
Environment and Planning B, 1978, volume 5, pages 157-177

Algorithmic aspects of plan generation and enumeration

R Krishnamurti, P H O'N Roe
Department of Systems Design, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
Received 24 October 1978

Abstract. Plans composed from elements of rectangular grids are considered. A general approach
towards the generation and enumeration of nonequivalent plans is presented. It is shown that for
these plans there is a minimum colouring which permits easy detection of isomorphs without the
need for external storage devices. The notions of threading patterns and colour rules are introduced.
Four specific algorithms for different types of plans involving rectangular elements are developed.

In this paper we present a general approach to the problem of generating and
enumerating architectural plans based on rectangular grids. The general approach
makes it possible to examine various classes of plans within a consistent algorithmic
framework. The classes of architectural plans we have chosen for illustrative purposes
include arrangements of rectangular rooms within a rectangular envelope (the
rectangular-dissection problem); bilaterally symmetric Palladian schemes in which the
central room is not necessarily rectangular; rectangular dissections of the square
which display either four-fold cyclic (C4) or dihedral (D4) symmetries; and traditional
Japanese room plans based on the arrangements of the tatami or standard mat. It is
noted in our conclusions that this general approach may be extended to three-
dimensional arrangements, and has already been used successfully to enumerate
assemblies of cubes and the packing of boxes.

Plans
A plan is an arrangement on the unit grid (Bloch and Krishnamurti, 1978) of non-
overlapping regions whose boundaries form polygons whose edges lie on the grid lines.
The edges are combined to form maximal lines (Stiny, 1979). Intersecting maximal
lines meet in an L, T, or + shape, known respectively as 2-way, 3-way, and 4-way
points. Plans are trivalent if they do not contain a 4-way point; nonaligned if each
grid line contains at most one maximal line; and standard if each grid line contains
at least one maximal line. Plans are equivalent if they are identical after a sequence
of rotations and reflections. Our aim is the enumeration of nonequivalent plans via
the counting of the representatives (called canonical plans) of the equivalence classes.

The polygons of a plan are either shaded or unshaded, where shading may be
interpreted as corresponding to some special feature in the plan such as a courtyard
or central hall. The polygons are referred to as the plan elements. A plan is denoted
by P, and the number of its unshaded elements is its content, p.

The grid cells of an (/, m) unit grid (Bloch and Krishnamurti, 1978) are associated
with integer coordinates (x, y), or (column, row), where x E {0, 1, 2,..., m — 1} and
y E {0, 1, 2, ..., I-1}. The horizontal and vertical grid lines respectively lie on the
lines Y = y, y e {0, 1, ..., / } , and X = x, x G {0, 1, 2, ..., m}. Let hy(P) and vx(P)
each denote a relationship between plan P and the grid lines, measured in as yet
undetermined units. For instance hy may be Boolean-valued, indicating whether or
not there is a maximal line on Y = y. Or it may be integer-valued, denoting the
number of lines (distinct edges of the polygons touching the grid line) on Y = y.

158 R Krishnamurti, P H O'N Roe

The threading pattern, T, defines a bijection of the grid cells onto the integers
1, 2, ..., Im, and is denoted by the ordered set

<(*i, yi), (x29y2), ..., (xlm, ylm)) ,

where T[(Xj, yf)] = /. The choice of a threading pattern for a unit grid depends
upon the set of production rules in the construction of the plans. It is assumed,
however, that, for a given class of plans, Y is fixed.

Other grid parameters may be defined, such as the cell type, but these appear to be
dependent upon the particular requirements of the generating algorithm.

Plan representation
To represent any plan P with content p, p distinct 'colours' are allocated to the
unshaded plan elements in such a manner that grid cells in the same element have the
same colour. The colours are identified with integers. The shaded elements are given
the special colour 6. Such an assignment of colours is termed a proper colouring of the
plan. A proper colouring C defines a map between the cells and the set of colours.
C(q) denotes the colour of (x,y), where T(x,y) = q.

There are of course many possible proper colourings for a plan. Define the
^-colouring, 0(P), of P as follows. Let V be the threading pattern. Label the cells,
taken in their T-number order, with increasing numbers starting from 1, such that
grid cells in the same unshaded element have the same number. Label all cells in the
shaded elements with 0.

Let 0(P) = <0(1), 0(2), ..., 0(/ra)>, where <j>{q) is the colour associated with the cell
whose T-number is q. Since 0(i\) = <t>{P2) if an(* only if Px = P2, <f){P) may be used
as a representation of P.

