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Abstract. Tessellation designs composed from tiles in periodic space fillings are considered. An 
efficient algorithmic theory for the generation and enumeration of nonequivalent designs is 
developed. It is shown that each design has a graphical representation as a labelled subgraph of 
some graph whose vertices have associated integral coordinates. Detecting isomorphisms between 
designs then reduces to determining permutations of the labels of the vertices of this graph and may 
be performed in linear time. A proof of correctness for the algorithmic theory is provided. Nine 
specific algorithms for various families of designs from the archimedean tessellations are presented. 

Introduction 
In recent years there has been striking evidence of the vital role played by certain 
types of combinatorial configurations in the representation of various systems. 
Indeed many problems in design and elsewhere are formulated in terms of spatial 
structures which are subject to topological and geometrical constraints. For instance, 
architectural plans have been represented as trivalent plane maps which have prescribed 
geometric realizations (March and Earl, 1977). Other examples include such diverse 
topics as bracing structures and adaptability patterns in buildings, both of which are 
related to bipartite graphs without isolated vertices (Bolker and Crapo, 1977; Harary 
et al, 1978); Palladian schemes are seen as line designs on an underlying grid structure 
(Stiny and Mitchell, 1978); biological cell morphogenesis has been modelled as a 
recursive aggregation of simple polygonal forms on two-dimensional lattices (Eden, 
1958; 1960); the groupings called 'clusters' of sites and bonds from crystal lattices 
describe the high- and low-temperature constants of Ising models in statistical 
mechanics (Sykes et al, 1972a; 1972b; Martin, 1974; Martin and Watts, 1971); and 
crystal properties are intimately related to the topology of polyhedral configurations 
embedded in periodic two- and three-dimensional nets (Wells, 1977). This list is by 
no means complete. But it does serve to emphasize the following point: in each of 
these examples the typical combinatorial property sought is—how many distinct 
configurations are there of a given kind? 

The usual method in tackling such problems is to determine a formula such as a 
recurrence relation, a generating polynomial, or sometimes even a constructive 
procedure. Unfortunately in many instances the counting problem for spatial 
configurations is of such difficulty that no general analytical procedure has been 
devised (Harary and Palmer, 1973, chapter 10). In fact for the problems considered 
in this paper the question of determining counting polynomials remains open. Our 
only recourse therefore is to resort to computer methods. 

Access to computers creates its own special problems, which almost all enumeration 
algorithms encounter. There are two main sources of difficulty. The first is due to 
combinatorial explosion—namely, the number of distinct configurations increases 
exponentially or worse with the order of the configurations. Computationally there 
is no way of avoiding this. The second arises from the fact that spatial configurations 
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often correspond to one another through a set of spatial transformations. Two such 
spatially related configurations—referred to as isomorphs—cannot be regarded as 
distinct objects. They are instead two separate spatial manifestations of the same object. 
Consequently the elimination of isomorphic duplicates, termed isomorph rejection, is 
a matter that requires careful consideration. The importance of isomorph rejection in 
constructive enumeration is due to the fact that perhaps every possible permutation 
of the orientation in the space of the elements in the configurations may have to 
be examined. [The interested reader is referred to Corneil and Mathon (1978), 
Read (1978), Fillmore and Williamson (1974), and Williamson (1973) for an expose 
of isomorph rejection for various species of combinatorial configurations.] The 
combined effect of these two difficulties is perhaps best captured by the following 
quote (Golomb and Baumert, 1965, page 524): "... most combinatorial problems 
grow to such an extent that there is at most one additional case beyond hand 
computation that can be handled by our present day high speed digital computer". 
Clearly in order to utilize the tremendous speed of digital computers the design of 
efficient enumeration algorithms is of paramount importance. 

The efficiency of an algorithm is measured in terms of the total number of 
computational steps required and the amount of storage needed to house all the 
relevant information. These two quantities, referred to as the time complexity and 
space complexity respectively (Aho et al, 1974, pages 12-14), are expressed as order 
functionals, 0[t(p)] and 0[s(p)], where t(p) and s(p) are expressions in p, the 
problem size. An algorithm is generally deemed efficient if t(p) is algebraic in p. 
For constructive enumeration algorithms we may adopt the definition that such an 
algorithm is efficient if and only if the following conditions are satisfied, where p 
denotes the problem size—in our case the order of the configurations. 

Condition 1: Every configuration is uniquely generated in a time step bounded by a 
polynomial in p. 

Condition 2: Isomorph rejection is performed in a time step bounded by a polynomial 
in p. 

Condition 3: Storage required is bounded by a polynomial in p. 

It is instructive to reflect upon these conditions. They are not necessarily 
independent or exclusive. Often it is the case that conditions 1 and 2 imply 
condition 3. Nevertheless it is worthwhile to include it separately. Furthermore 
conditions 1 and 2 are related by the fact that if condition 2 is satisfied then there 
must exist a 'coding mechanism' which allocates distinct codes to each isomorph of 
an object, which in turn influences the lexicographical order in which the objects are 
generated, and consequently reduces the size of the search tree (this is explained in 
section 3). Thus if we can satisfy condition 2 condition 1 follows more easily. 

Let Np denote the number of distinct configurations of order p. Then an 
efficient algorithm has time and space complexities of orders 0[t(p)Np] and 0[s(p)] 
respectively, where t{p) and s(p) are polynomials in p. An efficient algorithm is a good 
characterization of a family of combinatorial configurations (Edmonds, 1965). 

The main goal of this paper is to present a general algorithmic framework for 
constructing families of spatial patterns that are based on periodic tessellations. 
The theory developed is applied to design efficient algorithms for patterns on the 
archimedean tessellations. The paper consists of two basic parts. The first part, 
comprising sections 1 through 5, introduces the relevant terms and presents the 
computational theory. The second part, formed by sections 6 through 13, describes 
the algorithms for the illustrative examples, starting with the patterns constructed on 
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the regular tessellations and followed by five classes of patterns on the semiregular 
tessellations. 

Note: All algorithms in this paper assume the standard model of computation, 
namely a random access machine with a sufficiently large but finite memory and a 
limited instruction set (Aho et al, 1974; Horowitz and Sahni, 1976; Reingold et al, 
1977). The algorithmic notation is adopted from Reingold et al (1977) and complexity 
is based on uniform cost. The graph theory terminology corresponds to Harary (1969) 
and Bondy and Murty (1976). Every effort has been made to keep the presentation 
simple yet mathematically precise. 

1 Tessellations 
A plane tessellation is a collection of objects called tiles or cells that cover the plane 
without gaps or overlap. A tessellation is also known in the literature as a tiling, 
paving, or mosaic. A pair of adjacent tiles share a common edge, and a collection of 
tiles meet at a point. Figure 1 presents examples of plane tessellations. In a similar 
fashion the solid and hypersolid tessellations covering A-space, n > 3, may be defined. 
For the sake of visual simplicity we restrict the discussion mainly to the planar case 
and merely state that the relevant theory developed herein also applies to the higher-
dimensional situation. 

Graphically a plane tessellation may be regarded as a planar map with locally finite 
vertices. Consequently the combinatorial dual map represents a dual tessellation. It 
is important not to confuse a tessellation with its map since the former is a geometric 
realization of the latter. Each map may have several distinct realizations, each with 
distinct symmetry properties. Figure 2 shows a pair of dual maps with some 
representative geometric tessellations. Hence it is the geometry of the tiles superimposed 
on an underlying topology that essentially characterizes the tessellation. 

Figure 1. 



194 R Krishnamurti, P H O'N Roe 

A tessellation is archimedean if (1) every tile is a regular polygon (or polyhedron) 
and (2) the tiles meet at each point in the same cyclic order. There are eleven plane 
archimedean tessellations, and these are shown in figure 3. Observe that figures 3(a), 
3(b), and 3(c) each consist of exactly one type of tile, namely the square, hexagon, 
and triangle respectively. These three are the regular tessellations, and the remaining 
eight are referred to as the semiregular tessellations. Since the polygons meet at 
every point in the same cyclic order, the archimedean tessellations may be conveniently 
designated by the ordered list of numbers (n1.n2. ...>, where nt is the number of sides 

Figure 2. 
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of the z'th polygon in the list around the cycle starting with the T^-gon. Often this is 
abbreviated to the form (g^.g* • —) *n the obvious way. The geometric dual tessellations 
are the Laves nets shown in figure 4. The nets are tagged by the same symbols that 

Figure 3. 
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identify the corresponding archimedean tessellations. 
The only solid and hypersolid tessellations that are archimedean are the space 

coverings by the w-cube, n > 3; hence they are also regular. 

(4.4.4.4) 
(a) 

(3.3.3.4.4) 
(d) 

(3.3.3.3.3.3) 
(c) 

^ 

u 
(3.6.3.6) 

(g) 
(3.3.3.3.6) 

(h) 
(3.12.12) 

(0 

Figure 4. 

(3.4.6.4) 
(k) 
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2 Tessellation designs 
A design on a tessellation is a finite configuration, composed of tiles of the tessellation, 
which can be embedded in the tessellation. Of the possible designs the most interesting 
class is the family of connected designs. A design is connected if every tile is adjacent to 
at least one other tile in a smaller connected design. A single tile is always connected. 
A design may be represented pictorially in essentially two ways: either as a two-
colouring of the tessellation in which the tiles in the design are coloured differently, 
or as a spatial pattern composed of polygons. The two representations are illustrated 
in figure 5. 

The designs on the regular tessellations, namely those made up of squares, hexagons, 
triangles, and w-cubes, n > 3, are more familiarly known as polyominoes, polyhexes, 
polyiamonds, and poly n-cubes respectively. The semiregular designs will be referred 
to as (n1.n2....)'Patterns, where (nl.n2....) identifies the tessellation. 

The content (or order) of a design is the number of tiles it contains. A connected 
design with content p is a p-figuration. (Henceforth the terms design and configuration 
will be used interchangeably.) A p-figuration may be recursively defined as follows: 
a (p + 1 )-figuration results whenever a new tile is adjoined adjacently to a tile in a 
p-figuration. A single tile is a 1-figuration. Since configurations are embeddings in a 
tessellation, equivalent configurations can be defined in the following manner: two 
configurations are equivalent if they are identical embeddings after a combination of 
translation, rotation, and reflection. The equivalence classes under translations are 
fixed. In addition the equivalence classes of the fixed classes under a sequence of 
rotation and reflection are free. Our aim is the enumeration of the nonequivalent 
configurations via the counting of the representatives (called canonical configurations) 
of the free equivalence classes. 

Figure 5. 

2.1 Review of the literature 
Previous attempts at enumerating the free equivalence classes of the tessellation 
designs have been directed towards the regular tessellations. Golomb (1954; 1961a; 
1961b; 1961c; 1962; 1965) initiated the study by extensive analysis of polyomino 
properties. Kelly (1966) provided an algebraic descriptor for polyominoes and was 
able to demonstrate the existence of solutions for certain packing and covering 
problems. Eden (1960) and Klarner (1965; 1967; 1969; and with Rivest, 1973) 
applied highly rigorous combinatorial arguments to arrive at good upper and lower 
bounds for the number of p-ominoes as p approached asymptotically large values. 
Let Sp, Hp, and Tp respectively denote the number of p-ominoes, p-hexes, and 
p-iamonds. Set S, S, and T to the limits defined by 

F = Urn =-*- , 
p -»• oo rp _ i 
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where F stands for S, H, or T as appropriate. It has been shown that F exists in all 
three cases and that 

3-72 < £ < 4-65 , 4 < i ? < 6 - 7 5 , and 2-13 < T < 4 . 

These bounds are currently the best possible known. 
Other approaches include Read's (1962) computational scheme to count poly-

ominoes ('animals' as he calls them!) via bounding rectangles. The method is elegant 
in that one can obtain the counting polyomials for the p-ominoes in their boundary 
rectangle, but suffers from excessive time and space requirements even for small ps. 
Parkin et al (1967) and Lunnon (1969; 1971) reported results based on computer-
implemented strategies. Their approach is essentially a restricted type of brute-force 
enumeration similar to the choice enumeration developed in this paper. In fact many 
of Lunnon's ideas have been freely borrowed. 

At around about the same time Sykes and his collaborators (see, for example, 
Sykes et al, 1972a; 1972b; 1972c), working in statistical mechanics, employed 
computer methods to enumerate the number of distinct p-clusters of sites on various 
lattices. A cluster is an analogue of a polyomino and corresponds to a high-temperature 
lattice constant. Martin (1974) presents a survey of their computational methods. 
After literally hundreds of hours of computing, Sykes and Glen (1976) report on 
asymptotical results based on a Pade extrapolation technique (Gaunt and Guttman, 
1974) to obtain the limits for S, H, and f, namely 

£ = 4-06±0-02 , 77= 5-19±0-03 , and f = 3 - 0 4 ± 0 - 0 2 . 

These results seem to match those of Lunnon (1972) who used a logarithmic 
extrapolation technique. 

Tilley (1970), in his MA thesis, presents efficient and attractive coding schemes 
which form the basis for algorithms to enumerate classes of tessellation designs called 
filaments (which are topologically equivalent to paths). His coding scheme also 
provides a method for defining a recurrence relation for the upper bounds on the 
number of filaments which gives results very close to actual counts for small ps. 
Lunnon (1975) extends his approach to the higher-dimensional forms and presents 
counts for poly n-cubes, 3 < n < 7. 

There have been attempts to find the counting polynomial for tessellation designs 
directly. Harary and Read (1970) obtained a counting polynomial for tree-like 
polyhexes with no 'periconnections'. Palmer (1972) used their approach to lay the 
foundations for a graph-enumerative technique by obtaining the counting polynomial 
for a variant of the polyomino counting problem. (The variant he considered was a 
relaxation of the valency restriction on the points of the square tiles—not necessarily 
limited to four—in the configuration.) Later Harary et al (1975), using both 
approaches, obtained the counting polynomials for the counting problem for arbitrary 
polygonal tiles under this relaxation. The problem of finding counting polynomials 
for the tessellation designs remains open. 

3 An algorithmic technique 
We now review atechnique— backtrack programming—which is the most widely used 
search strategy for the constructive enumeration of combinatorial configurations. The 
term backtrack programming was first coined by Lehmer in the 1950s (see his survey 
article in 1964) and later formalized by Walker (1960) and Golomb and Baumert 
(1965), and more recently by Bitner and Reingold (1975). One of the earliest uses 
of backtracking was Tarry's (1895) maze-threading algorithm. Briefly backtracking 
may be described as a search for a solution (configuration) by continually extending 
partial solutions. At each stage of the search, if an extension of the current partial 



On the generation and enumeration of tessellation designs 199 

solution is not possible the algorithm backtracks to an earlier stage (that is, to a 
smaller partial solution) and tries again. 

Formally backtracking assumes that a configuration can be expressed as a p-tuple, 
(al9 a2,..., ap), where the at are members of linearly ordered lists Af. Each p-tuple 
satisfies predetermined constraints. Every configuration therefore is a member of a 
subspace of the direct product AP = i j x i 2 x ... x Ap of p selection spaces. For 
k < p, let fk stand for the function fk(a1, a2,..., ak) from Ak to {0, 1} such that 

/ * = 1 = > / , < * = 1 . 

The counting problem is to determine all nonequivalent (a l 5 a2,..., ap) such that 
fp = 1. The search procedure is given in ALGOL-like notation in algorithm 1. 

The algorithm may be described as follows. Initially choose the null vector ( ), as 
the starting solution. Using the constraints determine which members of. Ax are 
candidates for ax\ let this subset be Cx. Choose a least element of Cx as au and now 
we have a partial solution, (ax). In general the various constraints determine which 
subset Ck of Ak provides possible candidates for the extension of the partial solution 
(au a2, ..., tffc-i) to (fll5 a2, ..., ak). They are precisely all as that satisfy ak = a and 
fk = 1. If the partial solution admits no possibility for ak then Ck = 0 , so we 
backtrack and make a new choice for ak-u ak-2, and so on. It is helpful to picture 
this as a tree traversal. The subsets of Ak, k = 0, 1, 2, ..., are represented as a rooted 

Algorithm BACKTRACK 
f iterative procedure for backtrack programming |̂ 
Cl<-Al 

while k > 0 do 
fwhile Ck^ 0 do 

f ak+- least element in Ck 

\Ck^Ck-{ak} 
J if k = p 
] ] then {aua2, -,ap) is a solution 

else P + *"1 

Algorithm 1. 

root 

choices for Cj 

choices for ca given ax 

choices for a3 given aXi a2 

choices for a4 given ax, a2, a3 > . J T X -t 

Figure 6. 
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tree as follows. The root of the tree, at the Oth level, is the null vector. Its sons are 
nodes representing the choices for a-\. In general at the fcth level the nodes represent 
choices for ak given their ancestors a1,a2, ..., cik-i- The search tree assumes the form 
shown in figure 6. In this tree the dotted lines indicate the order in which the nodes 
are traversed. Since the traversal proceeds as deep as possible before backtracking it 
is often referred to as depth-first search (Tarjan, 1972). 

A recursive description of backtracking is given in algorithm 2. 
The simplicity of depth-first search permits an elegant proof of correctness for the 

algorithm. The following results are easily shown. 

Lemma 1: The search is finite. 

Proof: Since the search tree is finite and every node is traversed exactly once. 

Lemma 2: All p-tuples (al,a2, ..., ap) are uniquely generated. 

