point. The constraints can be a fixed position like the centroid of a polygon, an interval 

on a line, or a particular region. This means that there are generally infinitely many 

possibilities to position a new point. Two ways frequently used to position the new point 

are manual pickup and random selection. 

Noticeably, a ‘subdivision’ of the polygonal sub-framework is different from a 

‘splitting’ of a rectangular sub-framework. The former is typically oblique while the latter 

is always horizontal or vertical. Moreover, a cutting line of the former often has infinitely 

many possibilities while the position of a splitting line of the latter is usually uniquely 

‘fixed’.   
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7.1 Common functions of polygonal sub-framework 

Key common functions include the function of dividing a simple polygon into two by a 

cutting line, and those determining the positions of the new points.  

7.1.1 Dividing a simple polygon by a cutting line 

Here, we consider a more general function, of dividing a simple polygon G into multiple 

sub-polygons by a cutting line C (Figure 17a). This problem can be solved by converting 

the problem to finding the intersection of two arbitrary (may not be simple) polygons, 

which has been well studied (Greiner and Hormann, 1998; O'Rourke, 1998; Stouffs, 1994; 

Stouffs and Krishnamurti, 2006). This is done by first finding a rectangle, which is larger 

than the bounding box of polygon G, and then forming two simply polygons, GC1 and GC2, 

by extending the starting and ending line segments of the cutting line (Figure 17b); the 

desired results will be (G ∩ GC1) ∪ (G ∩ GC2) (Figure 17c). 

A simpler but new algorithm is introduced here. This algorithm is inspired by 

Greiner and Hormann (1998). It takes advantage of the special properties of cutting lines 

in the polygonal sub-framework. A cutting line is always interior or on the boundary of 

the polygon G and has no self-intersection. Moreover, the start point Ps and end point Pe 

of the cutting line are on the boundary of polygon G (Figure 19a). In fact, any cutting line 

can be reshaped to satisfy these conditions. See Figure 18.  
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Figure 17     Dividing a simple polygon by intersection of two arbitrary polygons 

 

 

Figure 18      Reshaping the cutting line 
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Figure 19 illustrates the steps when applying the algorithm.  The algorithm starts 

from the start point Ps of the reshaped cutting line, marching to the end point Pe, segment 

by segment.  Each segment is tested for whether intersecting the polygon G or not by 

testing whether the other endpoint falls on the boundary of polygon G, for example, 

endpoint P1 for segment S1, P2 for segment S2 (Figure 19a).  

 

Figure 19       Applying a marching algorithm for polygon subdivision 
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When an intersection is found, two new polygons are created by using the cutting 

line matched so far and continuously matching right and left, respectively, along the 

polygon G until going back to the start point. The segments marched are then removed 

from the cutting line so that a new cutting line is formed for the next step (the dashed line 

in Figure 19). If the new cutting line is empty, then both new polygons are the desired 

results. Otherwise, by using the point-inside test on the two new polygons with the point 

P next to the start point of the new cutting line, the one which P does not fall inside (dark 

shaded polygons in Figure 19) is the desired result, and the other (lightly shaded polygons 

in Figure 19), together with the new cutting will be used as the input for the next step. 

The above procedure is repeated and the entire algorithm stops when the cutting line 

becomes empty (Figure 19f). 

There are possible degenerate cases when some matched segments overlap with the 

some other segments of the polygon G (Figures 19c, d, and f). In such cases, the number 

of segments in one of the two new polygons must be two; this can be easily tested and 

ignored. Another issue with such cases is that the segment coming from the cutting line is 

co-linear and connected to the next segment coming from the polygon input, and these 

two should be merged into one (Figure 19f).  The algorithm is given in Figure 20. 
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dividePolygon (G, C, newPolygons)  

S = get first segment from C 
while (the other endpoint of S not falling on G) 

marchedSegments.add(S) 

S = get next segment from C 

marchedSegments.add(S) 