Canonical plans
Recall that one plan is equivalent to another if they are identical after a sequence of
rotations and reflections. Consider the group of such transformations, which map
plans onto fellow members of their equivalence class. In order to find a representative
of each equivalence class, without loss of generality we may restrict our attention to
those plans with / < ra, and thus to those transformations that leave the grid invariant.
Let G denote the group of such transformations; it can easily be checked that G is a
subgroup of the dihedral group of order eight, £>4, if / = m and the Klein four-group,
K4, if / < ra. The elements of the group are internally represented as cell-to-cell
mappings (Krishnamurti and Roe, 1979). These grid-invariant transformations of
plan JP are denoted by gP, for each g £ G.

A plan P is defined to be canonical if and only if

<I>(P)<L 4>(gP) for all g G G ,

where < L denotes less than or equal to in the lexicographical sense. A canonical plan
is well defined, for if 0(P) = (j>(gP) then P = gP. Each canonical plan is taken to be
the representative of its equivalence class of plans under G.

The internal representation of a plan P is given by 0(P), which is defined in such a
way that 0(gP), g £ G, cannot be computed directly from it. Instead 0(gP) is
calculated as follows. First a colouring g0(P) is determined, where

g<KP) = (tlg-Hl)], 0te-1(2)], ..., cj>[g-\lm)]) ,

where g~x(q), q = 1,2,..., Im, is the T-number of the cell that maps to (xq, yq)
under g E G. Then there exists a permutation IT of the colours 0, 1, 2, ..., p such
that 7rg0(P) = (p(gP). The permutation 7r is constructed as follows.

Algorithmic aspects of plan generation and enumeration 159

Construct (g 1(l), g 1(2), ..., g 1(lm)). For all /, mark 7r(z) as 'undefined'. Mark
the numbers from 1 to p as 'unused'. Set 7r(6) = 6. Select cells q from

^-1(l)5^-1(2) , . . . ,g-1(/m)>

in order. Three cases arise.
Case 1: (p(q') = 0. Assign 0 as the new colour of g(qr).
Case 2: (p(q') =£ 0 and 7r[0(g')] is defined. Assign this as the new colour of g(q).
Case 3: <j)(q) =£ 0 and 7r[0(g')] is undefined. Let t be smallest 'unused' number.

Mark t as 'used'. Assign t as the value of 7r[0(#')] and as the new colour
ofgfo').

It is clear that IT is a permutation. Since the new colours are associated with the cells
in increasing order, it follows that irg<f)(P) is a 0-colouring of the transformed plan gP:
that is, 7Tg(p(P) = <j){gP).

This construction of IT forms the basis of the algorithm for detecting canonical
plans (algorithm 1). The algorithm is described in an ALGOL-like language. The
notation is adapted from that of Reingold et al (1977).

The algorithm may be explained as follows. Statement A chooses the current
transform g from G and proceeds to test for isomorphs provided flag remains true.
The Boolean-valued variable flag signifies whether the plan is canonical with respect
to the previous set of transforms that have been applied, and is initially set equal to
true. Statement B selects the cells q in order, and the rules for the construction of IT
are applied (statement C). The smallest 'unused' colour is contained in newcolour;
transformed colour is the colour associated with q under a 0-colouring of gP and is
equal to the permutation of the colour associated withg -1(#) under a 0-colouring of P.
The loop defined by statement B is continued as long as 0(P) and $(gP) correspond
component by component. Statement D is the actual symmetry test [when
0(P) =£ (p(gP)] which determines whether or not P is canonical with respect to g.
The algorithm returns the value true for flag if and only if P is canonical.

The algorithm indicates that, for any generating algorithm for plans, isomorphs can
be detected without resorting to any external storage device. The worst case complexity
occurs when P has all the symmetries of G (that is, P = gP for all g £ G); in this
case, \G\lm comparisons have to be made.

Algorithm CANONICAL(/>)
% P and 7T are represented by the arrays colour[\,..., Im] and 7r[0, ...,p] %

flag <- true
A: for g E G while flag do

[for all i set n[i]<-'undefined'
TT[6]^6
newcolour <-0
B: for g G <1, 2,..., Im) while flag do

f transformed cell *-g~\q).
J C: if 7r[colour[transformed cell]] is undefined
I J then (newcolour+ ^l

I 1 transform ed colour «- n [colour [transformed cell]] <- newcolour
else transformed colour <- n [colour [transformed cell]]

I flag <- transformed colour = colour [q]
D: if flag is false

I then flag <- colour [q] < transformed colour
return (flag)

Algorithm 1.

file:///G/lm

160 R Krishnamurti, P H O'N Roe

Shape and colouring rules
Shape grammars invented by Stiny (1975; 1977) and Gips (1975) for the recursive
specification of shapes form the natural basis for describing generating algorithms for
plans. Shape grammars for plans consist of rules that act on lines on the underlying
grid according to some local criteria. For computational purposes these rules may be
recast in terms of cell colouring rules. The shape rules for plans assert the presence
or absence of lines on the grid lines; the corresponding colour rules belong to one of
three types.