Proof: By induction. Clearly all 1-tuples are uniquely generated. Suppose this is 
true for all fc-tuples. All (k+ l)-tuples may be constructed in the following manner. 
For each fc-tuple append an ak+1 from the selection space Ak+1. For each pair of 
(A:+l)-tuples either they differ in the last place or in the first k places. 

An immediate corollary is the following lemma. 

Lemma 3: If the sequence (/i,/2> •••> fp) is well-defined then the algorithm is correct, 
where by well-defined is meant that 

/ * = 1 =* • / /<*= 1 and fk= 0 => fl>k = 0 . 

Proof: Obvious. 

Remark: One must be careful when applying these lemmas directly to a particular 
application. It is possible to apply backtracking strategies to generate unordered 
p-tuples that represent configurations. In such cases two distinct ordered versions 
may represent identical configurations and not isomorphic variations. However, with 
a bit of manipulation in the way the fk are defined, the problem of producing 
duplicates may be overcome. This is demonstrated for the tessellation designs. 

A few comments on the efficiency of backtracking are in order. The efficiency is 
due to the fact that if fk = 0 then f > k = 0, no matter what choices are made for 
the remaining p — k components. Clearly the efficiency increases if, for many 
solutions (al,a2,..., ap) for which fp = 0, fk = 0 for small values of k. 

Another way of increasing the efficiency is to avoid and reject partial isomorphic 
solutions. The rejection process employs the fact that the configurations are generated 
in lexicographical order. This permits us to merge several branches of the search tree 

Algorithm DFS(fc) 
51 recursive depth-first search % 
if k> p 
then (ai, a2,..., ap) is a solution 
else 

i 
for a E Ak do 

if faiflu a-i ,....,<*) = 1 
f ak*-a 

01611 { DFS(fc+l) 
return 
f invoking routine 51 
DFS(l) 

Algorithm 2. 
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associated with nodes corresponding to partial isomorphic solutions. Again this is 
very effective for small values of k as this causes very large subtrees to be eliminated. 

Furthermore when searching for solutions it is efficient to arrange the selection 
spaces Ak in increasing order of cardinality. It has been observed statistically that 
backtracking due to Ck = 0 occurs at fixed levels and such an ordering of the As 
results in fewer nodes being searched. For further pruning methods the reader is 
referred to Bitner and Reingold (1975). 

We conclude this section by noting that backtracking is an algorithmic statement of 
the familiar inclusion-exclusion principle in combinatorics. 

4 Representation of tessellation designs 
4.1 Graphs 
The graph of a tessellation is constructed in the following manner. Assign a vertex to 
each tile in the tessellation. Join by an edge pairs of vertices corresponding to adjacent 
tiles. It is easy to see that in the planar case this graph is the dual map, although in 
ft-space, n > 3, it has sometimes been referred to as a dual tessellation. Clearly any 
p-figuration corresponds to a connected subgraph on p vertices of the tessellation 
graph. For the plane archimedean tessellations the graphs are the Laves nets (figure 4). 
The graph contains all the structural information necessary to specify the tessellation. 
For instance, in the planar case the degree of a vertex describes its corresponding tile 
type; if the degree is ra, the tile is an ra-gon. The length of the smallest cycles in the 
graph is the number of tiles that meet at a point. The degree sequence in these cycles 
provides the identification tag for the tessellation. 

4.2 Coordinate representation 
Since the crucial consideration in any spatial algorithm, especially of the kinds 
considered in this paper, is the elimination of isomorphs (equivalent configurations), it 
follows that an adequate mechanism for coding configurations is essential. Moreover 
it would improve the efficiency with respect both to space and time if these codes 
were unique and took on integral values (usually in the form of ra-tuples, m < p). 
The first step in devising such a code depends upon our ability to assign integral 
'coordinates' to the vertices of the tessellation graph. For the square and ft-cube 
tessellations these coordinates are relatively simple to obtain. They are in fact simply 
the integral Cartesian coordinates. That is, every vertex is assigned coordinates 
(x1,x2, ..., xn). The adjacent vertices have coordinates (x l5 x2, ..., Vi, —, xn), where 
r\t = xt ± 1 for all possible /. 

For the hexagonal and triangular tessellations [figures 3(b) and 3(c)] the problem is 
not so straightforward. Instead we need to go through a subterfuge. Consider an 
arrangement of cubes in 3-space whose centers have integral coordinates (x,y,z) 
satisfying x + y + z = 0. Take a simple 45° isometric projection onto the plane as 
shown in figure 7(a). The result is the rhombic tessellation. Simultaneously removing 
all trivalent points and their associated edges gives the desired hexagonal tessellation 
shown in figure 7(b), in which each tile is associated with integral coordinates (x,y, z) 
such that x + y + z = 0 [see figure 7(c), where x denotes —x]. Alternatively Lunnon 
(1972) suggests the following construction. Consider a cube with center at the 
origin, (0, 0, 0). Pass the plane x + y + z = 0 through this cube, as in figure 7(d). 
Extending this construction to the cubic tessellation and taking the projection of this 
plane gives the (3.6.3.6) tessellation. Coalescing the triangle in the manner shown in 
figure 7(e) by the superimposed dotted hexagon gives the desired hexagon and same 
coordinate system as previously obtained, but in a different orientation [figure 7(f)]. 
The latter orientation will be used in this paper. Also, it is interesting to note that 
figures 7(a) and 7(e) are geometric dual tessellations. 
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The coordinates of the adjacent vertices of vertex (x, y, z) are given by the 
six-element set 

{{x,y± 1, z + 1), (x + 1, y, z ±1), (pc±l,y*l, z)} . 

Notice that the hexagons can be coloured in a natural way by use of three colours 
according to whether x — y = 0,l,2 mod 3. Now let us obliterate the tiles of a 
particular colour by contracting them to a point. The result is the triangular tessellation, 
shown in figure 8 in one of the three possible combinations of two colours. From 
this it is evident that a triangular tessellation corresponds to a hexagonal tessellation 
on two colours—that is, the set of polyiamonds is a subset of the set of two-
colourable polyhexes. 

(a) (b) (c) 

(d) (e) (f) 

Figure 7. 

Figure 8. 
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Each triangular tile is either of type 'IT or of type 'D' depending on whether it 
points up or down respectively. The neighbours of vertex (x, y, z) are given by 

'D': {(* , j / - l ,z+l) , (x+l,y,z-l)A*-hy+hz)} 

'IT: {x,y + l,z-l),(x-l9y,z+l)Ax+l9y-l,z)}. 

For convenience a triangular tessellation will be regarded as a hexagonal tessellation 
with forbidden 'tiles'. 

The integral coordinates for the semiregular patterns are taken up in the examples. 

4.3 Bounding regions 
The bounding region for a p-figuration is a smallest region that encloses it. The 
region is chosen so that it possesses certain symmetry properties that facilitate 
computation. For instance, every polyomino can be encased within a rectangle, every 
poly hex inside a hexagon, and every poly ft-cube inside an n-rectangle (see figure 9). 
Clearly the outline of a tessellation design is the smallest polygon. However, from a 
computational viewpoint the bounding region is so chosen that it enables certain 
properties to be conveniently extracted, such as symmetry transformations and the 
coding of configurations. This is probably better illustrated when considering the 
specific examples. 

Every p-figuration must touch all sides of its bounding region; for example, the 
defining lines of the rectangle or hexagon and the defining faces of an n-rectangle. In 
other words, a p-figuration spans its bounding region. Furthermore it can be shown 
that, under the given conditions, every p-figuration has a unique bounding region. An 
added bonus from considering bounding regions is that, for any p, the set of bounding 
regions is finite and can be calculated fairly easily. 

A bounding region may also be regarded as an ra-figuration, m> p, which contains 
as subconfigurations its spanning p-figurations. The graph of the bounding region, 
referred to as a trellis, is a subgraph of the tessellation graph. A p-figuration corresponds 
to a connected spanning subgraph on p vertices of its trellis. 

rn prn 

i 

Figure 9. 

4.4 Symmetry transformations 
A symmetry transformation is a spatial operation that maps a configuration either 
onto itself or onto an isomorph. These transformations form a group which is usually 
the symmetry group of the dominating tile type. For the square tessellation, the 
symmetry group is the dihedral group D4; for the hexagonal tessellation it is the 
group D6; and for the rc-cube tessellation it is the orthogonal group of rotations On. 

Since each configuration has a unique bounding region, we need only consider the 
symmetry transformations that leave the bounding region invariant—usually these are 
small-order subgroups of the group of symmetries of the dominating tessellation tile. 
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Since the tiles have integral coordinates, the symmetry transformations reduce to 
coordinate-coordinate mappings. This can be improved upon. If we label the vertices 
of the trellis then a symmetry transformation is simply a permutation of the labels. 

4.5 Coding of configurations 
We can associate with every trellis a word which is a polynomial of the form 

where m is the number of vertices in the trellis and xt is a formal mark representing 
vertex vt. Since a p-figuration is a subgraph of its trellis, it has associated with it a 
word of the form 

P l * l + P 2 * 2 + ." + Pm*m , 

where p,- G Z2 = {0, 1} for all possible /; pt. = 1 if and only if vertex vt is in the 
graph of the configuration. Clearly for a p-figuration Zpz- = p. This gives a unique 

code for the configuration within its trellis. Let r denote a permutation of the 
vertices onto themselves. Then an isomorphic configuration has the word 

P I * T ( 1 ) + P 2 * T ( 2 ) + - +PmXT(m) , 

or equivalently 

P T _ 1 ( 1 ) * 1 + PT~1(2)X2 + ••• + Pr-X{m)xm > 

where r _ 1 is the inverse mapping, r is an element of Tt, the group of symmetries 
that leave the trellis t invariant. 

Since the polynomial is linear in Z2 , we can represent it as a binary number. Hence 
every p-figuration corresponds to a pair (t, b), where t identifies the trellis and b is 
the binary representation of the configuration word {b = pxp2 ... pm radix 2). 

A canonical code for the representative of each free equivalence class of 
configurations may now be derived. Since a bounding region may be placed any where 
in the space under consideration, we need to fix the orientation of the bounding 
regions. We do this by defining an order relation on the defining lines of the region. 
This has the effect that no two bounding regions for p-figurations, with p fixed, 
correspond to one another through a combination of rotations and reflections. Let Tt 

be the group of symmetry transformations that leave the bounding region t invariant 
in the space. Consider a configuration b. Let r(b) represent the transformed 
configuration under r, where r G Tt. Define the sets Tt' and Tt" as follows: 

Tt = {r G Tt: r(b) spans t) , 

Tt" = {r G Tt: r(b) spans a smaller bounding region} . 

Let ^ be an order relation defined on binary numbers. Then a configuration b is the 
representative of a free equivalence class of configurations if and only if (1) T" = 0 
and (2) b ^ r{b) for all r G Tt'. Here we have (without ambiguity) allowed r(b) to 
represent the binary number of the transformed configuration. Any configuration 
that satisfies these two conditions is called the canonical configuration of its free 
equivalence class and b is the canonical code. In general Tt" = 0 and Tt' = Tt. In 
the examples considered the only configurations for which this does not hold are the 
<3.3.3.4.4) patterns. 

Often b is unwieldy to use directly in moderately sized computers in the manner 
presented here. Instead we split it into smaller numbers. The code for a configuration 
becomes a prefixed fc-tuple of the form (t; bl9b2, ..., bk). Usually the prefix t is 
dropped from the code when the trellis under consideration is unambiguously known. 
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5 Computational details 
5.1 A graph problem 
The following problem plays an important role in generating the archimedean patterns 
with respect to their bounding regions. Suppose we are given a graph G = (V,E), 
where V is the set of vertices of the graph and E the set of edges, and a finite collection 
of subsets of the vertices, S* = {SUS2,...}, where Sg Q V for all S{ G S\ We are 
required to find: 
(a) a connected labelled subgraph P = (VP,EP), with \VP\ = p < \V\, such that 

Vp n S =£ 0 for all S G S*; and 
(b) all possible connected labelled subgraphs that satisfy (a). 

5.1.1 Distance measures on graphs. Let 2V denote the power set (the set of all 
subsets) of V and let Z denote the integers. Then define the distance measure 
d: 2V x2v ->Z by 

d(u, v) = the length of the shortest path between vertices u and v; 

d(S, v) = the length of the shortest path between set S and vertex v 

= min{d(u, v): u G S} . 

Let 4- be an operation on sets such that 

d(S+ T, v) = the length of the shortest tree linking vertex v and sets S and T. 

That is, + joins S and T via a shortest tree through vertex v. Clearly we have 
d(S+ T, v) < d(S, v) + d(T, v), with equality if and only if v joins sets S and T by a 
pair of edge-disjoint paths. 

The distance measure may be extended to subgraphs. Suppose G' = (V, E') is a 
connected subgraph of G = (V, E). Let d(Gr,v) and d{G\ S) denote the distances 
d(V\ v) and d(V\ S), where 

d(V\ S) = the length of the shortest path between a vertex in V' and a vertex in S 

= mm{d(S, v): v G V'} . 

The measure d(G', S+T) may be similarly defined. Again clearly we have 
d(G', S+T) < d(G\ S) +d(G\ T), with equality if and only if G' is connected to 
sets S and T by edge-disjoint shortest paths. 

If G' is the required graph P satisfying problem 5.1(a) then (1) d(P, S) — 0 for all 
S G S* and (2) d(P, ±S) = 0, where ±S = Sx 4- S2 + S3 4-..., summed over all % G S*. 

Furthermore if G' = (V',E') and G" = (V",E") are two graphs satisfying 

V = V" U {v} and E' = E" U {(u, x) G E: x G V"} 

then the following recurrence relations must hold: 

d(G\ z) = min{d(G", z), d(v, z)} , for all z G K , 

d(G', 5) = min{d(G", 5), d(5, i;)}, for all S G S* , 

d(G\ S+ T) = mm{d(G'\ S+ T\ d(G", S) + d(T, v), d(G", T) + d(S, v), d(S+ T,v)} . 

These formulae give the requisite background for developing a backtracking strategy 
to find the required graphs. 

5.2 Description of the algorithm 
The main idea is recursively to construct a connected partial graph Gq on q vertices 
from a connected partial graph Gq-l on q — 1 vertices until q = p. 
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Let v1,v2, ..., vq-x denote the vertices chosen in that order to generate the sequence 
of graphs Gl9 G2, ..., Gq^x. The qth vertex, vq, is chosen from the list of 'available' 
and/or 'free' vertices (explained at the end of this section), each of which must be 
adjacent to some vertex in Gq-X. This ensures the connectedness of the partial graph Gq. 

To ensure that eventually Gp is the required subgraph P, it must be assured that 

d(Gq,iS)<p-q . 

In other words, the total length of the shortest forest from Gq to the sets in S* must 
not exceed the number of additional vertices required to complete the construction 
from Gq to Gp = P. 

Suppose there is a graph Gq but no vertex vq+1 that satisfies these conditions. The 
search backtracks to vq-x, 'forbids' the current vertex chosen as vq, and the search 
restarted with a new possible candidate for vq. When all possible choices for vq have 
been exhausted, the search backtracks from search level q -1 to search level q - 2, 
releasing all vertices forbidden for level q. The most recent candidate for vq-X is 
forbidden. A hew candidate for vq-x is chosen and the search proceeds until either a 
graph Gp = P is found or eventually the search backtracks to the initial vertex. The 
initial vertices are chosen from the elements of a subset, say 5 l 5 in S*. 

Notice any vertex chosen as vr is forbidden whenever all possible candidates for 
vr+i have been exhausted. Consequently any vertex u in V chosen as vr can never be 
chosen as vq,q > r. Furthermore any vertex that does not satisfy the distance 
condition at search level r cannot possibly satisfy it at search level q,q > r; hence it 
may also be forbidden from further consideration. Suppose this were not so. Then 
at some level r 

d(Gr,tS)> p-r 

and at level r+ 1 

d(Gr+1,±S)<p-r-l . 

Clearly the shortest forest must contain a path from vr+1 to the sets in S*. Since vr+1 

is adjacent to a vertex in Gr, d(Gr, tS) = d(G r+1, i>£)+1, which implies that 
d(Gr, SS) < p — r, a contradiction. Whence the following result holds. 

Lemma 4: d(Gr, tS) > p-r =* d{Gq > r, tS) > p-q . 

The vertices of the graph by this search procedure are always forbidden at the 
earliest possible level. Suppose u and v are vertices that are in the same choice s e t -
that is, are possible candidates for vq for some q. Let the algorithm choose vq = u 
and vr > q = v. By the forbidding mechanism, whenever vq = v there is no r > q 
such that vr = u. Since this is always true for every pair of vertices in every choice 
set at every level q, and from the fact that every connected graph can be built from 
a smaller connected graph, the following lemma holds. 

Lemma 5: Every subgraph is uniquely generated by the algorithm. 

L e t ^ be a Boolean function defined as follows: 

fq = 1 if and only if Gq is connected and d(Gq, tS) < p-q . 

Immediately as a corollary of lemma 4 we have the following. 

Lemma 6: The sequence of functions ( / i ,^ , . . . ) is well-defined—that is, 

fi=l ** /*<i = 1 and fi= 0 => fk>l = 0 . 

Lemmas 3, 4, 5, and 6 result in the following theorem. 
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Theorem 1: The algorithm is correct and generates every configuration exactly once. 