I = the other endpoint of S 
C = C.remove(marchedSegments) 

divide the intersected segment of G into two if I is not its endpoints 

newPolygon1 = marching along marchedSegments and turning right at I  
until reaching the start 

newPolygon2 = marching along marchedSegments and turning left at I  
until reaching the start 

if (C is empty) 

newPolygons.add(newPolygon1) 

newPolygons.add(newPolygon2) 
return 

P2 = the point next to the starting point in the new cutting line 

if (P2 falls inside newPolygon1) 

newPolygons.add(newPolygon2) 

dividePolygon(newPolygon1, C, newPolygons) 
else 

newPolygons.add(newPolygon1) 

   dividePolygon(newPolygon2, C, newPolygons) 
 

Figure 20    A simple marching algorithm to divide a simple polygon by a cutting line  

Testing for intersection dominates the running time of the marching algorithm. The 

total number of intersection tests for marching along the cutting line is mn, where m and n 

is the number of segments in C and G, respectively. As a result, its complexity is O(mn). 
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7.1.2 Determining the positions of the new points 

Determining the positions of the new points can be done in two ways, randomly or 

manually. Manual determination needs the support of an interface, for example, 

highlighting the candidate regions, and enforcing further constraints for the next new 

point after a new point has been picked. Random determination requires computing all 

candidates of intervals and regions, and randomly selecting a point. 

7.1.3 Meta-language for polygonal sub-framework 

Figure 21 illustrates the meta-language for three examples taken from (Knight, 1980).  

The first randomly selects two points from candidate intervals.  The meta-language 

enforces the constraint on angle a, a ≥ 90º, by first, determining (x2, y2), second, creating a 

line through (x2, y2) and a perpendicular to line P2P3, third, computing the intersection 

(x, y) of the new line with line P1P3 to obtain the interval [(x, y), P3], and last, using the 

intersection of intervals [(x, y), P3] and [P3, P1, 5/8, 3/4] as the interval for (x1, y1).  

The second and third are examples of manually picking up points from candidate 

intervals and regions. All candidate intervals and regions are computed and combined as 

a candidate pool.  

 



A paradigm for interpreting parametric shape grammars 

 
 

-33- 

 

 

Point (x1, y1) is lies between 5/8 and 3/4 the distance from 
point P3 to point P1. Likewise point (x2, y2) is between 5/8 
and 3/4 the distance from point P3 to point P2. 
Angle a must be ≥ 90°. 

(x2,y2)=randomPick(interval(getPoint(‘P3’),getPoint(‘P2’),5/8,3/4)) 

line=perpendicular((x2,y2),getLine(‘P2’,’P3’)) 

(x,y)=intersection(line, getLine(‘P1’,’P3’)) 

(x1,y1)=randomPick(interval(getPoint(‘P3’),getPoint(‘P1’),5/8,3/4)& 

interval((x,y), getPoint(‘P3’))) 

dividePolygon([(x1,y1),(x2,y2)], [P1,P3,P2], []) 

 

 

 

Point (x3, y3) can be on one of the sides of the quadrilateral at 
an interval of m units away from the endpoints of these lines.  
m is a fixed constant. 
	
  

(x3,y3)=manualPick(interval(getPoint(‘P1’),getPoint(‘P2’),m) | 

interval(getPoint(‘P1’),(x1,y1),m) | 

interval((x1,y1),(x2,y2),m)) 

 

 

 

Point (x3, y3) can be within the area defined by constants c1 
and c2. This area is inside the quadrilateral with boundaries 
parallel to the boundaries of the quadrilateral.  
 