Rl: Same-colour rule. A cell is given the same colour as one of its neighbouring
(edge-adjacent) cells. This means that the two cells are in the same element, and
there is no line in the plan between these cells.

R2: New-colour rule. A cell is given a colour different from its neighbouring cell(s).
This introduces a line or lines in the plan between the cell and its neighbour(s).

R3: Null-colour rule. This colours the cell with the special colour 6. This rule is
separately stated, though in many instances it can take the form of rules Rl or R2.
The effect of this rule is to assert that the cell is in a shaded plan element, or
'courtyard'.

Notice that these rules do not require the exact colours of the neighbouring cells to
be explicitly stated—only the spatial colour relationship is required. This allows us
to specify colouring rules in terms of parametrized colours, with the actual substitution
taking place when the rule is applied.

Shape rules often use markers to determine the process of generation. For
plans these markets can be regarded as reflecting the values associated with certain
grid parameters and can be expressed as Boolean-valued predicates involving these
parameters. For example, the existence of a line on a grid line can be determined by
testing whether or not the appropriate h or v parameter is nonzero. That is, the
application of colours is controlled by the satisfaction of Boolean predicates.

To summarize, a colouring grammar consists of a set of grid parameters, a set of
colours, a set of predicates, a set of colouring rules, and a set of initial colouring
rules, where the rules take the form

predicate
uncoloured shape > S^ coloured shape; S2 .

The uncoloured shape is a collection of cells with at least one uncoloured cell, that
results in the coloured shape after application of the rule. ^ and S2 are sets of
assignations involving grid parameters before and after the rule has been applied. The
predicate is a Boolean-valued predicate which must hold in order that the entire rule
may apply.

The abstract version of the generating algorithm for plans may be described as
follows. Proceed recursively over the grid, choosing cells in order (defined by T).
All possible colour rules that apply to the current cell are selected and for each rule
the appropriate colour is allocated to the cell.

Algorithm GENERATE
if all the cells have been coloured
then if CANONICAL('generated plan') then plan is canonical
else (choose the next cell(s) from the threading pattern

for all possible colour rules that apply to this (these) cell(s) do
(colour cell(s)
[GENERATE

Algorithm 2.

Algorithmic aspects of plan generation and enumeration 161

In ALGOL-like notation, the algorithm takes the form shown in algorithm 2. The
exact mechanism of the colour rules becomes apparent when considering specific
problems.

Example 1: [/?, 2]-rectangulations
A [p, 2]-rectangulation is a plan each of whose p plan elements is a rectangle. For a
given p, the set of dimensions of (/, m) unit grids (7 < m) for which there exists at
least one standard [p,2]-rectangulation is (Bloch, 1976)

{(/, m): 1 < / < f | | , max (Ty 1 ,/) ,/) < m <p + l~l

where, for any real number N, \N] denotes the least integer greater than or equal to N.
Biggs (1969) and Earl (1978) have shown that

(1) a standard [p, 2]-rectangulation on an (/, m) unit grid is trivalent and nonaligned if
and only if l+m — 1 = p; and
(2) a standard trivalent (nonaligned) [p, 2]-rectangulation on an (/, m) unit grid such
that l+m —I = p is nonaligned (trivalent).

A shape grammar for rectangulations is given in figure 1. [Compare this with Earl's
(1977) grammar for standard trivalent nonaligned rectangulations.] Rule (2) states
that the generation of any rectangle must begin with a single 1 x 1 square. Rule (3)
extends a rectangle horizontally by adding a square at a time. Rule (4) extends a
rectangle vertically by a unit height at a time. The grammar generates any rectangulation
(not necessarily standard) by a unique sequence of shape rules.

This shape grammar may be translated into colouring rules in the following manner.
First note that the shape rules construct the rectangulations row by row from the
bottom row up. Second, every new rectangle begins with a single square; that is,
every new rectangle starts with a square coloured differently from its previously
coloured neighbours. Third, the extension of a rectangle horizontally or vertically
requires that the new cells have the same colours as their fellow members of the
rectangle.