A vertex is 'available' if it is not currently in Gq but is adjacent to some vertex 
(=£ vq) in Gq. When it is adjacent to vq and no other vertex in Gq it is 'free'. 

5.3 Data structure 
In order to implement the search scheme described in section 5.2, the use of an 
efficient data structure is necessary. 

The graph is represented by a set of adjacency lists, one for each vertex in the 
graph. The adjacency list for a vertex v is a linked list containing all vertices adjacent 
to it, listed in random order, and is denoted by A(v). The adjacency structure for a 
graph comprises all its adjacency lists and is represented by two arrays, link and 
head, as shown in figure 10. The order of the vertices in these arrays is again 
random. Adjacency lists involve only memory fetches for finding a neighbour and 
operate in 0(1) time per neighbour. The adjacency structure requires 0(\E |) space to 
store the graph. 
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Figure 10. 
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A picture of the current description of the vertices is stored in an array, picture, 
which takes on values 

1 0 if i; is free, 
- 1 if v is forbidden, 
+ 1 if v is available. 

The current subgraph, Gq say, is represented by an array, vertex, where 

vertex[q] = the vertex in Gq chosen as the vertex to construct Gq from Gq-X. 

Once the subset vertex[\, ..., q] is given, the edge set Eq can be easily constructed 
from the adjacency structure of G. Figure 11(a) presents one such Gq. 

Since any candidate available at level r is also available as a candidate at level q, 
q > r, the list of candidates at level q contain as sublists lists of candidates for each 
level r, r < q. Let Cx = {uj G ^ E S*}. Clearly the selection space for vertex v2 is 
given by C2 = [Cl U Aiv^]. In general Cq = [Cq-X U A(vq.x)]. Hence 

Cp 2 Cp_! 2 Cp-2 2 . . . 2 Cj. 

To avoid maintaining duplicate lists, a linked stack is employed. Essentially a 
linked stack is a linked list in which each node is a stack. The stacks may be defined 
as follows: 

B2 = {v G A{vx)\ picture[v] = 0} 

Bq = {v G AiVg-i): picture[v] = 0} . 

Clearly Cx = Bl9 C2 = Bx U B2, C3 = Bx U B2 U B3, etc, where the Bs are disjoint 
sets. Each set Bt resembles a stack and contains a pointer to a stack at a previous 
level. This is illustrated in figure 11(b). 

This linked stack can be simulated by use of an array LS: if u is an unoccupied 
vertex adjacent to some vertex in the current subgraph Gq, LS[u] is the 'next' 
candidate for vertex vq. By 'next' is meant next in order of consideration as the 
qth vertex. The data structure for the linked stack LS is shown in figure 11(c). 

The array LS is manipulated as follows. Suppose u is the current vertex chosen as vq. 
We examine the adjacency list of u, A(u), and disregard all vertices which are either 
forbidden {picture = —1) or are in LS and are available (picture = +1) and link the 
rest to the end of LS and set their picture values to 4-1. The last vertex added to LS 
is selected as the (q+ l)th vertex vq+l. Its picture value is set to —1 and the search 
proceeds recursively forward. When the search backtracks, all possible G^+1s obtainable 
from the current Gq have been explored, and we select the next choice for vq stored 
in LS[u] and set its picture value to —1. The process is repeated. 

Eventually either a graph Gp = P is found or vq becomes null—that is, all possible 
choices for vq have been exhausted. All vertices forbidden at level q are released to 
their original description and the search backtracks to the predecessor vertex, vq _ i. 

5.4 Algorithms 
The algorithms for problems 5.1(a) and 5.1(b) may be housed in the same algorithm. 
An ALGOL-like description is provided in algorithm 3. For problem 5.1(a) a halting 
condition is introduced after the first instance of Gp = P, indicated by the statement 
labelled Al. Certain observations can be made. 

First, the procedure constructs all labelled graphs. To find the unlabelled graphs 
(those equivalent to the free equivalence class) we need to test whether the graph is 
canonical in the manner defined in section 4.5. This is included in statement A2, 
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else 

where CANONICAL is a Boolean-valued procedure which returns a true or false value 
depending on whether the graph is canonical or not. A crude form of canonical 
testing using the word description of a configuration is shown in algorithm 4. This is 
improved on as we consider the individual examples. 

Algorithm GRAPHfa) 
U construct graph Gq+i from current partial graph Gq = (Vq,Eq) % 
if q =p 

Gp is a desired graph P % 
then { Al: if problem 5.1(a) then halt 

A2: if CANONICAL(Gp) then Gp is an unlabelled representative of its equivalence class 
Bl: ^ navail indicates the number of unforbidden vertices in G % 

if navail > p-q 
K construct the stack Bq+i; 

save and nl are locally declared variables ^ 
B 2 : . H / < - 0 
bot^LS[veitex[q)] 
for w GA(vertex[q]) do 

if picture [w] = 0 
' % link w to bottom of LS; 

bot points to current bottom of LS % 
then { LS[w]+-bot 

bot^w 
~picture[w]<-\ 

5| select the next candidate for vq+l % 
save <- bot 
while bot i=- null do 

then < fB3: navail -<-1 
nl+<-l 
d(VqU{bot}, iS) < p-q-I 

i vertex [q+1]*- bot 
D: 
GRAPHS 4-1) 
E: 

bot ^-LS [bot] 
% restore all picture values to their original description f 
while save =£ LS [vertex [q] ] do 

f picture [save] +- 0 
\ save <-LS [save] 

B4: navail+ <-nl 
bot*-vertex[q] 

return^ 
% invoking routine; 

let G = (V,E) denote the graph; 
vertex vx is selected from some set, say 5 l 5 in S* H 

B5: navail *-\V\ 
for v E Si while navail > p do 

if picture [v] = 0 
' bot^vertex [\]<-v 
LS[v]<-null 

| picture [v] <-1 
B6: navail-^1 
GRAPH(l) 
f the following statements are included if unlabelled representatives are required; 

71(G) is the group of symmetries for G f 
F: for T € T(G) do 

if picture [T(V)] = 0 

m e n JB7: navail-^-1 

if C: 

then 

then 

Algorithm 3. 
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Second, notice we need only consider a two-valued description for the picture values: 

. . r ! J 1 if v is available or forbidden, picture[v] = < 
10 otherwise. 

In other words, we need only recognize those 'free' vertices adjacent to vertex vq at 
each search level q. 

Third, the search tree may be further pruned. Let navail denote the number of 
unforbidden vertices—that is, the number of vertices that may be possible candidates 
for selection. Initially navail is set to the number of vertices in G, namely \V\. At 
each stage q the search can continue if and only if navail > p-q. Furthermore 
suppose we are interested in the free configurations. Let the vertices in Sx E S* 
be labelled from 1 to \SX\ inclusive. Under this condition, after every choice for vx 

has been made and all graphs Gp have been constructed from the current G1? we can 
forbid all the symmetry transforms of vx. The manipulation of navail is indicated in 
statements prefixed by the label B. 

Statement C indicates the distance criterion that must be satisfied in order that the 
search may continue. 

Statements D and E are dummies included for the various coding schemes developed 
in the individual examples. 

Algorithm CANONICAL(G) 
f bin is an array that stores successive powers of 2 % 
flag <- true 
fl construct code for G ^ 
code <- 0 
for / G {1,..., p } do code + «- bin [vertex [i] -1 ] 
% test isomorphic codes |̂ 
for r G 7\G) while flag do 

'isomorph^O 
for / E {1,..., p } do isomorph + «-bin [r(yertex [i]) - 1 ] 
]̂ < is an order relation (see section 4.5) [̂ 

[flag<-code ^ isomorph 
return (flag) 
Algorithm 4. 

In the discussion to follow we demonstrate how some of the archimedean 
configurations reduce to being solutions of appropriate graph problems of the type 
just explained. 

6 Polyominoes 
6.1 Bounding regions 
Recall from section 4.3 that every p-omino is uniquely enclosed within a smallest 
rectangle. For a fixed p we may determine the set and number of bounding 
rectangles to house the family of p-ominoes. Let (Zr, l2) denote the lengths of the 
sides of a rectangle measured along the x- and ^-directions respectively. In order that 
Zx and l2 define a bounding rectangle for p-ominoes, p fixed, they must satisfy 

/i + / 2 < P + l > (1) 

hh>P, (2) 

h > h • (3) 
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Condition (1) is a restatement of the maximally stretched condition. Maximally 
stretched configurations are graphically equivalent to trees (see figure 12). Condition (2) 
states that if the bounding rectangle is pictured as a rectangular array of square 
cells then it must contain a sufficient number of such cells to house a p-omino. 
Condition (3) fixes the orientation in space of the bounding rectangle. Every (/2, /i) 
rectangle is a %TC rotation in the plane of an {lu I2) rectangle. In other words every 
p-omino in an (/l512) rectangle corresponds to an isomorph in an (/2, / t) rectangle. 

These conditions are plotted in figure 13. Based on this diagram the following can be 
shown. 

6.1.1. The set of bounding regions for p-ominoes, p fixed, is given by 

A* = {(/i,/2): K f c < | Y | , max {fc, [jr] } < h <P+ 1-fc} , 

where, for any real number r, |>1 denotes the least integer greater than or equal to r. 

6.1.2. The cardinality of Ap is given by 

where, for any real number r, [r\ denotes the greatest integer less than or equal to r. 

6.1.1. defines the algorithm for generating the bounding rectangles. 
Suppose (/l5/2) £ Ap. Let lx = lx - 1 and ly = l^ - 1. The trellis of this bounding 

rectangle is drawn in the plane with the vertices associated with integral coordinates 
(x, y), 0 < x < lXi 0 < y < ly (see figure 14). Label the vertices from left to right, 
bottom to top, in that order. That is, the label of the vertex (x, y) is given by 
/j7 + x + 1 . Define the sets of labelled points 

Sx = {1,2 , . . . , / !} , 53 = {/1 ,2/1 ,3/1 , . . .}, 

Si = { 1 , / 1 + 1 , 2 / 1 + 1 , . . . } , S4 = {/1/2-/1 + l , / 1 / 2 - / 1 + 2 , . . . } . 

Denote the collection of these sets by 5*. 

integral points in this 
region correspond to the 
bounding rectangles for 
p-ominoes, p-fixed 

'i + 'a = P + 1 

Figure 12. Figure 13. 
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It follows that the p-omino enumeration problem reduces to finding all unlabelled 
connected subgraphs on p vertices of the trellis such that each connected graph has a 
vertex in common with 5 l 5 S2, S3, and S4. Let (ux, uy) denote the coordinates of 
vertex u. Here 

d(u, v) = taxicab distance between two vertices u and v = \ux ~vx\ 4- \uy — vy\ . 

The other distance measures (see section 5.1.1) are given by 

d(Su u) = uy , d(S3, u) = lx~ux , 

d{S2 ,u) = ux, d(S4, u) = ly - uy , 

and 

d(Gq, ±S) = Y.d{Gq, St) = I m i n W G , - ! , St), d(Si9 u)} , 

where Vq = Vq-X U {u} . 

y 

zsx 
:JLL 

"XD 
" i t t 

(oi, L L C 
LLC 

(0, 0) (1, 0) 

Figure 14. 

4—M 
I I 1 Ux< 1) 

</*. 0) 

6.2 Symmetries 
The symmetry transformations under consideration are those that leave the trellis 
invariant in the plane. These transformations are isomorphic to the elements of D4, 
the dihedral group of order eight. For a trellis defined by the lines x = 0, x = lx, 
y = 0, and y = ly, the coordinate-coordinate map representation of the 
transformations are presented in table 1. The last four entries may be applied only if 
lx = ly. Since the label of a vertex (x,y) is given by lxy + x+\, the mappings are 
easily reduced to label-label maps. Computationally this allows us to define a table 
look-up for the symmetry transformations rather than have them computed each time 
a configuration is generated. 

Alternatively we may use this coordinate map representation of the transformations 
to introduce the mechanism of synonym identification. 

6.3 Synonym identification 
The synonyms of a word are the words of its isomorphs. Let a word w be 

Pi^i + P2^2 + ..- + P/1/2^/1/2 • 

Under a transformation r the synonym wr is 

Pl*r(l) + P2*T(2) + — + P/1Z2-x:r(/1/2) J 
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or equivalently 

PT- , ( l )^l + Pr-1(2)^2 + -+Pr- 1 ( / 1 / 2 ) : X : / 1 / 2 > 

where r"1 is the inverse mapping. For convenience w and wr are usually represented 
by binary strings of length lx l2. 

Imagine listing all words of length / ^ and content p. A word is canonical if it has 
no 'prior' synonym. By prior is meant lexicographically earlier., A p-omino is 
canonical if and only if its word is canonical. . 

As an example consider the 7-omino 110001100111 in a (4, 3) bounding rectangle 
[see figure 15(a)]. Applying the transformations i, v, h, and IT we have the synonyms 
as shown. 

The rules for synonym identification are easily derived. A word is partitioned into 
l2 sub words each of length lx: 

(P1P2 .. .p^Xp^+i -P2/ , ) . . . (//l/a-../1+i - P / ^ ) • 

When lx # ly synonyms are produced by 

6.3.1. (a) reversing the sequence of terms in each subword, 
(b) reversing the sequence of subwords, 
(c) by both (a) and (b) together. 

ly, in There are at most four synonyms when lx ¥= ly. Similar rules apply when /: 
which case there are at most eight synonyms per word. The production of synonyms 
for the 7-omino of figure 15(a) is illustrated in figure 15(b). 

Table 1. 

Group element Symbol Coordinate-coordinate map: 

1 Identity 

2 Reflection about y = \ly 

3 Reflection about x = \lx 

4 Rotation through IT 

5 Rotation through \-n 
6 Rotation through -\ii 

1 Reflection about x — y 
8 Reflection about x = -y 

i 

h 
V 

77 

k 
k 
R 
r 

(*,y) 
(x, ly-y) 
Qx-x,y) 
(lx-x,ly-y) 

(ly-y9x) 
CM*-*) 
(y,x) 
(iy-yJx-x)j 

these apply only 
when lx = ly 

1100 0110 

\ 
0011 f 0110 

Figure 15. 

(a) (b) 
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6.4 Canonical word 
In this section we expand the idea of synonym identification. Let the current word 
be partitioned as before. Each subword is the word of a row of the bounding 
rectangle. Each subword is an /j-bit expansion of a positive integer. Thus every 
configuration is associated with an /2-tuple of positive integers (yx, y2, ..., 7/2) and 
uniquely by the (/24- l)-tuple (/j, yl9 y2,..., 7/2). However, when the trellis is 
unambiguously known the prefix lx may be dropped. As an example consider the 
4-omino 111010 in a (3, 2) rectangle. It has the 2-tuple code (7, 2). 

Let T denote the current word, 

r = ( 7 i , 7 2 , - , 7/2) • 

We have two cases to consider. 

Case 1: lt =£ l2 

Applying rule 6.3.1(b) we get the /2-tuple 

Th = (7 / 2 , 7 / 2 - i , - ,7 i ) • 

This corresponds to reflecting the p-omino about a horizontal axis (y 
rule is illustrated as follows. 

hly). The 

p-omino 

7/2 

7 i 7/, 

horizontally reflected p-omino 

Applying rule 6.3.1(a) we get the /2-tuple 

Tv = (7 i ,7 2 , ->7/ 2 ) , 

where yt is the integer representation of the binary sequence for yt read in reverse. 
Finally rule 6.3.1(c) gives 

rw = (7/2, 7z 2 - i>- ,7i ) • 

Tv and r^ represent a reflection about a vertical axis (x = \lx) and a rotation through IT 
respectively. 

Case 2: lx = l2 

In addition to the preceding rules we do the following. Transpose the bounding 
region to obtain the word 

P1P2 «. Pij2 • 

Here the word w' is formed by reading the columns of the original bounding region 
from bottom to top, left to right, in that order. Partition this word as before to 
obtain the /2-tuple 

TR = (71 ,72 , - , 7/2) • 

TR represents a reflection about the principal diagonal (x = y). Applying rules 
6.3.1(a), 6.3.1(b), and 6.3.1(c) we get respectively the /2-tuples 

r i i r = (7;2,7z'2-i,...,7'i), 

r R = (7 i ,7 2 , . . . ,7 ; 2 ) , 

and 

r = (7/2 , 7 / , - i , . . . , 7 i ) , 
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where the subscripts of T indicate the transformations involved, namely a rotation 
through \it, a rotation through -\it, and a reflection about x = —y respectively. 

6.4.1. The relations <, =, and < on any two fc-tuples A = (al9a2,..., ak) and 
B = {bu b2,..., bk) are defined as follows: 
(a) A < B if and only if there exists a / < k such that af < bf and, for all / < /, 

at = bi\ 
(b) A = B if and only if, for all i < ft, a,- = 6 f ; 
(c) A<B if A<B ox A = B. 

6.4.2. A word T is canonical if and only if it has the 'highest' code among all its 
synonyms: 

T > TT , r G {h, v, TT} , if /i ¥= /2 ; 

T > r T , rG{h,v,7r,i7r, f i , R , r } , if /2 = 4 . 