(x3,y3)=manualPick(area(getPolygon(‘P1’,’P2’,’x2’+’y2’,’x1’+’y1’), c1, c2)) 

dividePolygon([(x1,y1), (x3,y3), P2], [P1,(x1,y1),(x2,y2),P2], []) 

	
  

Figure 21         Meta-language examples for picking up new points under constraints 



A paradigm for interpreting tractable shape grammars 

 -34- 

8 Graph sub-framework 

The rectangular sub-framework may give the impression that shape grammars are just 

special cases of graph grammars (Brouno, 1990; Rozenberg, 1997), which have been 

widely studied in the computer science. The following discussion shows that both 

significantly differ from one another. However, graph grammars can be used as a sub-

framework to solve certain dimensionless, context-free shape grammars. 

8.1 Shape and graph grammars 

Graphs provide a natural way of describing complex situations on an intuitive level. At 

certain level, this characteristic caters to the advantage that visual languages (that is, 

shapes) possess. Graph grammars are rule-based modification of graphs through graph 

rule application. Graph grammars have been developed as an extension to graphs of 

formal string grammars (aka. generative grammar, or phrase structure grammars).  

Among string grammars, context-free grammars are the best understood; they have 

proven extremely useful in practical applications and powerful enough to generate a wide 

spectrum of interesting formal languages. Analogously, most research focuses on 

‘context-free’ graph grammars, which typically means local modifications of graphs 

without ‘global’ constraints. Rule application on graphs is, typically, label driven. There 

are two basic choices for rewriting a graph: node replacement and hyperedge 

replacement. 

Shape grammars are rule-based rewriting systems of shapes. In many ways, these can 

be viewed as an extension of formal string grammars to shapes. Their shared roots imply 

a close connection between graph and shape grammars. As an example, Drews and 

Kreowski investigated the properties of collage grammars, a special case of graph 
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grammars, and applied them to generate pictures, e.g., Sierpinski gasket (Drewes and 

Kreowski, 1999) (Figures 22 and 23). Likewise, such pictures can be also succinctly 

described by shape grammars (Piazzalunga and Fitzhorn, 1998; Stiny, 1977) (Figure 24). 

This suggests that there is an intersection between graph and shape grammars. 

 

Figure 22     A Sierpinski gasket 

 

Figure 23     A collage grammar for the Sierpinski gasket 

Adapted from Drewes and Kreowski (1999) 
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Figure 24      A shape grammar for the Sierpinski gasket 

Consequentially, shape grammars can take advantage of graph grammar research 

results, especially for ‘context-free’ shape grammars; that is, when shape rewriting 

happens locally. For example, as shown in Figure 25, ice-ray grammars (Stiny, 1977), 

which essentially describes a process of polygon subdivision, can be implemented as a 

graph grammar.  Each point corresponds to a vertex and each polygon is decorated with a 

hyperedge (the vertices drawn in squares together with dashed tentacles). Figure 26 

shows shape rules vs. corresponding graph rules of ice-ray grammars: the right-hand 

hyperedges are labeled either S as candidates for further rule application, or T for no 

further rule application; the choice is based on certain criteria, for example, the area of 

the underlying polygon.  Rule 3 is applied in Figure 25.  Note that there is a necessary 

step to convert graphs to figures when using graph grammars to generate designs; 

depending on the details of the conversion, such graph grammars may show different 

appearances (Figures 23 and 26). 
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Figure 25    Implementing the ice-ray grammar as a graph grammar 

 

Figure 26      Shape and corresponding graph rules of the ice-ray grammar 



A paradigm for interpreting tractable shape grammars 

 -38- 

On the other hand, shapes differ significantly from graphs and so do their grammars. 

Shape grammars do not deal solely with pure pictures; they are usually imbued with 

semantics, and represent designs in reality.  In this respect, dimensions become typically 

important. Graph grammars, however, are inherently dimensionless. Moreover, semantics 

make most shape grammars context-sensitive; this greatly limits whatever advantages are 

provided by those nice theorems of graph grammars (on the assumption that the 

grammars are context-free). 