The equivalent colouring rules are given in figure 2. Rules 1 to 7 are of type Rl ,
and rules 8 to 13 are of type R2. The former set extends existing rectangles both
horizontally and vertically depending upon local colour conditions. The latter set
terminates the current rectangle(s) and creates the start of a new rectangle. The grid
parameter fi indicates the number of colours used; r, s, and t are parametrized colours.
The threading pattern (implicitly defined in this grammar) is the ordered set of cells
from left to right, bottom to top, in that order.

Suppose we want to generate standard [p, 2]-rectangulations on the (/, m) unit grid.
Consider the predicates

F1 = (1m - q > p - fi) ,

F2 = (p > fi) ,

^3 = (xQ =£ ra-1) v [(xq = m-l)*(hyq > 1)] ,

and

^4 = {yq * l-l)v[(yq = l-D*(vXq > 1)] ,

where q is the current cell number from the threading pattern, (xq, yq) = T'1^),
and where hyq and vx denote the number of rectangles touching the grid lines
Y = yq and X = xq from above and from the right respectively. Insertion of these
predicates into figure 2 gives the colouring rules for standard [p, 2]-rectangulations
(figure 3).

162 R Krishnamurti, P H O'N Roe

S:

I:
(0, 0) (1, 0)

L: {{(0,0): ,4}, {(0,0): A'}, {(0, 0): C}, {(0, 0): C}}

T: translation and reflection in the 7-axis

C
(0,/)

c
(0,2)

c

A' A
(-1,1) (0,1)

c
(m, 1)

(0,0) (1,0)

(2) A' A
(-*, , !) (0,1)

(0,0) (1,0)

(3) A' A
(0,1) (*!,1)

(0, 0) (Xl, 0)

(4) A' A
(-*„*+!) (0,^ + 1)

(0 ,^) (xliyl)

(5)

(0,0) (x l f0)

(0,1)

(0,1)

(0 , ^ + 1)

(*i + l , D

(0,0) (x l f0)

C
(0,2)

A
(0,1) (1,1)

>T AC
(-x,, 0) (0, 0)

(6) (0,^) ixl9yt) (0,^) <*, ,*)

(0,0) (^ , 0) (0,0) (xx,0)

Figure 1. Parametric shape grammar for rectangulations.

Algorithmic aspects of plan generation and enumeration 163

(7) C
(0,1)

(0,0)

Figure 1 (continued).

(0,0) (m,0)

I I k i *

4:

5:

6:

r r

r

s s

r
>

r t

I
M

S t

r

s t

r \ r \

r \ r J

r \ r \

r \ r \

s \ s \

r t

r r

M

S \ t \

r \ t \
n

s \ t \

10:

11:

12:

X

r

S S

f

w
r t

r \

s t

-> M + ^ 1 ; \ r \ fx

-> M+^-I ;

-> n+*-l ;

-> M+*-I ;

- ^ M+*-I ;

":Q - Q
14 J.

r

s s

r " J

s t

M-l

Figure 2. Colouring rules for rectangulations.

164 R Krishnamurti, P H O'N Roe

Notice that rule 12 in figure 2, and the corresponding rule in figure 3, is the only
rule that generates a 4-way point. Omission of this rule ensures that trivalency is
never violated.

For nonaligned rectangulations, consider the predicates

F5 = (vXq.= 0) and F6 = (hyq = 0),

and replace the appropriate rules in figure 3 by the rules shown in figure 4.
The colouring rules in figures 2, 3, and 4 yield 0-colourings. All the rectangulations

on the grid are uniquely and exhaustively generated. (This assertion may be
demonstrated by an induction argument.)

These rules are incorporated into algorithm GENERATE for [p, 2]-rectangulations.
T is the mapping T(x, y) = my + x+1. For any q,

r _ 1 (4) = (xq,yq) = U - l m o d m ,

where, for any real number N, [N\ is the greatest integer less than or equal to TV.
The (/, m) unit grid is the input. The rules are simplified by partitioning them into
four categories: (1) rules that apply to cell 1, which is given the initial colour 1;
(2) rules that apply to cells in the bottom row, excluding cell 1; (3) rules that apply
to cells in the leftmost column, excluding cell 1; and (4) rules that apply to all other
cells. A cell type is designated to each cell in order to specify which set of rules apply:
type 0: x = 0, y = 0;
type 1: x > 0, y = 0;
type 2: x = 0, y > 0;
type 3: x > 0, y > 0.

q: current cell from the threading pattern
Fj: lm-q > p-n
F2: p> n
F3: (x , * m - l) v [(x f l = m - l) A (^ > l)]
F4: (^ # / - l) v [(^ = 7- l)A(i ; X g >l)]

Figure 3. Colouring rules for standard [p, 2]-rectangulations.

m \) '

Algorithmic aspects of plan generation and enumeration 165

I — I
Figure 3 (continued).