6.5 Algorithm 
The algorithm is essentially the same as algorithm 3 with the following modifications. 
Statements Al, A2, D, and E are replaced by: 

A: % Let p-omino denote the number of free equivalence classes of polyominoes 
with content p % 

if CANONICAL then p-omino + «- 1 

H Let vq+l denote vertex[q+\] % 

if /» = /„ 

if 7, = /y 

then J ^ ^ « ] " - 2 ^ K - 1 

CANONICAL is a Boolean-valued procedure that tests whether or not the generated 
p-omino is the representative of its free equivalence class. The routine is similar to 
algorithm 4 except it is based on the ideas in section 6.4. D is a coding statement 
executed once for each addition of a vertex to the current graph. E is a decoding 
statement executed once after each backtrack. The arrays x and y house the 
coordinates for the vertices. It is clear that every configuration is generated in O(p) 
time and that the trellis dominates storage with 0(p2) space. It should be noticed 
that for computational convenience T is represented by the U-tuple ( Y 0 , 7 I , 7 V , ..., y, ). 

7 Polyhexes and polyiamonds I 
7.1 Bounding regions 
Since polyiamonds are a two-colourable subset of polyhexes it is convenient to 
consider only the polyhexes. Lunnon (1972) has shown that every polyhex is 
contained in a bounding hexagon defined by the lines x = a, x = a', y = b, y = b\ 
z = c, and z = c\ where a > a, b' > b, and cf > c. Observe that this bounding 
hexagon is defined on its trellis drawn in the plane, with the vertices associated with 
the appropriate integral coordinate system (see section 4.2). A polyhex and its 
bounding hexagon are shown in figure 16. 
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The bounding hexagon can be described by four parameters— diameters lx, ly, lz 

and skew x-defined as follows. lx = a-a, ly = b'-b, and lz = c -c. Let la, la', 
etc denote the lengths of the sides of the hexagon lying on the lines x = a, x = a', etc. 
From figure 16 and by use of the fact that the points on and inside the hexagon must 
satisfy x + y + z = 0, it can be shown that 

la~la'
 = h~~h' = lc~h' = a + a'+b + b'+c+c' = a constant , 

which is referred to as the skew, x- It should be noticed that these parameters are 
integral. 

Any bounding hexagon may be oriented in space in such a way that lx> ly> lz. 
Moreover, since the lengths of the sides of the hexagon are always nonnegative, 
Ixl ^ h> It is also possible to arrange the bounding hexagon in space such that x is 
always greater than or equal to zero. In other words, the orientation of a bounding 
hexagon may be so fixed that 

h > ly > h > X > 0 . 

We may determine other relationships involving the parameters lx, ly, lz, and X-
For instance it is easy to show that 

lx + ly + lz + X= 2(a'+b' + c') = Omod 2 . 

Since x ^ 0 it follows that la > la', lb > lb', and lc > lc>. The lengths of the sides 
may be expressed in the following terms: 

o<ia' = i(-x-/* + /y + W =* / y +/* -x> /* . (4) 

0<h> = i ( -X + t - / y + W =* Ix + h~X>ly . (5) 

0 < / c ' = i ( -X + k + / y - / z ) =* lx + ly-X>h • (6) 

Conditions (5) and (6) are not independent of the fixing condition for the bounding 
hexagon. 

Consider an open region in the plane defined by the lines x = 0 and y = 0 such 
that every point in this region has x, y < 0. Clearly z > 0 in this region. Place a 
bounding hexagon inside this region. By moving this hexagon towards (0, 0, 0) it is 
possible to align the hexagon such that a = b' = 0. These are the spanning conditions. 

To sum up, every set of integral parameters lx, iy, /z, and x such that 

ly + h~X> lx> ly> h > X> 0 , 

with 

(x + /y+/z + X = Omod 2 , 

Figure 16. 
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uniquely determines a fixed bounding hexagon defined by the lines x = 0, x = -lx, 
y = 0, y = ~ly, z = c, and z = c\ where c = i ( ^ + ^ + ẑ + X) and c = c~lz. 

We now consider the bounding hexagons for the population of poly hexes with 
content p. Since the maximally stretched p-hex is the linear polyhex [figure 17(a)] 
it follows that lx < p- 1. From the maximal-stretching condition [see figure 17(b)] 
it can be shown that 

lx + ly + h + X< 2 ( p - l ) . 

Since every bounding hexagon must contain at least p vertices, we have 

P - 1 <-\U2 + ll + ll + X2-2(lxly + lylz+lzlx + lx + ly + lz)] . 

We may also show that 

k = 0 => lx = ly = p-\ , 

lx = p-\ => ly + lz = p-\ , 

o < x < ( p - D - / x • 
Finally, since lx < p—\, every fixed bounding hexagon may be enclosed within 
the triangular region which satisfies —p < x, y < 0 and 0 < z < p (figure 18). This 
triangular region plays an important role in developing our enumeration algorithms. 

(a) 
Figure 17. 

z = p - 1 

x = - p + 1 

Figure 18. 
y = 0 
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P + l as shown 
7.2 Coding scheme 
Consider the triangular region with vertices labelled from 1 to i ~ 

in figure 19. Here every vertex (x,y,z) satisfies x + y + z = 0 together with 
-p < x, y < 0 and 0 < z < p. This region may be described by the word 

x1 + x2 + ...+x /p+l\ . 

Every configuration in this region has a word of the form 

Pl*l + P2*2 + -.. + P/p+lWp+A • 

where pt E {0, 1} for all /. This is more conveniently expressed as the binary string 

P1P2 -PfP+i\ • 

Partition this into subwords of the form 

(Pi)(P2p3)(P4P5P6) .» [Pfp+i) _ p + 1 - P(p+iy 

Each subword may be expressed as a positive integer. Thus every configuration is 
associated with a p-tuple 

A = (6 - p + 1 , 5_p + 2 , ..., 60) < (1, 3, 7,..., 2 * - 1) , 

where 5/ corresponds to the contributions of the vertices on the line x = i. Clearly 
6 / < 2 P - / - 1 . 

Every bounding hexagon is a subword of the word of the triangular region of the 
form 

A = (0,0, . . . ,0,6-/, , . . . ,60) , 

which can be pared down to a (Zx+ l)-tuple in the obvious way. 
A p-hex is a linear polynomial over Z2 with content p of the word of its bounding 

hexagon. Each p-hex has a word of the form 

T = (y-ix, 7 - / x +i , - , To) • 

Each vertex (x, y, 2) in the polyhex contributes 

2-y to yx . 

l 2 K (PVY 

«0 

0k4 

5 - P + I 

Figure 19. 
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A p-hex is a representative of its free equivalence class if and only if 

r > r T , T 6 ! 1 , 
where Th is the group of symmetries that leave the bounding hexagon h invariant in 
the plane and Tr is the code of the isomorph under r. 

This coding scheme applies equally to the polyiamonds. 

7.3 Symmetries 
The symmetry transformations that leave a given bounding hexagon invariant in the 
plane are isomorphic to the elements of D6, the dihedral group of order twelve. The 
symmetry motions for a regular hexagon are as follows: 
dx identity 
d2 rotation through 7r, 
d3 vertical reflection about x-axis, 
d4 vertical reflection about y-axis, 
ds vertical reflection about z-axis, 
d6 horizontal reflection about x-axis, 
dn horizontal reflection about .y-axis, 
ds horizontal reflection about z-axis, 
d9 rotation through §7r, 
d10 rotation through % IT, 
dn rotation through %TT, 
d12 rotation through §7r. 
All axes of rotation and reflection pass through the centre and are illustrated in 
figure 20. For a bounding hexagon defined by the lines x = 0, x = a, y = 0, 
y = b, z = c, and z = c' we need only consider certain subgroups of D6. The 
following possibilities arise. 

7.3.1.(a) lx±ly*lx, X* 0 . 
In this case the bounding hexagon possesses only the identity symmetry. That is, all 
polyhexes are canonically generated within this type of bounding hexagon. 

7.3.1.(b) lx±ly*h, x = O.
Here la = la\ lb = lb', and lc = lc'. In this case a rotation through 7r (d2) also leaves 
the hexagon invariant in the plane. 

7.3.2.(a) lx = ly, x ^ 0 . 
Here la = lbi la> = lb', and a = b. The hexagon remains invariant under a vertical 
reflection about the z-axis (ds). Of course the hexagon is invariant under identity (dx). 

Figure 20. 
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7.3.2.(b) lx = ly,x = 0. 
Here la = lb = la> = lh>, a = b, and lc = lc>. Reflection about the z-axis such that 
sides lc and lc' are interchanged gives the transformation ds. It is also invariant under 
dx, d2, and d5. 

In a similar fashion the remaining cases can be completed. We will be content to 
state the properties of the bounding hexagon and the elements that leave the 
bounding hexagon invariant. 

7.3.3.(a) /„ = lz, X ^ 0 . 

h = h> h' = h'> a n d b = c—c'; dx and d3. 

7.3.3.(b) ly = lz, X= 0. 
h = h' = h = h', b = c-c\ a n d h h'\ du di> d3, and d6. 

7.3.4.(a) lx = lz, X * 0. 
h ~ h>h' ~ h'> a n d a = c—c'; d1 and d4. 

7.3.4.(b) /, = /ZJ X = 0. 
*« = h' = h = h', a = c-c\ and lb = lb>; 

7.3.5.(a) lx = ly = lz,x*0m 

h = h = h, h' = h' = h', a = b = c-c; 

7.3.5.(b) lx = ly = lz, x = 0. 
h = h = h = h = h' = h\ a = b = c-

dl9 d2, d4, and dn. 

di,d3, d4, ds, d9, and <210. 

c'; all elements of D6. lb ~ Lc ~ ld ~ lb lc 3 u —" u — c c > a 1 1 ciciiiciiis ui x>̂ 6. 

The symmetry elements may be described as coordinate-coordinate mappings. The 
preceding list of transformations is summarized in tables 2 and 3. Table 2 gives the 
coordinate map representation for the elements of D6. Table 3 gives the subgroups 
of D6 that apply depending upon the conditions that are imposed on a fixed 
bounding hexagon. 

In the case of polyiamonds the transformations apply only if 'colouring' is preserved; 
that is, the transformations must imply an isomorphism of the three colours (given by 
x — y mod 3) onto themselves. Since vertex adjacency is preserved by any symmetry 

Table 2. 

Group element Symbol Coordinate-coordinate map: 
(x,y,z)^ 

1 Identity 

2 Rotation through IT 

Vertical reflection about 
the axis that bisects: 

3 the x lines 
4 the y lines 
5 the z lines 

Horizontal reflection about: 
6 x = -c 
1 y = -c 
8 z = -a = -b 

9 Rotation through §7r 
10 Rotation through -§7r 

11 Rotation through %TT 
12 Rotation through -\-n 

i 

IT 

v* 
VV 

vz 

h* 
h , 
hz 

l7 1" 
h 
in 
in 

(x,y,z) 

(a~x, b-y, c+c'-z) 

(x, -c'+z, c'+y) 
(-c+z,y, c'+x) 
O, *, z) 

{a-x, c-z,c-y) 
(c'+a-z, b-y, c'+a-x) 
(b-y, a-x, c+c'-z) 

(-c'+z,x, c'+y) 
(y, -c'+z, c'+x) 

(b-y, c-z, c'+a-x) 
(c' + a-z, b-x, c-y) 
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motion that leaves a bounding hexagon invariant, this will always hold. Consequently 
this enables any two-colourable polyhex to be transformed into an equivalent two-
colourable polyhex—or, a polyiamond into an equivalent polyiamond. 

It is interesting to note that we need only consider the x and y coordinates of the 
transformations for coding purposes. For instance, if (x,y, z) is a vertex in a polyhex 
and if Ti^, the isomorphic polyhex under the transformation %TT (see table 2), is 
represented by the (lx+ l)-tuple (7^ , 7'-/ + 1 ,.••> 7o)> then the vertex contributes 

2Z~C = 2~x-y-c to y'b_y . 

Table 3. 

Conditions on lx, ly, lz x > 0 X = 0 

lx>ly>lz i i, 7r 
lx>ly= lz i,v* i, TT, v^h* 
lx=ly>lz i, vz _ i, 7T, vz,h2 

lx = ly=lz i, vx, Vy, VZ,1TT, ITT all 

7.4 Algorithms 
There are essentially two possible approaches to enumerating polyhexes. Both employ 
the same method, namely determining the connected subgraphs of order p of the 
graph (trellis) of the bounding hexagon. The first approach applies algorithm 3, and 
it is left as an exercise to the reader to determine the appropriate distance condition 
to be applied at statement C. It must be noticed that moving along an edge in any 
direction changes two of the three coordinates; consequently, if u = (ux, uy, uz) 
and v = (vx,vy, vz) are two vertices, 

d(u,v) = h(\ux-vx\ + \uy-Vy\ + \uz-vg\) . 

The second approach views this enumeration problem in another light. Let us 
regard the triangular region as a 'super trellis', and the problem reduces to finding a 
connected graph on p vertices and the corresponding trellis this graph spans. The 
same algorithm, namely algorithm 3, is applicable with the following modifications. 
The search is always started by selecting as the initial vertex a vertex whose x-coordinate 
is 0. From section 7.1 there is only one p-hex which contains the vertex 
(0, - p + 1, p- 1). (Since y — 0 must be a line of the fixed bounding hexagon, 
ly — p-\ m this case.) Consequently we need only start the search with vertices 
whose z-coordinate is less than p -1 and whose x-coordinate equals 0. We can forbid 
(0, —p+ 1, p - 1) from further consideration. 

The distance conditions must be so chosen that eventually the bounding hexagon 
satisfies all the orientation conditions described earlier. It can be shown that the 
following three conditions are required. Let 1%, 1$, I?, Xq, etc denote the diameters 
and skew etc at the gth recursion level. Let x, x, y, y, z, and 2 denote the minimums 
and maximums of the corresponding coordinates of the current configuration 
depending on whether the coordinate is capped by a v or a ~ respectively. Then 

IS = -min{*(<Vi)>*(y«)} = -*(G«) > 

l§. = [HGq) = m a x ( K ^ - i ) , y(vq)}] - [y(Gq) = ndn{p(Gq^)9 y(vq)}] , 

I? = [y(Gq) = maxIzOVi) , z(vq)}] - [I(Gq) = mm{z{Gq-i), z(Pq)}] , 

and 

X* = Z(Gq)+XGq)+HGq) + I{Gq)+Wq) . 
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Statement C in algorithm 3 is replaced by 

max{0,l«-m-KGq)<p-q , (7) 

which will eventually ensure that lx > ly and y = 0 is a line of the bounding hexagon, 

max{0,/«-/5} + m a x { 0 , / / - / « + j > ( G g ) } < p - « , (8) 

which together with condition (1) will eventually ensure that ly > lz, and 

max{0,max{/^^}-/J?} + m a x { 0 , - x 9 } < p - ^ , (9) 

which together with conditions (7) and (8) will eventually ensure that ly + lz — x ^ lx 

and x ^ 0. If conditions (7), (8), and (9) are satisfied, vq is in Gq and the search 
may proceed recursively forward. 

For polyiamonds the colours of the first two vertices selected are noted and the 
remaining vertices are chosen from these two colours. If the colour of vx is cx and that 
of v2 is c2 then the third or forbidden colour is -{cx + c2) mod 3. Colour c2 must be 
different from cx since v2 is adjacent to vt. 

8 Poly /i-cubes 
Poly n-cubes, n > 3, are the last examples of configurations on the regular tessellations 
considered in this paper. The enumeration of poly w-cubes follows in exactly the 
same fashion as the enumeration of polyominoes. We outline briefly the steps involved. 

8.1 Bounding regions 
For poly H-cubes the bounding region is a ^-rectangle of dimensions lu Z2,..., ln. The 
necessary and sufficient conditions for any ^-rectangle defined by the w-tuple 
(7i> h> —J ln) to be a bounding region for the population of p-H-cubes are: 

£ li < p + n — 1 maximal-stretching condition; (10) 

X\li > p sufficiency of unit n-cubes; (11) 
i 

lx> l2> ... > ln> \ fixing the orientation of the bounding region. (12) 

These can be solved in the same manner as was done for polyominoes. For example, 
it can be shown that 

'. < m 
Consider the case when n = 3; then 

1 < h < ! m A diagram similar to figure 13 is drawn in figure 21. It describes the conditions when Z3 

is equal to a fixed value, say k. From this diagram the following can be demonstrated. 

8.1.1. The set of triples (Zl5 Z2, Z3) which correspond to the bounding regions for 
p-cubes, p fixed, is given by 

A£ = | (/i, h,hY l < h < | _ ^ J > h < h < [P + l h\, 

max< 
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8.1.2. The cardinality of Ap is 

7 = 1 

l(p + 2)/3j I ( p + 4 - 3 / ) 2 I 

/ = I P ^ J + I L 4 - I ' 

The extension to arbitrary rc-space is obvious. To see why just fix /„ at some 
value, say k. Substituting this in conditions (10) through (12) reduces it to finding 
an (ft-l)-tuple of integers (/l5 ..., ln-\) with /„_j > k. This process may be repeated 
inductively to obtain the set A£ given as follows. 

8.1.3. The set of w-tuples (/l5 /2, ...,/„) which correspond to the bounding regions for 
p - n-cubes, p fixed, is given by 

A" = (lu 4 , . ..,/„): ! < / „ < 
• + w - l | p + n-\-ln I 

» - l J ' 

/ > 3 

integral coordinates in this 
region define the bounding 
3-rectangles represented by 
the triples (/:, l2, k) 

L = k 

integral coordinates in this 
region define the bounding 
3-rectangles represented by 
the triples (/j, l2, k) 

h = h 

k< [P
Vi\ 

\ 

Figure 21. 