Graph grammars are essentially label-driven; this puts further restrictions in helping 

solve the fundamental problem of subshape recognition in shape grammars. As a classical 

example (Figure 27), there are many, potential uncountable, number of square subshapes 

in a grid figure. Converting the grid figure to a graph does not change the basic 

characteristics of the problem. 

 

Figure 27      Subshape recognition in a grid figure 

8.2 Graph grammars as a sub-framework 

Research on collage grammars (Drewes et al., 1996; Drewes and Kreowski, 1999) shows 

how graph grammars can be used as a sub-framework in the ‘general’ approach to shape 

grammar interpretation. Such graph grammars are essentially parametric and label-driven. 

The underlying data structure is obviously a graph, typically undirected in the context of 
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generating designs. The central step in using graph grammars to generate designs is the 

iterative application of a set of graph rules, which is known as graph transformation in the 

literature (Heckel, 2006). Moreover, the manipulation of the underlying graph is also 

achieved through graph transformation. Thus, the key common function is the application 

of a graph rule.  

8.3 Graph rule application 

Algorithms for graph rule application (that is, graph transformation) have been previously 

investigated (Rozenberg, 1997).  In general, a graph rule r is defined by six tuples (L, R, 

K, glue, emb, appl): i) L and R are left hand side and right hand side graphs respectively; 

ii) K is a subgraph of L called the interface graph; iii) glue is an occurrence of K in R, 

relating the interface graph with the right hand side; iv) emb is an embedding relation, 

relating nodes of L to nodes of R; and v) appl is a set specifying the application 

conditions for the rule (Andries et al., 1999). It is possible that K, glue, emb, or appl is 

empty—certain combination of emptyness forms a rule with special properties, for 

example, rules without application conditions, or rules with an empty embedding relation 

corresponds to single-pushout rules.  

The application of r to a graph G replaces an occurrence of the left hand side L in G 

by the right hand side R. This is done through three stages: i) removing a part of the 

occurrence of L from G, ii) gluing R and the remaining graph D, and iii) connecting R 

with D via the insertion of new edges between the nodes of R and those of D. Note that 

the left hand side matches all isomorphic graphs and this subsumes geometry 

transformations, which are usually important in the application of shape grammars.  The 

details of the algorithm can be found in (Andries et al., 1999). 
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8.3.1 Meta-language for graph sub-framework 

The meta-language for the graph sub-framework is mainly to call the graph rule 

application function by specifying the details of the graph rules, with auxiliary functions 

to convert the final graph to shapes. Figure 28 illustrates the style of a spiral collage 

grammar and its corresponding meta-language description (Drewes et al., 1996).  

 

 
 
Starting point is a hyperedge spiral with 
three tentacles. 

Start 

Edge ‘spiral’ tri 

End Collage 

 

 
Add rotated spiral hyperedge and an any 
hyperedge. 

Rule ‘spiral’ 

Pins tri 

Edge ‘any’ (100,0) (200,0) (150,100) 

Edge ‘spiral’ ROT2D (100, 10, 0, 0, rad(rotSpiral)) 

                       ROT2D (198, 10, 0, 0, rad(rotSpiral)) 

                       ROT2D (149,110, 0, 0, rad(rotSpiral)) 

End Collage 

Figure 28       Meta-language description for rules of a spiral collage grammar  

Adapted from (Drewes et al., 1996). 
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9 The third dimension 

The three sub-frameworks illustrated thus far are all two-dimensional. There is nothing 

intrinsic in the approach to prevent a sub-framework from being three-dimensional. The 

boundary solid grammar (Heisserman, 1994) is a case in point.  

The representation of solid objects is composed of two parts: topology and geometry. 