Fs- vXq = 0

F6: hyq = 0

r >

s s

r

r

"•>

t

Figure 4. Modification of the colour rules in figure 3 to ensure nonalignment.

166 R Krishnamurti, P H O'N Roe

Let g denote the current cell number. What colour g takes depends upon its
previously coloured neighbour(s). For type 1 cells the only such neighbour is q-\\
hence extending the rectangle is equivalent to setting 0(g) = 0 (g - l) , and creating
the start of a new rectangle is equivalent to setting 0(g) = JU. For type 2 cells the
only previously coloured neighbour is the cell immediately below g, namely, q-m.
The colouring rules are 0(g) = 0(g — m) or 0(g) = /x. For type 3 cells the neighbours
that play a role are q~\, q-l — m, and q-m. Their respective 0-colours are r, s,
and t. Four cases arise:
r = t, which implies r = s = V. only one rule applies, namely, 0(g) = r\
r =£ s = t\ two rules apply, 0(g) = r or jit;
r = s =£ t: two rules apply, 0(g) = t or /z;
r -=h s =£ t, which implies r =£ r. three rules apply, 0(g) = r, £, or /z.

From this it follows that a rule may be of type R2, that is 0(g) = /z, if and only
if cell type = 3 and r = t do not hold simultaneously. Note that rules of type R2
apply only if the number of colours used so far does not exceed p\ that is, if p > /x.
Also rules of type Rl apply only if the number of cells to be coloured exceeds the
number of new colours required; that is, if lm~q > p~ix.

Let hy and vx denote the number of lines on grid lines Y = y and X = x. At least
one line is created in the plan whenever a rule of type R2 has been applied. For cells
of type 1, a line on X = xq is created (increment vx); for cells of type 2, a line on
Y = yq is created (increment hy); for cells of type 3, lines on both Y — yq and
X = xq are created (increment vXq and hy). In order to ensure that the rectangulation
is standard, type 3 cells whose x value is m — 1 and/or whose y value is /— 1 are tested.
For rules of type Rl to apply there must be at least one line in the plan on the grid
lines touching these cells (which grid line is considered is apparent from the context).
To ensure trivalent plans, the rule of type R2 for type 3 cells with r^s^t does not
apply. For nonaligned rectangulations the following rules of type R2 cannot be applied:
when the cell is of type 3 and either (I) s = t and there is a maximal line on the
grid line X = xq, or (2) r = s and there is a maximal line on the grid line Y — yq.

From the results stated earlier, when l+m~ 1 = p only those rules that ensure
trivalency and nonalignment need be applied.

The algorithm based on this outline was implemented in ALGOL68C and tested for
values of p up to 11. The rule applications were further pruned by use of the
symmetry properties associated with 0(P). The results of the generation up to p = 10
are reported in Bloch and Krishnamurti (1978).

Example 2: Palladian plans
Palladian plans are standard arrangements of rectangular, T-shaped, I-shaped, and
+-shaped regions laid out with respect to a single axis on a (/, 2m +1) grid (Stiny and
Mitchell, 1978a). In this example the axis of symmetry is the 7-axis. Note that in
any Palladian plan there can be at most one nonrectangular element, and this must be
located so that it is bisected by the axis of symmetry (Stiny and Mitchell, 1978a).

Owing to the symmetry of Palladian plans, it is only necessary to consider the
generation of half-plans on the (/, m+ 1) unit grid. The central figures, namely, the
T-shaped, I-shaped, and +-shaped regions, respectively become the leftmost (or right­
most, depending upon the half-plan chosen) T-shaped, [-shaped, and h-shaped figures.

Consider two cases: (1) plans with no central figures, and (2) plans with a central
figure. Case (1) is equivalent to a rectangulation on the (/, m+ 1) grid, and the
colouring rules in figure 2 can be applied. Case (2) is further divided into three
subcases, cases (2a), (2b), and (2c), depending upon whether the plans have T-, I-, or
+-shaped central figures. Consider case (2a). Notice that any horizontal reflection of

Algorithmic aspects of plan generation and enumeration 167

the plan yields a plan with a central J_. Consequently, to avoid generating equivalent
plans, we ensure that the plans generated either all have a central T-shaped figure or
all have a central ±-shaped figure. For cases (2b) and (2c), notice that symmetry
about a centrally positioned horizontal axis comes into play only if the central figures
are symmetrically placed about this axis; for all other such plans we may choose to
generate only those plans with one of two possible asymmetrically placed central
figures. To summarise, if these rules are followed, plans are always canonically
generated provided that the central figures are asymmetrically placed on the grid.