8.2 Coding scheme 
The bounding region for p-cubes is drawn in figure 22 as a trellis with vertices 
associated with integral coordinates. Recall that each vertex corresponds to a unit 
cube. Also lx = / j - 1 , ly = / 2 - l , a n d h = ^ ~ 1 -

The word representing this region can be partitioned into a /2/3-tuple of integers as 
follows: 

k = 0 k = 1 k = lz 

r = (/ = 0,..., / = ly) U = 0,..., 7 = ly) (7 = 0, ..., / = ly) 

x = 0 

x = 1 
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This may be written as 

T = (Too, 7oi, .», To/,-* ..•> 7zy, ..-, 7/zo, -., 7iziy ) , 

where each yzy represents a column of the previous expression and 

0 < yzy < 2 ^ - 1 , 0 < z < lz , 0 < j ; < 7y . 

The coding operator is defined as follows: each vertex (x,y, z) in the connected 
subgraph of the trellis representing a p-cube contributes 

2 ' * - * to 7 z y • 

Clearly the l2 /3-tuple representation of a p-cube is unique, and from it the p-eube is 
uniquely decipherable or reconstructible. 

The 7s may be represented by the array code[l,..., / 2 / 3 ] . Define the array 
loc[0, ..., lz] as follows: 

loc[l] = 1 , 

loc[z] = !oc[z-l] + l2 z > 2 . 

Then the computational step required to code a vertex (x, y, z) is given by 

code[loc[z] + y]+ <- 2^" x . 

Figure 22. 

8.3 Canonical word and symmetries 
A word is canonical if and only if T > FT, r G 7J, where !Tf is a group of symmetries 
that leave the bounding region invariant. Tt is usually a small-order subgroup of the 
even subgroup of On, the orthogonal group of rotations of order 2n(n\). For n = 3 
consider the cube in figure 23, wherein the various axes of rotations are indicated. 
The even elements of 03 are given in table 4. The minimum conditions which must 
be satisfied in order that an element may be applied are also presented. 
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For n > 3 the group elements no longer correspond to simple axial rotations. Instead 
they are rotations about planes. As shown by Littlewood (1931), the group of rotations, 
On, for the n-dimensional hypercuboid can be obtained from the following generators. 

x = -y = z 

x = y — z 

x = y = -z 

-x=y-

Figure 23. 

Table 4. 

Group element Symbol Coordinate-coordinate map: (x,y,z)-

1 Identity 
Rotation through n about: 

2 the x-axis 
3 the j;-axis 
4 the z-axis 

Rotation through ±\n about: 

5l 

(x, ly-y,lz-z) 
(lx-x,yjz-z) 
(lx-x,ly-y,z) 

6 
7 
8 
9 

10 

the x-axis 

the >>-axis 

the z-axis 

Compositions of the above: 

11 (^x>z = fax)*y 
12 (bQiiy = (iff*)^ 
13 ( i ^ , ) ^ = foy)irz 

14 (jiry)irz = (biry)irx 

15 (i7lfc)7rj,= (Uz)7lx 

16 (i7T2)7Tx = faulty 

Rotations through ±\n about: 

\*x 

2*y 

IK 

cxy 
cxz 

CyZ 

cyx 
czx 

C 

} 
.lx-x)\ 

v,lx-x,z)) 
y-y,x,z)] 

(x, z, ly -y) 
(xrlz-z,y) 
(z,y 
Q*-z 

0y 

/» = /« 

l7_ ly 

*_* *v 

} ly = lz 

> the x = y = z diagonal 

Y the -x—y — z diagonal 

211 
> the x — -y = z diagonal 

> the x = j> = - z diagonal 

z>> 

'xyz 
rxyz 

'xyz 
rxyz 

Qx-x,lz-zJy-y) 
(lx-x9z,y) 
(z9ly-y9x) 1 / = / 

{lz-zjy-yjx-x)\ z x 

Qy-yJx-x, h-z) 
(y,x,lz-z) } t = /v 

23 
24 

'xyz 

(z,*,.V) 

(lz-zjx-x,y) 
Qy-y>lz-Z>x) 
(z,lx-x,ly-y) 
{yjz-zjx-x) 
{lz-z9x,ly-y) 

'x ly *z 
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.3 .1 . Axial inversion: 

R,: 

* 1 

x2 

* i 

xn 

-> 

* 1 

x2 

lxt~Xi 

8.3.2. Axial interchange: 

Qa-

* 1 

x2 

x, 

xi 

xn 

-> 

* 1 

x2 

xf 

x( 

*n 

An element is even if and only if the number of axial inversions and interchanges is 
even. The Rt form a group, R*n, of order 2". The Qf/ form a group, Q*, which is 
isomorphic to the symmetric group of order n\, Sn, the group of the permutations of 

Table 5. 

Group element Symbol Coordinate-coordinate map: 
(x,y,z,w)-» 

Parity 
(0 = even, 1 = odd) 

1 

2 
3 
4 
5 

6 
7 

Identity 

Axial inversion along: 
the x-axis 
the j>-axis 
the z-axis 
the w-axis 

Two axial inversions in: 
the jey-plane 
the xz-plane 

8 the xw-plane 
9 the j>z-plane 

10 the j>w-plane 
11 the zw-plane 

Three axial inversions in 
12 the constant-w plane 
13 the constant-z plane 
14 the constant-^ plane 
15 the constant-jc plane 

16 Complete axial 
inversion of the 
4-rectangle 

(pc,y,z,w) 0 

Rx 

Ry 

Rz 

Rw 

Rxy 
Rxz 
"xw 
Ryz 
Kyw 
RZ\V 

(lx-x,y,z,w) 
(x, ly-y,z,w) 
(x,y,lx-x,w) 
(x,y,z,lw-w) 

(fx-x,ly-y,z,W) *\ 
(Jx-x,y,lz-z,W) 
Qx-x,y,z,lw-w) 1 
(x,ly-y,l2-z,w) 
(x,ly-y,z,lw~w) 
(x,y,lz-z,lw-\ v) J 

Rxyz (fx-X, ly ~yJz~Z, w) 
Rxyw (Jx -X, ly ~y, Z, lw - W) 
Rxzw Qx ~x,y, lz -z, lw-w) 
Ryzw (x,ly-y,Iz-z,lw-w) 

Rxyzw (!x -X, ly ~y, lz~Z, 1W~W) 
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n elements. To find the elements of On, take the product of JR* and Q*n under group 
composition. The even elements correspond to products of elements of the same 
parity (that is either both even or both odd). It can be shown that the following are 
satisfied: 

Rf = Qfj = identity, 

RiRj = RjRi , 

Qtj = Qn , 

QijQjk = QikQa = QjkQik , 

RiQtj = Qy'Rj> 

RjQij - QijRi J 

RiQjk= QjkRi , i*i, i * k . 

For n — 4 the groups R\ and Q\ are presented in tables 5 and 6 respectively. The 
elements of Rl are designated by the combination of axial inversions involved. For 
instance Rijk is equivalent to R(RjRk. The elements of Q% are designated by the 
cyclic notation for the corresponding permutations of the numbers 1, 2, 3, and 4. 

Table 6. 

Group element Symbol 

1 Identity i 

Axial interchange 
2 Qxy 

3 Qxz 

4 Qxw 

5 Qyz 
6 QyW 

7 Qzw 

Pairs of axial interchanges 
8 fixj>z 

9 Gxzy 

10 Qxyw 

1 1 v£x:w}> 

1 ̂  Csxzw 

13 e*Wz 
14 Qyzw 

1 J Csyvvz 

16 G(*>;)(zw) 
1 7 G(xz)(>>w) 
1 8 Q(xw)(yz) 

Three axial interchanges 

1" Qxyzw 

^v Qxzyw 

^1 Qxxvyz 

^^ Qxywz 

2 3 Gxzwy 

^ 4 Gxwzy 

Coordinate - coordinate 
map: (x9y9z,w)-> 

(x9y9z9W) 

0 , x9 z, w) 
(z9y9x9w) 
(w9y9z9x) 
(x9z9y9w) 
(x9w9z9y) 
(x9y9w9z) 

(z9x9y9w) | 
(y9z9x9w) ] 
(w9x9z9y) | 
(y, w9 z9 x) ) 
(w9y9x9z) | 
(z9y9w9x) J 
(x9w9y9z)-) 
(x9z9w9y)\ 
0,x,w,z) 
(z9w9x9y) 
(w9z9y9x) 

^ 
(w9x9y,z) 
(w9z9x,y) 
(z9w9y9x) 
(z9x9w9y) 
0 , w, x9 z) 
(y,z9w9x) 

• 

Conditions under 
which they apply 

~ 
lx=h 
lx=lz 

*x ~ * w 

( y = * « 

y = w 
'z == 'w 

• 

/* = />. = /« 

7 - 7 - 7 
*x ly l\v 

*x ~ 'z — *vv 

*y ~ / z — / w 

& = /y) A (fz = U 
& = « A (/y = W 
(/*=/wWy = « . 

/ - J - J - 1 
lx ly lZ lw 

Parity 
(0 = even, 
1 = o d d ) 

0 

1 

- 0 

1 
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8.4 Algorithm 
The graph problem may be formulated as was done for the polyominoes. For n = 3 
the spanning sets are given by 

Si = {(x9y,z): z = 0 } , S3 = {(x,y,z): y = 0} , Ss = {{x9y,z): x = 0} , 

S2 = {(*, y, z): z = lz} , S4 = {(x, y9 z): y = ly} , S6 = {(x, y, z): x = lx} . 

Let u = (ux,uy, uz) and v — (vx,vy, vz) be two vertices. The distance measures are 
given by 

d(u,v) = \ux-vx\ + \uy-vy\ + \uz-vz\ 

and 

d(Suu) = uz , 

^ 2 ,U) = lz~Uz , 

dCSa 9u)= uy , 

d(S4,U) = ly-Uy , 

d(Ss ,u)= ux , 

d(S6,u) = lx-u. 

d(Gq, ±S) = Y.d(Gq,S) , for any Gq . 

The algorithm is then the same as algorithm 3, but with the appropriate modifications. 
For n > 3 the distance measures are similarly defined. 

We conclude by observing that every poly n-cube in an (ll9 ^, . . . , lk, 1, 1,..., 1) 
bounding ^-rectangle corresponds to a poly /:-cube in the bounding /^-rectangle 
(/j, l2,..., lk). Thus, for instance, if we have the list of polyominoes, we need only 
augment this list by determining those poly cubes in (/l5 ^ , h ^ 2) bounding regions 
to obtain the total set of polycubes. 

9 <4.8.8>-patterns 
Consider the square tessellation. Apply the following exchange operation in the 
manner indicated in figure 24: 

~i v 
The result is the (4.8.8>-tessellation with associated integral coordinates—namely the 
integral Cartesian coordinates in the plane. Observe that every diagonal consists of 
exactly one kind of tile: either all octagons or all squares. This can be further 
strengthened. Designate any tile in the tessellation as the origin. Then the octagons 
have coordinates (x, y) such that either all have x + y even or all have x + y odd. For 
a given parity of the octagons, the squares have the opposite parity. 

Figure 24. 
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9.1 Bounding regions 
Every <4.8.8>-pattern can be encased in a rectangle. Let (/l912) denote the sides of the 
rectangle. Set the tile at the bottom left-hand corner as the origin. The vertices of 
the corresponding trellis have coordinates that satisfy 0<x<lx = l1-\ and 
0 < y < ly — l2 - 1. There are two types of bounding regions depending on which 
type of tile is associated with the origin (see figure 25). Fixing lt > l2 defines an 
initial orientation for the bounding rectangles. Moreover, in order to obtain distinct 
bounding rectangles—that is, so that no type 1 rectangle transforms into a corresponding 
type 2 rectangle or vice versa—it must be ensured that, if the bounding rectangles of 
one type are permitted all combinations for the parity of lx and l2, then the rectangles 
of the other type must have lx and ^ odd. Let (lx,l2,t) denote a bounding rectangle 
of type t. Then the following can be shown. 

9.1.1. The set of bounding rectangles for the <4.8.8>-patterns with content p is given by 

{["£!•*} ^ < ^P = i (A, h)- l<k<P, max<j | 7 | , i2 f ^ ix ^ p 

2^P = {(!uh,Z)' Huh)^ 1>p-{(P,P)h luh odd} 

Type 1 Type 2 

' i H /,. 

Figure 25. 

9.2 Trellis 
The trellises for the bounding rectangles of both types are shown in figure 26, with 
the vertices associated with the integral coordinates. Let (x, y) denote a vertex. 

Type 1 Type 2 

W, ly) 

(0,1) 

K 
/ 

V. 

V 
i\ 
Z 
IZ 

*., 

/ 

^idxJy) (0, ly) 

(0,1) 

!\IZIX-
Z!\!/ 

SiZi!" 

ZN 
?yzi 
:zi\i 
SiZi 

dX,ly) 

(0, 0) (1, 0) 

Figure 26. 

(/*,0) (0, 0) (1, 0) (/.,0) 
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Define sets Nx and N2 as follows: 

Nt(x,y) = {(x+l,jO, (x-l,y), (x,y-l), (x,y+l)} , 

N2(x,y) = { ( x + l , j / + l ) , (x+l,y-l), ( x - l , j / + l ) , ( x - l , j / - l ) } . 

If (x, y) represents an octagon, the adjacent vertices have coordinates given by 
Ni(x>y) u N2(>;, JO, where the vertices in Nx represent squares and those in N2 

represent octagons. If (x,y) represents a square its neighbouring vertices are given 
by Nt, which represents only octagons. 

9.3 Symmetries 
The symmetry transformations that apply correspond to the elements of D4, the 
dihedral group of order eight, described as coordinate-coordinate maps in table 1. 
Table 7 describes the elements that apply for the different conditions on the 
bounding rectangles. 

Table 7. 

Parity Elements of D4 which apply 
(0 = even, 1 = odd) 

h h 

0 0 i , 77 

0 1 i , h 
1 0 i, v 

f i, h, v, 7T if /1 > l2 

I all if h = l2 

9.4 Algorithm 
It should be apparent how the <4.8.8>-patterns of content p reduce to a graph 
problem of type 5.1(b). The set S* is defined in the same manner as was done for 
the polyominoes. The chief difficulty is in calculating d(Gq, t,S) at each stage q. 

If the initial vertex is always chosen from set Sx, then d\Gq ,2 S ) < .2 d{GqiSt). 

We have 

d(Gq,S2 + S4) = mini d(Gq-l9 S2 +5 4) , max{^ , ly -uy}, 

d(Gq-uS2) + ly-uy,d{Gq-uS4) + ux}y 

d(Gq,S3+S4) = mm{d(Gq-i9 S3+S4), max{7y -uy, lx~ux}, 

diG^^SJ + ly-UytdiGq-uSJ + lx-Ux} , 
and 

d(Gq, ±S) = mm{d(Gq-l9 ±S), d(Gq,S3+S4) + d(Gq,S2), 

d(Gq, S2 + S4) + d(Gq, S3), I d(Gq, St)} . 

For all / > 2, d(St, vq) and d(Gq, St) are defined in the.same way as was done for the 
polyominoes. For q = 1 

d(Gq, tS) = minjmaxl/y, lx ~ux} + ux, max{ly, ux} + lx ~ux\ , 

where vx = u = (ux,uy). 
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The distance criterion in the statement labelled C in algorithm 3 is replaced by the 
formulae given here. The search can be reduced by noting that whenever lx l2 — p 
there is only one, obvious, pattern, and when h = h = P then again there is only 
one, obvious, pattern for type 1 rectangles. Otherwise the algorithm is identical to 
that for polyomino enumerations. 

10 <3.3.4.4>-patterns 
We may regard the <3.3.3.4.4>-tessellation as alternating strips of squares and triangles 
as shown in figure 27. Suppose the strips containing the triangles are uniformly 
distorted by the simultaneous application of one of the following exchange operations: 

A7 
or 

V\ 
The result is a tessellation consisting of alternating strips of squares and divided 
squares. In other words the exchange operations map the <3.3.3.4.4>-tessellation onto 
the square grid. Clearly there are several possible ways to define this mapping, each 
depending upon the orientation of the tessellation and the square grid. For convenience 
we will assume the mapping and the orientation shown in figure 28. For the remainder 
of the discussion the triangles will assume the orientation indicated. 

Since every square, simple or divided, occupies a square in the grid, we may associate 
integer Cartesian coordinates with each. To distinguish between the tile types—that is, 
between the squares and oriented triangles—we introduce a third coordinate referred to 
as a tile designator. The tile designator o for the three types of tiles are as follows: 

tile 

designator o 
D \\ ^ 

0 1 - 1 

Thus every tile in the <3.3.3.4.4>-tessellation may be associated with integral coordinates 
(x,y, a), where (x,y) G Z2 and o € Z3 . 
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Figure 27. Figure 28. 
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or 

The neighbours TV of a given tile (x,y, o) are given by 

N(x9y90) = {Oc+l,y, 1), ( x - 1, y, -1 ) , ( x , j / - l , 0), (x,;;+ 1, 0)} , 

N(x,y,o ¥= 0) = { (x - a , 3^,0), (x,j>,-a), (x, y-o,-o)} . 

Furthermore if we select any square, simple or divided, as the origin (0, 0, a), the 
triangular tiles have x-coordinates that are either all even or all odd. 