The topology is represented as a graph composed of nodes and arcs—the nodes are 

topological elements, and the arcs represent the adjacencies between such elements. The 

geometry contains vertex coordinates for polyhedral solids. The topology together with 

the geometry forms a boundary representation. The basic operations are the Euler 

operators (Mäntylä, 1988) for modifying the topology, vertex coordinate assignment for 

modifying the geometry, label addition and removal, and state change to indicate the 

current status; these are all specified as predicates in the declarative programming 

language, CLP(R).  Figure 29 shows one such example of a basic operation, namely, the 

point_face operator, which pulls out a surface onto a point, correctly modifying the 

number of edges and vertices of the face. 

Supported by a set of basic operations, boundary solid grammars specify a subclass 

of shape grammars, which, in the context of this paper, specifies a sub-framework. 

Accordingly, the boundary representation is the underlying data structure, the algorithms 

are those for the basic operations, and the meta-language are expressions in CLP(R), and 

the subclass of shape grammars contains those describable by the basic operations. Figure 

30 shows an example of a shape rule for adding a second floor above a room. 
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point_face(Face, Height):-  

face_eh(Face, Eh), 

ccw_eh(Eh, LastEh), 

edgeh_v(Eh, V), 

face_normal(Face, Normal), 

face_center(Face, Center), 

mev(V, LastEh, VTop, EhBt), 

other_eh(EhBt, EhTb), 

scalar(Height, Normal, Direct), 

vecplus(Center, Direct, CTop), 

set_vertext(VTop, CTop), 

point_face_1(LastEh, Eh, VTop, EhTb). 

 

point_face_1(EndEh, EndEh, _, _). 

point_face_1(EndEh, Eh, VTop, EhTb):- 

cw_eh(Eh, NextEh), 

edgeh_v(NextEh, V), 

v_coord(V, C), 

mefl(V, Eh, VTop, EhTb, NewEhBt, _, _), 

other_eh(NewEhBt, NewEhTb), 

point_face_1(EngEh, NextEh, VTop, NewEhTb). 

 

 

Figure 30      The point_face operator  

Adapted from Heisserman and Woodbury (1993) 
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description(example_shape_rule, ‘Add the second floor to a room.’). 

 

lhs(example_shape_rule, [Top, Height, Room], [Room]):- 

state(second), 

label(Room, name, S), 

member(S, [room, parlor, kitchen, dining, hall, pantry]), 

not(label(Room, mark, stacked)), 

top(Top, Room), 

room_height(Height). 

 

rhs(example_shape_rule, [Top, Height, Room]):- 

stack_solid(Top, Height, NewRoom), 

make_label(Room, below, NewRoom), 

make_label(NewRoom, floor, second), 

room_colour(RColour), 

set_solid_colour(NewRoom, RColour). 

 
 

Figure 31 A rule for adding a second floor above a room  

Adapted from Heisserman and Woodbury (1993) 

10 Paradigm 

The Oxford English Dictionary gives the basic meaning of the term paradigm as "an 

exemplar, a pattern followed, an epitome or a model." It is a term that is frequently 

employed within the design profession to indicate an archetype or outstanding example.  

Design paradigms comprise functional precedents for design solutions (Wake, 2000). In 

this paper, we have developed an approach for implementing practical parametric shape 

grammars by, essentially, subdividing grammars into subclasses of tractable shape 
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grammars. We have illustrated the approach through several sub-frameworks each 

specified by an underlying data structure, basic manipulation algorithms, and a 

description meta-language.  Each sub-framework specifies a way of implementing a 

subclass of shape grammars. In terms of language space, the language covered by a sub-

framework is identical to the language of a subclass of shape grammars. However, each 

sub-framework takes advantage of special characteristics of the corresponding subclass of 

shape grammars so that implementation is manageable.  That is, although the language 

spaces are equal, the implementation may not truly implement the shape grammar 

formalism as described in its formal definition.  On the other hand, in practice, many 

shape grammars are ‘special’ in that they are, indeed, tractable. Whence, it is feasible to 

consider a paradigm—comprising elements of similarities both practical and general—for 

implementing and hence, interpreting, tractable shape grammars.  The approach presented 

in this paper constitutes such a paradigm. 
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