Rather than generate these central figures as the plans are generated, it is more
efficient to specify them initially and fill the remainder of the grid with rectangles.
The central figures occupy certain grid cells that are coloured 6. In other words the
problem of generating Palladian villas is equivalent to the problem of generating
Palladian 'courtyards'. Once we are given the partially filled grid as the starting pattern,
the remainder can be filled with rectangles by use of the modified rectangulation
colouring rules shown in figure 5. The rules do not include predicates to ensure that
the plans are standard. These may be incorporated as was done for rectangulations.

The set of starting patterns may be derived in the following manner. Let the
outlines of the central figures in their half-figure form be specified by the integer-
valued parameters ax , a2 , jSj, j32, j83,

 anc* ^ (s e e figure 6). These are embedded
within the (/, m+ 1) grid. For the L-shaped figure the following conditions must be

Qi= r = t

r = s ¥= t

O ^ r ^ s = t

r¥=s¥= t
r-h 6
r¥= t
yq = o

xq = 0
(xq>0)*(yq> 0)

•
F v F

ju + - l

H
0

r

r

F 5 A F 7

Fs A ^ 8

r r

r

r

r

s t

r

r

r

r

r

s

r

s

r

s

;u+*-

r

r

t

t

r

s

t

t

r

t

L ;
r

s

M

t

Figure 5. Colouring rules for Palladian plans with a central figure.

168 R Krishnamurti, P H O'N Roe

satisfied:

<*!, a2 > 1 ,

a1-\-a2 < ra + 1 ,

1 < 02 < Pi < / ,

ax > 1 => fa < I ,

j32 > 1 =» o^ + a2 < m ,

and

0 < 5 < / - jS i .

(1)

(2)

(3)

(4)

(5)

(6)

Conditions (4) and (5) are to ensure that the plan is standard. These conditions are
mapped into an algorithm (algorithm 3).

For the [-shaped figure, conditions (1) to (5) are needed together with the
following four conditions:

03

02

0

d

5

> 1

+ 03

< 6

_ / -

5

< P l ,

< ^

£-» 03<02

(7)

(8)

(9)

(10)

-M <*,

A

• T

/l\

fit

I

1
1

«, K-

—*l a*

1
03

t
1
02

II
(a) (b)

Figure 6. Outlines of the central figures for Palladian plans.

T-
6

1

A

Pi

3L

3,

<*i

Q=2 | ^ -

1
p*

T
c3

i

(c)

Algorithm STARTING T-PLANS
for (*! <-1 until m do

for & <-2 until (if a! = 1 then / else / - 1) do
for j32 «-1 until (if ax = #z then 1 else j3x — 1) do

for ot2 *"1 until (if j32 = 1 then m+1 - â else m - c^) do
for 5<-0 until / - & do

<*i, a2 , 0i , 02> a n d ^ specify a starting central T as shown outlined in half-figure
form in figure 6(a)

Algorithm 3.

Algorithmic aspects of plan generation and enumeration 169

For h-shaped figures, conditions (1) to (5) and (7) to (9) are needed together with
the following condition:

5 = l-Pi
03 <

01-02
(11)

It is left as an exercise to the readers to specify the algorithms that construct the
starting patterns for the I - and +-shaped central figures. It can be easily seen that
the symmetrically placed [-shaped and h-shaped figures correspond to the condition
5 = (/ -0 i) /2 , and /33 = 02 or j33 = (0!-0 2) /2 respectively.

The numbers of starting patterns for Palladian plans with the different central
figures is given in table 1. Figure 7 illustrates the set of starting patterns for the
(3, 5) grid. The algorithm based on the colouring rules in figures 2 and 5 was
implemented in ALGOL68C. The results for the plan generation on various
(/, 2m 4-1) grids are reported in Stiny and Mitchell (1978b).

Table 1. Numbers of starting patterns, with different central figures, for Palladian plans based on
various grids.

Central
figure

T
I
+

Grid

(3,3)

3
1
1

(3,5)

9
2
2

(4,5)

21
6
6

(5,5)

39
16
19

(6,5)

64
30
37

(7,5)

97
55
73

(3,7)

17
3
3

(4,7)

43
11
11

(5,7)

84
33
37

DDDDD

• • ! • • • • ! • • n^pn
• • • • • • • • • • DDlDD DDDDD D
c 5 f f i DD

DD DDfDD
DD DDiDD

DCMED

D ^jjjjjJP DDDDD
DD DDDDD D̂

Figure 7. Starting patterns for Palladian plans on the (3, 5) grid.