10.1 Bounding regions 
The bounding regions for <3.3.3.4.4>-patterns with the given integraLcoordinate system 
may be chosen as a rectangles. Let lx and l2 respectively denote the sides of the 
rectangle along the x- and ^-directions. The graph (trellis) of the bounding region 
may be drawn in the plane with the vertices associated with their respective 
coordinates as shown in figure 29. 

Typel 

i 
\ • • 

i \ 
I i * 

( / , , / v . O ) 

(0,/y,0) 

(/*,0,0) 

Type 2 

r~ 
. n 

- i 
U 1 
• L _ 

t * 

i 

, ,i 
f » 

(/,,/v,-D 

r 
j 

f t 

I I 

(/,,o, i) 

(0, 0, 0) (0, 0, 0) 

Type 3 

r 
t t 

t 

i t 

I I 

j 
(/x,0, 1) 

(0, 0, 1) 

Figure 29. 
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Let lx = lx — 1 and ly ~ l2 — 1. Let the vertices of the trellis take on coordinates 
in the positive quadrant, with a vertex chosen as the origin. Then every configuration 
is a subgraph of its trellis which it spans if and only if there is a vertex in the lines 
x = 0, x-lX9 y = 0, and y = ly. 

There are two trivial configurations for any content p. These are shown in figure 30. 
Every other pattern must contain at least one square tile and one triangular tile. 
These patterns must span one of three types of bounding regions. 

Type 1: lx is odd and a simple square is chosen as the origin. 
Type 2: lx is even and a simple square is chosen as the origin. 
Type 3: lx is odd and a divided square is chosen as the origin. 

The three types of bounding rectangles are shown in figure 31, and their corresponding 
trellises in figure 29. 

Let (/l5l2, t) denote a bounding rectangle of sides lx and l2 and type t. When 
l2 = 1 there are two trivial bounding rectangles, each of which contributes towards a 
single pattern. There is a trivial type 1 bounding rectangle of size ( § [ p - 1]+ 1, 1) if 
p = 1 mod 3, a trivial type 2 bounding rectangle of size (2\?p], 1) if p = 0, 2 mod 3, 
and a trivial type 3 bounding rectangle of size (2 |^p]+ 1, 1) for all p. Consequently 
we may assume that l2 > 2. For a fixed p we may determine the set of bounding 
rectangles that house all the nontrivial (3.3.3.4.4>-patterns of content p. 

Figure 30. 
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Figure 31. 

10.1.1. Type 1. 
Let /i = 2/J + l > 3. Then lx and /2 must satisfy: 

/2 + 2/; + l < p + l 

/2(3/J + l ) > p 

2 < / 2 <p-2 J 

maximal-stretching condition; 

sufficiency of tiles; 

conditions on lx and l2. 
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L e t j u = 3 / ( + l. Rewriting the conditions we have 

/ 2 + $ ( / * - D < P , 

/2M > P, 

2<l2<p-2 , 

4 < fx<p-l , 

jjL— 1 = 0 mod 3 . 

Solving these inequalities gives the sets 

i*p=j(M,fe): 2 < t < p - 2 , m a x | [ ^ ] , 4 j < i L t < l f (p- / 2 )J + 1, H = 1 mod 3 | 

and 

The set 2 *//p defines the algorithm for generating type 1 rectangles. 

10.2.1. Type 2. 
Let /j = 21[ > 2. Again we have 

l2 + 2l[ <p+\ , 

l2(3l[)>p, 

2<l2<p-\ , 

, P + l 
1 < / { < V -

Solving these inequalities we get the sets 

and 

rp=\(fji,l2): 2 < 4 < p - l , m a x j ^ ] , 3 J < M < [UP + 1 ~k)l, V = 0 mod 3 

2^P = | ( / i , / 2 , 2 ) : ( / i , / 2 ) ^ 2 ^ , / i = x } * 

10.1.3. Type 3. 
Let /j = 2/J + l > 3. The necessary and sufficient conditions on lx and l2 are 

/2 + 2/; + l < p + l , 

/2(3/; + 2 ) > p , 

2 < / 2 < p - 2 , 

From which we get the sets 

j Gx.fc): 2 < / 2 < p - 2 , max{| j r ] , 5 J < /x < L | ( p - ^ ) J + 2 , M= 2 mpd 3 > 3 ^ ; = 

and 
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As an example let p = 5. Then the nontrivial bounding rectangles are given by 

!*p = {(3,2,1), (3, 3,1)}, 

2^p = {(2, 2, 2), (4, 2, 2), (2, 3, 2), (2, 4, 2)} , 

3^/p = {(3, 2, 3), (3, 3, 3)} . 

It is possible to combine the definition of the three sets by a single algorithm. 
This is left as an exercise to the reader. 

10.2 Coding 
We may represent any pattern within its bounding rectangle (Jx ,l2,t) by the word 

p1X1 + p2X2 + ... + pmXm , 

where m = l2\\ /i + i O - 2)] and each pt takes on a value in {0, 1}. The subscripts 
refer to the tile number within its bounding region, labelled with increasing values 
from left to right, bottom to top, in that order. Any tile (x,y, o) has the label 

^[f/i + i a - 2 ) ] + l + f f ( x - a ) l + a . 

As in the case of polyominoes the word may be partitioned into l2 sub words, each 
subword representing a row of the bounding rectangle. That is, every pattern 
corresponds to an l2-tuple V = (70 , 7i, —, 7/ )> where each tile (x,y, o) in the pattern 
contributes 

2 i / * + i ( ' + 1 ) - [ l + [!(*-tf)l+a] to 7 

10.3 Symmetries 
We may employ the preceding vector description to define a canonical pattern—that 
is, the pattern that represents its free equivalence class. However, the choice of a 
rectangle as the bounding region, together with the asymmetry due to distortion of 
the triangles, poses certain difficulties. To appreciate this point it is perhaps best to 
see what the bounding rectangle looks like in the original <3.3.3.4.4>-tessellation. The 
actual arrangements of the tiles which correspond to the various types of bounding 
rectangles are shown in figure 32. 

A symmetry transformation is one that leaves the bounding region invariant in the 
space. One may observe from figure 32 that a rotation through 7r leaves the arrangement 
of tiles corresponding to rectangles of types 1 and 3 invariant in the plane. Consequently 
a IT rotation of the bounding region may describe an isomorph of the current spanning 
pattern. 

Other symmetry transformations do apply. Consider, as an example, the subpatterns 
of a type 1 rectangle indicated by the unshaded sections of figures 33(a) and 33(b). i 

Type 1 Type 2 Type 3 

Figure 32. 
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Suppose there is a pattern which spans the bounding rectangle as well as the unshaded 
region, and also does not contain any tile belonging to the shaded section. Clearly 
this region is invariant under a horizontal reflection about the line y = \ly. Moreover 
there are other types of horizontal reflections that may apply depending upon the 
subregion under consideration. Each type of horizontal reflection leaves one of the 
columns of simple squares invariant in the plane, with the exception of two special 
cases in the cases of bounding rectangles of types 2 and 3 (see figure 34). For 
example, let h0 and I15 respectively denote the horizontal reflections that leave the 
regions in figures 33(a) and 33(b) invariant in the plane. Notice that h0 leaves the 
first column of simple squares invariant in the plane, and HQ leaves the last column of 
simple squares invariant in the plane. For particular bounding rectangles of types 1, 
2, and 3, the various regions that remain invariant under such horizontal reflections 
are shown in figure 34. 

Further, in the cases of rectangles of types 1 and 3, we may compose these 
horizontal reflections with the symmetry transformation IT. Let fg denote the 
composition f{g{ )). Then, for example, for the reflections h0 and ho of figure 33, 
we have v0 = h07r = 7rho and VQ = ho7r = 7rh0. They are labelled by the letter v 
since they may have the effect of a reflection about the line x = \lx, a vertical 
reflection. 

In general let c be the x-coordinate of a column of simple squares. The coordinate-
map transformation of the horizontal reflection, hc, that leaves this column invariant 
in the plane is given by: 

K- (x,y, o) -> (x, ly -y-\\{x- c~ a)J, a) . 

For rectangles of types 1 and 3 the corresponding reflection about the line x = \lx is 
given by: 

vc = hcir: (x,y,o)-+ {lx -x,y- [\{lx - x ~ c + a ) J , - a ) . 

Furthermore, for rectangles of types 1 and 3, for any hc there exists an h^ such that 
hc = 7rĥ 7r and h^ = 7rhc7r. If c is the x-coordinate of the ;th column from the left 
then c is the x-coordinate of the ;th column from the right. 

In the cases of rectangles of types 2 and 3 there are subregions which remain 
invariant in the plane under horizontal reflection yet do not preserve any column of 
simple squares. They correspond to the diagrams marked with asterisks in figure 34. 
Notice that these regions either preserve the first column of triangular tiles (with the 
exception of the topmost o = -1 tile) or the last column of triangular tiles (with 
the exception of the bottommost o = 1 tile). We will denote the horizontal 
reflection of these two kinds of regions respectively by hj and h§. The coordinate-
map transformations for hj and I15 may be determined from the coordinate-map 

Figure 33. 
(a) (b) 
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transformation for hc. They are given by: 

h j : (x,y,o) -> (x,ly - j / - l - ' l i ( x - l - a ) J , a) 

and 

hg: (x, * , (*) - • ( x , / y - ; y + l - L i ( x - / x + l - a ) ] , a ) • 

For type 2 rectangles only hg applies. In the case of type 3 rectangles we have the 

Type 1 

K-

(h0 = h6, h* = h4, h* = h2 , hg = h0) 

Type 2 

K~ 

h2-

V 

h2-

M-

< 

Figure 34. 
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additional transformations vj and vg given by: 

vS = hjTr: (x,y,a)^ Qx-x, y- 1 -L£(k - x - l + a)], - a ) , 

and 

vg = hg7r: (x,y, o) -• (/* - x , ;> + l -L£(-x + l + a)J, - a ) . 

All the symmetry transformations, represented as coordinate-coordinate maps, are 
shown in table 8. 

Rather than ask the question whether or not the pattern may have a horizontally 
reflected isomorph by examining the subregion it spans, it is convenient to apply the 
transformation directly to the bounding rectangle. Since the transformation leaves 
the subregion invariant in the plane, it has the effect of mapping the shaded tiles to 
positions in the plane whose ^-coordinates are either less than 0 or greater than ly. 
Thus, if a pattern has a tile which is mapped to a position outside the bounding 
rectangle, it cannot possibly possess a horizontally reflected isomorph. 

On the other hand we may have a pattern that spans the subregion yet under a 
horizontal reflection spans a smaller bounding rectangle. Examples of such patterns 
are shown in figure 35. In figure 35(a) the isomorphic pattern does not contain a 
tile which has a y-coordinate equal to ly, and in figure 35(b) the isomorphic pattern 
does not contain a tile which has a ^-coordinate equal to 0. 

Type 3 

h$,-

* 

V 

* 

(hr = h 5 , h 5 E=h 3 , h5 = hj) 

Figure 34 (continued). 
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Table 8. 

Group element Symbol Coordinate-coordinate map: 
(x,y,o)-* 

Types of rectangle 

1 Rotation through n it 

Reflection about the horizontal: 
2 hc 

3 K 
4 ha 

Compositions of the above: 
5 vc 

6 vS 
7 V6 

{lx-x,ly-y, -o) 

(xjy-y-^ix-c-o)]^) 
(xJy-y-l-Ux-l-a)]^) 
(x,ly-y + l-[k(x-lx + l-o)\9o) 

Qx-x,\ 
Qx-x 

y-ti(lx-x-c+o)\,-o) 
y-i-[iQx-x-i+o)\,-o) 
.y + l - lK-x + l + a)],-a) 

1,3 

1,2,3 
3 
2,3 

1,3 
3 
3 

(a) 

•^ 

Figure 35. 

r0 
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Let r = (70, 7i, ...,7/ ) and Tr = (70, 7i , ..., 7) ), where r is an element of the 
group of symmetry transformations Tt for a rectangle t. Suppose 

Tf = {T E Tt: the pattern under r has a tile lying outside the bounding rectangle} 

and 

T" = {r e Tt: the pattern under r has 70 = 0 or y\ = 0} . 

Then any word T is canonical if and only if 

T" = 0 and r > TT , r G r t - Tt . 

10.4 Algorithm 
It is easily seen that the nontrivial <3.3.3.4.4>-pattern enumeration problem reduces to 
the graph problem 5.1(b). Let S* = {Sx,S2,S3,S4}, where 

Sx = { (x ,0 ,a )} , S2 = {(x,ly,o)}, S3 = {(0,y, a)}, 6*4 = {{lX9y, a)} . 

Let £ denote the type of the bounding rectangle and let u = (ux, uy, ua) be a vertex 
in the corresponding trellis. Then the following distance measures may be defined. 

10.4.1. ua = 0 . 

d(Su u) = uy , 

d(S2 ,U) = ly-Uy, 

\\ux 

^ > " ) = j f ( ^ - i ) + i 

,,„ x f f ( ^ - ^ ) 

if t = 1,2 
if f = 3 , 

if f = 1 , 
d(S4,u) = 

l ! ( ^ - ^ - l ) + l if / = 2,3 . , 

10.4.2. ua = ±1 . 

d{Su u) = minjmax{2w>. - ? ( 1 + w a X w>>}> w^ + 1 + A:x j , 

d(S2,u) = min\max{2(ly -uy) + %(ua-l), ly-Uy}, ly-Uy + \ + k2? , 

$ ( " * - " a ) + "a if r = 1,2 , 

max{fw^-j( l + wa), w^} if r = 3 , 

l ( ^ " " x + " a ) ~ " a if f = 1 , 

t ( t - « J + 4("a-D if r = 2,3 , 

d(S3,«) = 

^(^4, U) 

where 

kx = 

and 

k2 = 

1 if ux — lx and ua = —1 

0 otherwise, 

1 if ux = 0 and wa = 1 , 

0 otherwise. 

We also need the following distance measures: 

diSi + S,-,**) = mm{d(Si9u) + d(Sh-u), d(St n Sf, u)} 

for (/,/)G {(1,3), (1,4), (2, 3), (2, 4)}. 
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Let Gi, G2,..., Gq-{ be the sequence of graphs constructed. Let vq be the current 
candidate. Then vq is in Gq if and only if 

d(Gq> tS) = min{d(G,-i, ±S), d(Gq, S1 + 54) + d(Gff, S2 + S3), 

where the d(Gq,St + Sj) are calculated according to the recurrence formulae in 
section 5.1.1. This is the distance criterion that must be satisfied to generate all 
<3.3.3.4.4>-patterns with content p. 

11 <3.3.4.3.4>-patterns 
The <3.3.4.3.4>-tessellation may be seen as a bidirectional arrangement of strips in 
which each strip consists of alternating squares and pairs of triangles as shown in 
figure 36. We may regard this tessellation as being composed of elastic bands which 
when perturbed may take on the appearance of the tessellation consisting of squares 
and right-angled isosceles triangles depicted in figure 37. In other words the <3.3.4.3.4>-
tessellation may be mapped onto the square grid, with the triangles oriented in the 
manner shown in figure 37. Notice that the triangles manifest themselves in one of 
four distinct orientations which occur as two separate pairs, each of which forms a 
divided square. This allows us to define an integral coordinate system for the 
<3.3.4.3.4>-tessellation. 

Each square, simple or divided, in the grid is allocated integer Cartesian coordinates 
(x, y) of the plane. To this is added a third coordinate, ox, which distinguishes 
between the orientations associated with the squares, and a further fourth coordinate, 
a2 r which distinguishes between the triangles that form a divided square. The pair 
(ol9 o2) may be regarded as the tile designator. That is, every tile is associated with 
four integral quantities, (x,y, ol9 o2), where (x,y) G Z2 and (a l 5 o2) G (Z3)2. The 
values Oi, o2 taken on for each type of tile are as follows: 

tile • t\ ^ V A 
tile designator <̂  

[o2 

0 

0 

- 1 - 1 

- 1 

\ 
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/ 
\ 
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/ 
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/ 

/ 

Figure 36. Figure 37. 
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The neighbours TV of any tile (x, y, a1? o2) are given by 
r{(x,y + l, 1, l),(x,y-l, l , - l ) , ( x + l , j > , - l , 1 ) , ( X - 1 , J > , - 1 , - 1 ) } 

or 

{(x,y + l,-l,-l)9(x,y-l,-l, lUx+l,y, 1, l ) , ( x - l , j v i , 7 l ) } 

N(x,y, 0,0) 

and 

N(x,y,o1 =£ 0, o2 =£ 0) = {(x- o2, y, 0, 0), (x,y- olo2, 0, 0), (x, j / , a^-ffa)} • 

By assigning the origin to any tile, we may observe that the triangular tiles have 
(x,y) coordinates such that either all of them have x + y odd or all of them have 
x + y even. Moreover any diagonal consisting of divided squares consists of oppositely 
oriented squares in an alternating fashion. 

11.1 Bounding regions 
Every <3.3.4.3.4>-pattern may be encased within a rectangle. There are two types of 
bounding rectangles: one which has a simple square associated with the origin and 
whose immediate x-neighbour is a ox = - 1 divided square, and the other has a 
ox = 1 divided square as the origin. Let lx and l2 denote the sides of the rectangles 
along the x- and ^-directions respectively. For both types of rectangles l2 < lx, and 
in addition for the type 2 rectangle lx and 4 must be odd. It may be easily verified 
that, for any other choice both for origin and orientation, the resulting rectangle can 
be mapped into one of these two types of rectangles through a symmetry motion in 
the plane. In short these two types characterize the fixing of the bounding regions 
in the plane. The two types of bounding rectangles and the arrangement of tiles in 
the <3.3.4.3.4>-tessellation to which they correspond are shown in figure 38. 