Example 3: C4- and D4-plans
A C4-plan is a rectangulation that possesses all the rotational symmetries. Clearly
C4-plans only exist on (/, /) unit grids. Two plans are equivalent if one is a reflection
of the other. A D4-plan is a C4-plan which possesses in addition a reflectional
symmetry. The remainder of the discussion is directed towards C4-plans.

For the purposes of generating C4-plans, the unit grid is viewed as being composed
of necklaces of square cells. These are defined in the following manner. If / is odd,
the (/,/) unit grid can be constructed from a single (1,1) square by surrounding this
square by a boundary of (1, 1) square cells to form the (3, 3) unit grid, and then
successively surrounding this and each other new grid by another boundary of (1, 1)
square cells until the (/, /) unit grid is arrived at. Each of these boundaries is a
necklace of the (/, /) unit grid. The initial (central) (1,1) square cell is also considered

170 R Krishnamurti, P H O'N Roe

to be a necklace. For example, the (5, 5) unit grid can be constructed in two steps
from a single (1,1) square, one to form the (3, 3) unit grid and the second to form
the (5, 5) unit grid, and has three necklaces, the central (1, 1) square cell, the
boundary of the (3, 3) grid, and the boundary of the (5, 5) grid. If / is even, the
(/, /) unit grid can be similarly constructed from the (2, 2) unit grid, and the necklaces
are defined in the obvious way.

Each plan is considered to unfold, necklace by necklace, from the centre outwards.
Consider two successive necklaces with 4(ra~ 1) and 4(m+ 1) square cells respectively.
Any colouring of the cells in the outer necklace depends upon the colours associated
with the cells in the inner necklace. The colours of the corner cells in the outer
necklace also depend upon the colours of all neighbouring cells in the outer necklace,
and hence are coloured last. Furthermore, when any cell is coloured, all cells
corresponding to this cell through a cyclic rotation must bear the same colour
relationship with their neighbouring cells. These considerations lead to a recursive
specification for the threading pattern for C4-plans. A threading pattern, specified in
terms of one necklace, is illustrated in figure 8.

The set of colouring rules are shown in figure 9. It is left as an exercise to the
readers to convince themselves that the rules yield unique generations of the plans
and that all plans are exhaustively generated. It should be noted that, in rules 3 to 5,
where four cells are coloured at once, q only refers to the cell in the threading
pattern which occurs first out of these four, namely the one whose neighbouring cells
have parametrized colour(s) with subscript 1.

An ALGOL-like translation for the rules in figure 9 is given in algorithm 4. The
threading pattern is as usual denoted by the ordered set {{xx, j ^) , (x2, J2X •••>> where
n O y , >y)] = /, and is represented by the arrays x and y. The colours are applied in
groups of four cyclically equivalent cells denoted by their cell numbers q, q+1, q+2,
and q + 3. All cyclically equivalent cells are stored in a circular list whose nodes
consist of two fields link and cell: link contains a pointer to the next node in the list;
cell contains the cell number of the next cell taken either clockwise or counterclockwise
depending upon the programmers fancy and the threading pattern chosen. The
appropriate node in this list is pointed to by ptr. The rules are selected and placed
on the stack, and are applied recursively. The number of colours used so far is
contained in JU.

^ to next necklace

Figure 8. Recursive specification of the threading pattern. The dots represent grid cells.

Algorithmic aspects of plan generation and enumeration 171

5=5

,3

T3
S

1̂

T3

/>

n* n>

+ + ^ ^
?\ ?s" ?s C ^

II A II I" *
G <2 X X X

i£ tit *£ *S *Z b?

£

T3

GO

a
M
3
o
o
u
ON
0)

ig
ur

T3

U
<i)

£
b o

172 R Krishnamurti, P H O'N Roe

Sk Sk

X

Sk

X.

Sk-

»s. Jk,

CO

+
a.

r j -

1
+
a.

Sk

V.

-*
+
a.

+
=1

ik

Sk +
a.

c

=1

m

"*

<N

-

n- o o

Algorithmic aspects of plan generation and enumeration 173

i
+

to ^.

Co i^T

•*«• to

CO

+
a.

«.-

vT

<*>

* »<

+
a.

CO

~*

**"
to

t>r

c

+
a.
sk*

-

+
a.

*« • I CO

CO * .

<

* T to"

•Vi Co

* T eo

v T *a

C O * > *

* I *
e o J<

CO ^

<

!k

1 ^
+
a. C

-

to

«.-
CO

+

Co

1

^ + I a.

<>r I ^ r

60 i T

** +
a.

I
•a
o

Q\

to

174 R Krishnamurti, P H O'N Roe

To facilitate rule application cell types (denoted merely by type in the algorithm)
are associated with the cells. For any cell with coordinates (x, y), its cell type is
specified as follows:
type 1: x = y + 1 ;
type 2: x> y + \\
type 3: x = y.
The rules are simplified in a manner similar to that done for rectangulations.