We may derive the explicit algorithms for the set of bounding regions that house 
the population of <3.3.4.3.4)-patterns with content p. As usual let a bounding 
rectangle be denoted by the triple (/l9 4 , 0, where t refers to the type of the rectangle. 

Type 1 / 2 
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\ 
h /, H 

Figure 38. 
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11.1.1. Type 1. 
It can be easily demonstrated that the following conditions on lx and l2 must be 
satisfied: 

h + h ^ P +1 maximal-stretching condition; 

hh ^ %V sufficiency of tiles; 

1 < l2 < l\ orientation of rectangle. 

Solving these inequalities gives the set 

i^={(|~^y],l,l)} u VhA2AY 2</2<[^-1J, 

max" 

11.1.2. Type 2. 
Let od be the odd ceiling function 

odOO = x+(\-x mod 2) . 

In this case lx and ^ must satisfy 

k + k < p + l , 

i < /2 < / , , 

/ j , l2 odd . 

From which we get the set 

2*P= {(2^J + 1, 1,2^ U j ft, 6,2): fc€= {3, 5, . . . ,od([^J)} , 

maxjfc, o d ( p | ^ | ) j < /i < od(p-fc) 

At this stage we may remark that* for a fixed p, each of the two trivial bounding 
rectangles—that is, with l2 = 1—contributes towards a single pattern. We may 
therefore disregard these rectangles and from now on assume that l2 > 2. 

11.2 Coding 
The trellis of a bounding rectangle (/1? ^ , t) is constructed in the usual manner. Let 
h — h ~ 1 a n d ^ = h ~~ !•• We may then associate with the vertices of the trellis 
coordinates (x, y, au o2), where 0 < x < lx and 0 < }> < ly. We may also assign 
labels to the vertices in the following manner. Let loc be the function defined as 
follows: 

loc(O) = 0 , 

loc(l) = /x+ri/xl + f , 

1OC(J0 = locO>-2) + 3/» + 3 , y> 2 . 

Then a vertex (x, j>, a1? a2) has the label 

locO0 + [ f ( x - a a ) l + ( l + a a ) . 
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A <3.3.4.3.4>-pattern may be associated with a word defined in the usual manner. 
As in the case of polyominoes and <3.3.3.4.4>-patterns this word may be partitioned 
into l2 subwords, where each subword represents an integral quantity. In other 
words every (3.3.4.3.4>-pattern in an (/l5 l2, t) rectangle is associated with an /2-tuple 
r = (To, T I , ..., 7/ )• Each vertex (x, y, ol9 o2) in a pattern contributes to yy 

2'* + r*/*l + f-r4(*-aa)i-(i + aa) if y = 0 mod 2 

or 

2'x + li/xJ + 3 - f - r l ( x - a 3 ) l - ( l + a a ) {f y = 1 m o d 2 . 

11.3 Symmetries 
If we examine the arrangements of tiles in the <3.3.4.3.4>-tessellation that correspond 
to the boundary rectangles defined on the square grid, we observe that the bidirectional 
distortion of the triangular tiles essentially hides the asymmetric nature of the 
arrangements. Figure 39 illustrates examples of arrangements that correspond to the 
different conditions imposed on lx and l2. From figure 39 it may be seen that only 
when both lx and l2 are odd do the arrangements of the tiles possess any kind of 
symmetry. In short when either lx or ^ is even the <3.3.4.3.4>-patterns are uniquely 
generated within their bounding regions. That is, every pattern in these bounding 
rectangles is the representative of its free equivalence class. 

Let us consider the situation when both lx and l2 are odd. Two cases arise: 
(1) l2 < lx and (2) lx = l2. When /̂  < h there is only one symmetry motion in the 
plane which leaves the bounding rectangle invariant. This is a rotation through 7r 
about the centre. Notice that this movement, although preserving the simple squares 
(which in any event it must), does interchange the orientation of the triangular tiles 
within a divided square. That is a o2 = 1 tile transforms into a o2 = — 1 tile and 
vice versa. Consequently we may describe a IT rotation by the following coordinate 
mapping: 

TT: (x9y9ol9o2)-* (Ix-x9ly-y9 ol9-o2) . 

When lx = l2 other symmetry motions also leave the bounding rectangle invariant. 
For instance a \it or a -£TT rotation about the centre leaves a type 1 rectangle 
invariant in the plane. However, these motions interchange a ox = 1 square into a 
Qj = - 1 square and vice versa. The coordinate-map forms of the two symmetry 
transformations are: 

\it\ (x,y, ol9o2) -> (!y-y9x9-ol9-o1o2) 

and 

i?r: (x9 y9 ax, a2) -> O , lx - x9 -ox, tfi a2) • 

In the case of type 2 rectangles, two different symmetry transformations need to be 
considered. They are the reflections about the lines x = y and x = —y respectively. 
In coordinate form they may be described as 

R: (x9y9ol9o2)-+ (y,x,ou oxo2) 

and 

r: (x9y9ol9o2)-+ (!y-y,lx-x9 au-axa2) . 

The symmetry elements are summarized in table 9, which includes a pictorial 
illustration of the effect of the mappings on the orientations of the triangular tiles in 
the square grid. 
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Canonical patterns are defined in the usual manner. That is, a pattern is the 
representative of its free equivalence class if and only if 

r > rT, rert, 
where FT, r, and Tt have their usual meaning. 

L = L . /, * U 

Type 1 lx, l2 even 

/15/2 odd 

lx even, l2 odd 

/. odd, /, even 

Type 2 
/ j , / 2 o d d 

Figure 39. 
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Table 9. 

Group element Symbol Coordinate-coordinate Permutation of triangular 
map: (x, y, ox, o2)~* tiles under mapping 

£ V 
1 Rotation through 7r TT (lx-x, ly~y, ai9 -o2) \\ [I 

^ A 

2 Rotation through \ir \TI Qy-y,x,-Oi,-OI02) X 

_ k — V 
3 Rotation through -\TI \it (y, lx-x, -ox, Oi02) ^ 

4 Reflection about the 
x = y diagonal 

5 Reflection about the 
x — -y diagonal 

R 

r 

0 , x, ot, aj o2) 

(ly-y,lx-x, al9 -Oi02) 

^ — /l 

Q v 
n (1 

^ ; A 
k \P 
(1 ^ 

11.4 Algorithm 
We have again reduced our pattern enumeration problem to problem 5.1(b). Let 
S* = {^i,S2, S3,S4} be defined as in section 10.4, except that o is replaced by au o2. 
The same distance criterion as in section 10.4 must be satisfied. The distance 
measures for the <3.3.4.3.4>-patterns are defined as follows. Let u = (ux, uy, u0i, ua^) 
be a vertex in the trellis of type t. Then 

d(Sx, u) = \l(uy - uaiu02)] + uau02 - (t+ ux - 1) mod 2 , 

d(S2, u) — \\{ly - uy + u0u02)} - uaua2 ~(t + ly + ux - 1 ) mod 2 , 

d(S3,u) = \%(ux -wCT2)l + ua2 ~(t+ uy - 1) mod 2 , 

d(S4, u) = [§(/* -ux + ua2] ~u02 -(t+lx + Uy - 1 ) mod 2 . 

12 <3.6.3.6>-patterns 
Recall that the hexagonal tessellation can be associated with an integral coordinate 
system. Each tile is given the coordinates (x, y, z) such that x + y + z = 0. Moreover 
the tessellation may be coloured in a natural way using three colours according to 
whether (x — y) mod 3 = 0, 1, or 2. Suppose that the tiles of a particular colour are 
designated as 'unmarked'. Suppose further that the tiles of the other two colours are 
subjected to the following marking operation 

with the stipulation that every 'marked' tile is adjacent to its unmarked neighbours 
through unmarked edges. The application of this marking operation is illustrated in 
figure 40(b). Let us now contract all the marked edges to a point; that is, apply the 
following reduction operation: 

O — A 
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The result is the <3.6.3.6>-tessellation shown in figure 40(c). By means of these two 
operations we have successfully established an integral coordinate system for the 
<3.6.3.6>-tessellation. More importantly we have shown that each <3.6.3.6>-p at t e r n -
connected or otherwise—is derivable from some polyhex. We may therefore employ 
the polyhex enumeration to generate the <3.6.3.6>-patterns. 

It is instructive to reflect upon the implications of the marking and reduction 
processes. First,.we may notice from figure 40(b) that every marked tile is adjacent 
to its marked neighbours through a marked edge. Furthermore, on applying the 
reduction operation these tiles become triangles that share only a common point. 
Second, marking imposes an orientation on the hexagonal tiles in such a manner that 
all marked tiles of one colour reduce to an upwards triangle (A) and those of the 
other colour reduce to a downwards triangle (V). The unmarked tiles remain 
unaltered. Thus marking is equivalent to defining a marking function which maps the 
colours of the hexagonal tiles to the tile types in the <3.6.3.6>-tessellation. Finally, 
marking the hexagonal tessellation results in a reduction of the adjacencies of the 
marked tiles by an additive factor of three. Which three of the original neighbours 
remain depends on the orientation of the marked tile. 

We stated earlier that a (3.6.3.6>-pattern corresponds to a marked polyhex. However, 
marking a polyhex does not necessarily yield a connected <3.6.3.6>-pattern, for precisely 
the reason that marking engenders a reduction in tile adjacencies. This requires us to 
modify the polyhex enumeration to ensure that only those polyhexes which are 
'markable' are generated. 

There is another difficulty introduced by marking. This is due to the fact that 
marking may be carried out in three possible ways, each dependent on the colour of 
the hexagonal tile that is preserved as a hexagon after marking. Where M denotes a 
marking function, the three possible ways are listed as follows as mappings between 
colour and tile type: 

(x-y) mod 3 M0 Mx M2 

O V A 
A O V 
V A O 

This listing may be explained as follows. Suppose tiles of colour c are preserved. 
The marking function is then Mc, and Mc[(c+ 1) mod 3] is an upwards triangle and 
Mc[(c+ 2) mod 3] is a downwards triangle. 

(a) (b) (c) 

Figure 40. 
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For computational reasons it is convenient to represent the tile types of the 
<3.6.3.6>-tessellation by numerical values. A possible choice for the tags is as follows: 

tile type Q ^ \J 

tag 0 1 2 

This choice for the tags allows us to define the marking functions as simple mappings 
from Z3 to Z 3 : 

Miic) = (c-i) mod 3 , z = 0 , 1 , 2 . 

The preceding discussion provides the requisite background to develop the (3.6.3.6)-
pattern enumeration algorithm. One final comment is necessary. Let i indicate the 
marking function. Let TV denote the neighbours of any tile (x, y, z). Then the 
neighbours are given as follows. 

12.0.1. Mt [(x-y) mod 3)] = 1 . 

N(x,y,z) = {(x,y+l9z-l),0c-l,y,z+l), (x+l,y-l,z)} . 

12.0.2. M{[(x-y) mod 3] = 2 . 

N(x,y,z) = {(x,y-l,z+l),(x+l,y9z-l)Ax-l,y+l,z)}. 

12.0.3. Mi[(x-y) mod 3] = 0 . 

N(x,y,z) = {(x,y±l,z*l), (x+1,y, z±\\ (x±\,y + \,z)} . 

12.1 Generating the (3.6.3.6)-patterns from the polyhex 
We have just seen how the <3.6.3.6>-pattern enumeration may be treated as a special 
case of the polyhex enumeration problem—though with a difference. Essentially the 
idea is to generate the polyhexes and apply in turn the three marking functions which 

(a) (b) (c) 

Figure 41. 
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yield one of the following cases: 
(a) the patterns are unconnected; 
(b) the patterns are isomorphic under a symmetry motion; 
(c) the patterns are distinct; 
(d) some combination of these three—that is, one pattern may be unconnected and 

the other two isomorphic, and so on. 
A few examples illustrating this point are shown in figure 41. 

How can we refine this process to ensure that only markable polyhexes are 
generated? If we recall that a polyhex is a connected subgraph of its bounding 
hexagon, which in turn is embedded within a triangular region (see section 7.1), then 
it represents a <3.6.3.6>-pattern provided that its graph remains connected after the 
adjacencies of the triangular region have been altered by the marking function. 
Consider the triangular region ('super trellis') for the population of 6-hexes shown in 
figure 42(a). The vertices are labelled by their colours. The effect of the marking 
functions M0,MX, and M2 are respectively illustrated in figures 42(b), 42(c), and 42(d). 
Here the vertices are labelled by the tags of the tile type they represent in the 
(3.6.3.6>-tessellation. To generate the <3.6.3.6>-patterns with content p, we generate 
the p-hexes in each of the three marked trellises by use of one of the techniques 
discussed in section 7.4. Therefore the <3.6.3.6>-pattern enumeration requires 
performing the polyhex enumeration thrice! 

Figure 42. 

>0 

(d) 

12.2 Symmetries 
Since we are dealing basically with polyhexes, we need only consider those symmetry 
motions that leave a bounding hexagon invariant in the plane. There is a problem 
however. The symmetry motions which preserve adjacencies of the tiles do not 
always preserve the colours of the tiles. They only preserve isomorphisms of the tile 
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colours onto themselves. That is, a tile of colour cx may be mapped onto a tile of 
colour c2 . Consequently a symmetry motion may map a polyhex marked under Mt 

onto a polyhex marked under Mj, / =£ j . Since every hexagon in the pattern is always 
mapped onto a hexagon, all we need to know is the colour of the hexagonal tile after 
the symmetry motion has been applied, and from which the new marking function is 
easily determined. In other words, in addition to the list of symmetry elements 
summarized in tables 2 and 3, we need a list of the effect of the symmetry 
transformations on the indicators of the marking functions. 

12.3 Coding 
Figure 43 shows another peculiar phenomenon which may be attributed to the 
marking function. Notice that these are two isomorphic patterns that correspond to 
the same graph, the difference being the application of different marking functions. 
Hence we cannot use the standard binary representation to describe the pattern. We 
must be able to distinguish between the marking functions that apply. A radix 4 
scheme solves this problem entirely. 

Every <3.6.3.6>-pattern may be uniquely represented by a (lx+ l)-tuple of integers, 
T = (y~ix, 7-ix+i 5 •••> 7o)> where lx denotes the x-diameter of the bounding hexagon. 
Let c denote the current marking indicator. Then every vertex (x, y, z) of the trellis 
in the pattern contributes 

{3-Mc[(x-y) mod 3 ] } 4 ^ to yx . 

A pattern is canonical—that is, the representative of its free equivalence class—if 
and only if 

r > rT , r e Th, 
where r denotes the symmetry motion and Th is the group of symmetries of the 
bounding hexagon, h. TT = (yLj , y'-lx+1,..., 70) may be easily computed as follows. 
Let T(C) denote the colour of the tile that represents the hexagon after the application 
of r. Then every tile (x, y, z) in the original pattern contributes 

(3-MT{c){[T(x)-r(y)] mod 3]}>4"^> to yT{x) . 

nac\ XJGO 
Figure 43. 

12.4 Algorithms 
The algorithm is the same as the polyhex enumeration but with the following 
modifications. The initial vertex as before is chosen from the line x = 0. This 
defines the root of the search. We select in turn the marking-function indicator for 
this root and keep it fixed for the remainder of the search. The set of valid 
neighbours of any vertex used to augment the current partial graph is dictated by the 
sets in 12.0.1 through 12.0.3 depending upon the tag of the vertex. The pattern is 
coded according to section 12.3. The first occurrence of the vertex which represents 
the hexagon in the corresponding <3.6.3.6>-pattern is recorded to facilitate the 
symmetry transformation for canonical testing. This vertex must be either the root 
of the search or the second vertex chosen in the construction of the graph. 



252 R Krishnamurti, P H O'N Roe 

13 <3.12.12>-patterns 
Consider the <3.12.12>-tessellation, shown in figure 44(a). Suppose we coalesce the 
triangles to a point. The result is the hexagonal tessellation. For ease of explanation 
we will emphasize the points in the manner shown in figure 44(b). The hexagons in 
the latter tessellation represent the dodecagons and the points correspond to the 
triangles. In a similar fashion every <3.12.12>-pattern corresponds to some polyhex 
with certain points distinguished or 'marked'. Examples of <3.12.12>-patterns and the 
corresponding marked polyhexes are shown in figure 45. 

Therefore the <3.12.12>-pattern enumeration problem may be solved by the 
following two-stage process. First let us construct in toto the list of connected 
patterns consisting of n dodecagons, for all n< p. Then for each pattern in this list 
insert, if possible, the requisite number (p - n) of triangles at the appropriate places. 
This procedure is equivalent to marking p — n points on each rc-hex from the list of 
rc-hexes for all n < p. At this stage it should be remarked that any symmetry 
transformation that applies to the polyhexes also applies to the <3.12.12)-patterns, 
whence only the list of representative or canonical polyhexes need be considered. 
From section 7 we have an algorithm that generates polyhexes canonically within 
their bounding hexagons, which are in turn embedded within a triangular region 
(figure 18). The remainder of this section is devoted to the description of how the 
polyhexes may be marked. We will assume that n < p, for otherwise there is 
precisely one (3.12.12>-pattern with content p that corresponds to a p-hex, and this 
pattern consists of only dodecagons. 

(a) (b) 
Figure 44. 

Figure 45. 

Figure 46.. 
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The point-marking problem is not the straightforward combinatorial exercise it may 
appear at first—namely selecting /? — n points from the list of points on the polyhex 
to be marked. Consider the two point-marked versions of the same polyhex shown in 
figure 46. The two <3.12.12>-patterns represented by these marked polyhexes are in 
fact isomorphic. This may be attributed to the fact that the points map onto one 
another under an element of the symmetry group that leaves the polyhex invariant in 
the plane. We may therefore say that the two sets of points are 'indistinguishable' 
or are in the same block of the automorphism partition of the points under the 
symmetries that leave the polyhex invariant in the plane. Therefore, in order to generate 
the representative or canonical <3.12.12>-patterns, a description for the sets of 
indistinguishable points for each polyhex is necessary. 

13.1 Representation of the points on the polyhex 
Recall that every polyhex with content less than or equal to p may be embedded 
within a graph represented by a triangular region whose vertices have integral 
coordinates (x,y, z) with x + y + z = 0, where —p < x, y < 0 and 0 < z < p. This 
graph consists of triangular faces. Suppose we insert a vertex in each face, and adjoin 
these vertices by edges to the vertices at the corners of their faces. We obtain a 
subgraph of the graph of the <3.12.12>-tessellation. Each vertex in the triangular faces 
represents a triangle of the tessellation. Every other vertex represents a dodecagon. 
Effectively we may regard the original triangular graph with its vertices as the 
framework for describing the <3.12.12>-patterns. Rather than employ the vertex and 
edge insertion operation just described, we may allow each triangular face to stand 
for a triangle of the tessellation. Since every dodecagon is surrounded by six triangles 
we must add triangular faces along the perimeter of the triangular region to account 
for all possible <3.12.12>-patterns with content p. The result is the hexagonal region 
shown in figure 47(a). The trellis which houses the graphs of all possible (3.12.12>-
patterns with content p is shown in figure 47(b). 

The triangular faces may be assigned integral coordinates. For this we must first 
fix the relative order of the faces around a vertex. We adopt the convention indicated 
in figure 48. This convention may be explained as follows. Every vertex (x, y, z) has 
six neighbouring triangular faces designated as Nf(x,y, z), 1 < / < 6. Nj(x9 y, z) 
contains the coordinates of the triangular face in the /th position according to the 

(a) (b) 
Figure 47. 
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relative order specified in figure 48. The coordinates of the faces around a vertex 
(x, y, z) are then given by: 

N1(x,y,z) = (z,x-y) , 

N2(x,y,z) = (z,x-y-\) , 

N3(x9y9z) = (z + l , * - j > - l ) s 

Let loc be the function 

loc(O) = 1 , 

loc(z) = loc(z - l ) + 2z + l , 

N4(x,y,z) = (z+l,x-y) , 

Ns(x,y,z) = (z+l,x-y+l) 

N6(x,y,z) = (z,x-y+l) . 

z > 1 . 

Then every triangular face (x,y) in the hexagonal region [figure 47(a)] may be 
uniquely numbered in the range 1 through p2 4- 4p -f 1 by the quantity 

loc(x) + x + y+\ . 

Hence, given any vertex (x, y, z), the six triangular faces surrounding it may be 
described by their face numbers calculated according to this formula. Conversely an 
inverse mapping for the triangular faces may be defined which uniquely describes 
each face's position in the hexagonal region. To each face (x,y) we may assign a 
pair (/, (x\ y\ z'>), which states that the face (x,y) is the /th neighbour surrounding 
the vertex (x\ y\ zf) according to the convention in figure 48. 

Figure 48. 

13.2 Coding the triangles of a <3.12 A2)-pattern 
Suppose we are given a canonical rc-hex defined within its bounding hexagon. Let the 
z-diameter lz = z — z. Then it is clear that the triangular faces that border this 
poly hex have coordinates (x9y) where x must lie in the range z through z + 1. Since 
every pattern derived from this polyhex is a (p-^-combination of triangular faces, 
we must be able to represent this combination uniquely. Two methods suggest 
themselves: (a) a lexicographical ordering of the face numbers in the combination, or 
(2) an (/z+ l)-tuple of integers E = (e$, e$+1 , . . . , e^+j). In the second method each 
face (x, y) in the combination of p - n points contributes 

2*-y+i to e* . 

13.3 Automorphism partition of the points and the generation of (3A2A2)~patterns 
We have just seen how the points of a polyhex may be uniquely described as a set of 
face numbers calculated with respect to the hexagonal region shown in figure 47(a). 
We may recall from section 7.2 that a polyhex is represented by an (/*+ l)-tuple of 
integers F and that the polyhex is canonical if and only if 

r > r T , TGTH9 

where TT represents the word of the isomorph under r, which is an element of Th, 
the group of symmetries that leave the bounding hexagon invariant in the plane (see 
tables 2 and 3). 
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Suppose we have just generated a n-hex with m points. Let C — {r: Y = YT}. 
Four cases arise. 

13.3.1. Case 1: m < p — n. 
In this case no <3.12.12>-pattern with content p may be derived from the polyhex. 
For instance a single hexagon cannot contribute to the <3.12.12>-patterns with 
content 8. All patterns with content 8 must contain at least two dodecagons. 

13.3.2. Case 2: m = p — n. 
In this case there is exactly one <3.12.12>-pattern that corresponds to the fl-hex. 
Every point in the polyhex is marked. 

13.3.3. Case 3: nt> p — n and C — {i}. 
In this case the polyhex has no symmetries (other than identity, of course) and 
therefore every point in the polyhex is distinguishable. Each combination of p — n 
points from the m points of the n-hex when marked yields a distinct <3.12.12>-pattern 

( m \ 
_ I <3.12.12>-patterns with content p that correspond 

to the asymmetric «-hex. 

13.3.4. Case 4: m < p-n and Ci= 0 , {i}. 
Here the polyhex remains invariant for every T £ C. Consider the effect of one such r 
on the vertices of the graph of the polyhex. Under r, a vertex v is permuted to 
occupy the position occupied by T(V). At the same time it changes the relative order 
of the triangular faces that surround it. For instance the ;th neighbour Nj(v) of 
vertex v may become its kth neighbour Nk[r(v)], k =£ /, when v moves into the 
position denoted by T(V). In short r defines a permutation of the triangular faces in 
which Nj(v) maps into Nk[T(v)]—or, Nf(v) and Nk[r(v)] are in the same block of the 
automorphism partition and therefore are indistinguishable. The permutations of the 
relative order of the triangular faces around a vertex under the symmetry motions 
isomorphic to the elements of D6 are listed in table 10. 

Table 10. 

Group element Symbol Permutation of the relative order of the triangular faces 
surrounding a vertex 

5 , 6 ^ 6 1 

2 

3 
4 
5 

6 
7 
8 

9 

10 

11 
12 

Identity 

Rotation through -n 

i 

7T 

1 -• 1,2 -+ 2, 3 ^ 3 , 4 ^ 4 , 

1 ^ 4 , 2 ^ 5 , 3 ^ 6 

Vertical reflection about the axis that bisects: 
the x lines 
the y lines 
the z lines 

v* 
V>> 
Vz 

Horizontal reflection about: 
the x lines 
the y lines 
the z lines 

Rotation through \-n 

Rotation through —\n 

Rotation through \-n 
Rotation through -\n 

h* 
hv 

K 
h 

h 

J* 
i* 

1 «> 5, 2 < > 4 , 3 ^ 3 , 6 -> 6 
1 <» 3,4 o 6, 2 ^ 2 , 5 ^ 5 
2<»6, 3+>5, 1 -+ 1,4-* 4 

1 o 2, 3 <* 6, 4 o 5 
1 ^ 6 , 2 ^ 5 , 3 <»4 
1 «* 4, 2 o 3, 5 <» 6 

1 - * 3 - > 5 - M 
2 - * 4 - * 6 ^ 2 
1 ^ 5 - > 3 ^ 1 
2 ^ 6 - > 4 - > 2 

1 ^ 2 - + 3 ^ 4 ^ 5 - > 6 - * l 
1 ^ 6 -> 5 ->4 - * 3 - * 2 - * 1 
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Table 10 may be read as follows. Consider the symmetry motion IT. Its 
permutation is described as 1 <> 4, 2 o 5, and 3 <> 6. That is, N^v) and N4[ir(v)] 
are indistinguishable, N^(v) and Nxlirfju)] are indistinguishable, N2(v) and A/S[TT((;)] are 
indistinguishable, and so on. Another example is the \-n rotation, whose permutation is 
described as l - > 2 - > 3 - > 4 - > 5 - ^ 6 - * l . Here Nx(v) and N2[%ir(v)] are in the same 
block, N2(v) and N3[%ir(v)] are in the same block, and so on. Table 10 forms the 
basis for constructing a description of the automorphism partition of the points in 
the polyhex. 

The computational steps that have to be employed to generate the (3.12.12)-
patterns from the given polyhex are now briefly described. Initially let FUF2,..., Fm 

be one-element sets containing the face numbers of the triangles bordering the polyhex. 
Suppose vq is the gth vertex chosen in the search procedure (algorithm 3). We 
examine each triangular neighbour of vq, and if it is has not been examined before 
we perform the following operations. Let / be the neighbour examined. Let m 
denote the current number of triangular faces that border the partial graph Gq. 

Step 1: Mark Nj(vq) as examined. 
Step 2: Fm+ <-!<- {N,(vq)} . 
Step 3: Define the inverse mapping IN.(u } <- (/, vq). 

For the purpose of backtracking every 'new' neighbour examined must be recorded. 
Consider a r £ C For each face / in the list, examine the inverse mapping 

If = (/, v). That is, / = Nj(v). From table 10 suppose Nj(y) maps into Nk[r(v)]. We 
have the permutation / - » Nk[r(v)]. Let / be in set Fa and Nk[r(v)] in set Fp. Two 
cases arise 

13.3.4.1. a = p. Do nothing. 

13.3.4.2. a j= ]3. Perform the following set manipulations: 

Fa <- Fa U F^ and Fp «- 0 . 

That is, merge the sets Fa and Fp into a single set. It should be clear that if an 
element in Fa is indistinguishable from an element in Fp then all elements in both sets 
are indistinguishable. 

This process is repeated for every r ^ C. Let the resulting sets be renamed from 1 
through mb such that only the nonnull sets are considered. Moreover let them be 
arranged in order of decreasing cardinalities. That is, we have the collection 
{Fl9F2,...9Fmb}, where \FX\> \F2\ > ... > | F m J . Each Fj is a block of the 
automorphism partition of the points. 

Suppose n = p~\. Then clearly there are mb distinct patterns with content p that 
may be derived from the given polyhex. 

On the other hand when n < p -1 we have to generate the combinations of p - n 
points from the m points which are coded according to the method suggested in 
section 13.2. A <3.12.12>-pattern is canonical if and only if 

E > ET , r G C , 

where ET represents the combination under r and is computed in the usual manner. 
The combinations may be generated using a backtrack search strategy similar to 

that adopted in algorithm 3. The root of each search is a face from each set Fj, 
1 < / < mb. Once a search has been carried out with this root, all faces in the same 
block of the automorphism partition of the points can be forbidden for searches with 
different roots. From coding considerations it increases the efficiency if the faces in 
each Ff are ordered according to decreasing x- and increasing ^-coordinates. We can 
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employ the same type of forbidding mechanism as described in section 5. At any 
search level k, once a face has been forbidden it remains forbidden for all other search 
levels / > k. Moreover we can search for further combinations from a given level k if 
and only if the number of unforbidden faces is not less than p — n—k. 

From a computational viewpoint the sets Fa refer to the names of the sets and are 
distinct from the elements they contain. Therefore any of the UNION-FIND 
algorithms for set representation may be used to perform some of the manipulations 
described in this section [see, for example, Aho et al (1974), Tarjan (1975), or Horowitz 
and Sahni (1976) for details regarding possible computational implementations]. 

14 Conclusions 
In this paper we have presented the following. 

14.1 A computational theory for constructing spatial patterns composed of elements 
of tessellations 
This theory incorporates the topological and geometrical nature of these tessellations. 
The topology is described through graphs. The geometry is reflected within the 
integral coordinate systems associated with the tiles of the tessellation. In certain 
cases additional coordinates such as the tile designator are introduced to account for 
the spatial orientations of the individual tiles in the tessellation. Properties of 
tessellations and their imbedded patterns may then be expressed in terms of simple 
graphical properties. For instance, distances between tiles are simple graph distances 
which have simple integral formulae. In fact the integral coordinate system is 
necessary from a computational viewpoint since the use of traditional coordinates for 
these tessellations will result in expressions that may require transcendental quantities, 
which can only be approximated by sequences of rationals to within some topological 
radius of convergence on the real line defined by the word size of computer memory. 
This highlights the following point: to use the computer effectively one may sometimes 
have to distort the space in which the patterns are defined in order to represent them. 

A pattern is defined within a finite section of the tessellation, termed the bounding 
region, as a labelled subgraph of the graph or trellis of this region. An algorithm that 
generates labelled subgraphs of a graph is presented in section 5. This forms the 
general framework for enumerating tessellation designs. Spatial transformations are 
expressed in terms of integral arithmetic, which in turn may be reduced to permutations 
of the labels of the vertices of the trellis. 

14.2 An implicit description for spatial patterns by means of data structures 
Each pattern corresponds to a data structure. The pattern properties are 
computationally equivalent to algebraic-type operations on these data structures. The 
enumeration algorithm essentially generates a set of data structures represented by 
vectors of numbers. In other words the computational theory provides the basis for 
nonnumerical descriptions for spatial patterns. 

14.3 Algorithms for patterns from the archimedean tessellations 
Many of the algorithms have been implemented—some in ALGOLW on the IBM 
370/158 computer at the University of Waterloo and the rest in ALGOL68 on the 
IBM 370/165 computer at the University of Cambridge. The results for the regular 
tessellations (which are not given here) agree with those published elsewhere (Lunnon, 
1971; 1972; 1975). In the case of the polycubes our results were broken down 
according to the bounding regions, as opposed to Lunnon's total counts. The 
implemented programs minimize computation by performing almost all the arithmetic 
calculations exactly once, and during the actual enumeration phase the computations 
essentially involve table look-ups (or simply memory fetches). 
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Each example considered in this paper attempts to illustrate slightly different 
aspects of spatial enumerations. 
(a) The polyomino routine describes how patterns may be represented by words over 

Z2 and how these may be reduced to vectors of length O(p). Moreover each vector 
requires O(p) time to construct. Therefore the worst case complexity occurs when 
each pattern requires a separate path in the search tree (which is normally not the 
case) and is 0(pNp), where Np is the number of distinct patterns. 

(b) The routines for polyiamonds, (3.6.3.6)-patterns, and <3.12.12>-patterns demonstrate 
that, by suitable operations on the hexagonal tessellations, these patterns may be 
derived from the polyhexes. Moreover the polyhex routine shows that by an 
appropriate manipulation of the distance criteria the need to define explicitly the 
individual bounding regions may be eliminated. This is also true for the other 
patterns considered in this paper. (Essentially the modified distance criteria 
include the fixing conditions on the orientations of the bounding regions.) 

(c) The polycube and poly rc-cube, n > 4, routines illustrate the extension of the 
theory to higher-dimensional patterns. The algorithms are defined in exactly the 
same manner as was done for the planar patterns. 

(d) The <3.3.3.4.4>- and (3.3.4.3.4>-patterns indicate the utility of tile designators in 
devising integral coordinates. Moreover they emphasize the point made earlier that 
to simplify computation one may sometimes have to distort the space in which the 
patterns are embedded. 

(e) The section on <4.8.8>-patterns highlights the complexity of the graph structure of 
the tessellation graph. It also demonstrates the need for the careful construction 
of the graph-distance criterion used in algorithm 3. It is interesting to note that 
some of the <4.8.8>-patterns may be obtained by point marking polyominoes in a 
manner similar to that for the <3.12.12>-patterns. 

(f) Though the 0.3.3.3.6)-, (3.4.6.4)-, and (4.6.12)-patterns have not been explicitly 
considered in this paper, these may be derived from the polyhexes by suitable 
point and line marking operations in a manner similar to that for the (3.12.12)-
patterns. Indeed the (3.3.3.3.6)-patterns are a special class of the (3.4.6.4)-patterns, 
which in turn are a special class of the (4.6.12)-patterns. 

4.4 Algorithms which satisfy the definition for efficient algorithms stated in the 
introduction 
By theorem 1 each labelled subgraph is uniquely generated. Isomorphisms are tested 
for by a lexicographical comparison of two vectors of length 0(p). The order of 
groups involved is 0(n), where n denotes the size of the largest polygonal tile. Hence 
isomorphism requires at worst 0{np) time, where n < 12. Moreover there is a unique 
lexicographical ordering of the patterns in each free equivalence class. The storage is 
dominated by the memory required to house the trellis, which is 0(p2). 

The algorithms presented in this paper may be easily modified to generate patterns 
in which the tiles are not necessarily regular polygons, though the tessellations satisfy 
the valency requirement. In these cases only the group of symmetry motions that 
apply changes. 
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