Standard plans are ensured by keeping track of the number of distinct lines on the
grid lines, and, when the outermost necklace is reached (that is, when the y-value of
the first cell in each set of four cyclically equivalent cells is equal to zero), tests are

Algorithm C4-PLANS
f q points to the current cell in the threading pattern [̂

if q > I2

then if CANONICAL('generated plan') then plan is canonical
else f if case type(q) of

(= 1) true
(= 2) 4>[TXxq-l9yq)] * 0 [r (^ , ^ + l)]
(= 3) * [i x ^ + i , ^)] * $[r(xq,yq+i)]

then f % rules of type R2 %

add lines on the appropriate grid lines
to 4 do

J0fa)+-GH-<-l)

C4-PLANS
q-^4
JU-<-4

L remove the added lines from the appropriate grid lines
if if y(q) = 0 then J test for standard plans depending upon the type and A:-value

1 of q (the test returns value of either true or false)
else true

then f f declare local variable save initially set to stack ptr %

% rules of type Rl %

if type(q) = 1
then stack(stack ptr + «-1) <- T(xq,yq+l)
else f case type(q) of

(=2) {r<-Y(xq,yq+\)

t^r(xa-l,yq)
(=3) (r<-r(xq,yq + l)

s + T(xq + l,yq+l)
t+-TXpcq+i,yq)

if [0(0 = 0 (0] v [0(0 # 0(0] then stack(stack ptr+ -
if [0(f) =£ 0(0] A [0(0 # 0(s)] then stack(stack ptr+<

while stec^ pfr* > serve do
neighbour <-stackfstack ptr)
node <r-iptr(neighbour)
to 4 do

000 *~ (^neighbour)
neighbour <- cell(neighbour)
node*-link(node)

U+^l
stacfcpfr*-«-l
C4-PLANS
(jr-^-4

• 1) -

• 1) <

Algorithm 4.

Algorithmic aspects of plan generation and enumeration 175

made to check whether any lines need to be added. These tests only need be applied
to cells of type 2 whose x-value is not less than \l/2], and to corner cells of type 3.
Lines are created on the grid lines when colour rules of type R2 are applied.

The algorithm was implemented in ALGOL68C. The plans were generated on
various (/, /) unit grids and classified according to their symmetry groups. The total
numbers of the C4- and Arplans for values of / up to 7 are shown in table 2, and the
plans for / = 3 and / = 4 are illustrated in figure 10.

Table 2. The numbers of C4- and ZVplans for 1 = 1,.,., 7.

/

C4-plans
Z)4-plans

1

1
1

2

1
1

3

2
1

4

8
3

5

39
5

6

411
27

7

4584
57

C4 C4 c pA

1= 3 I I I I I T ~

/ = 4

1 2 3 6 7

4 . 5 8

Figure 10. C4- and Z)4-plans for / = 3 and 1=4.

Example 4: tatami mat designs
A tatami is a mat made of rice straw sewn together and which measures 6 x 3 shaku
(Yoshida, 1955). According to Morse (1961) a tatami design is an arrangement of
tatami mats that are laid in a rectangular room and in which no four mats meet at
a point. This restriction seems peculiar to Morse (see Kirby, 1962; Gropius et al,
1960). In exceptional circumstances the use of a half-mat measuring 3 x 3 shaku is
permitted. For our purposes the mats are given computational aliases—a mat
becomes a 1 x 2 rectangle and the half-mat becomes a 1 x 1 square. A p-mat plan is
an arrangement of p 1 x 2 rectangles that pack a unit grid. A {p + \)-mat plan is an
arrangement of p 1 x 2 rectangles and one 1 x 1 square on a unit grid. Note that
these designs need not be standard in the sense defined earlier.

The colouring rules are similar to those for generating rectangulations. The reader
is urged to derive a possible set of rules which uniquely and exhaustively generate the
plans. Our own algorithm (which we do not give here) is based on a set of colouring
rules and allows for tatami plans with and without trivalency. In table 3 are given
the numbers of nonequivalent plans for traditional Japanese values for p. These
numbers include nonequivalent arrangements on the trivial grid, namely, the (1, 2p)

176 R Krishnamurti, P H O'N Roe

grid for p-mat designs and the (1, 2 p + l) unit grid for (p+£)-mat designs. There
is only one possible arrangement on the (1, 2p) grid, and there are f(p+l)/21
arrangements on the (1, 2p+ 1) grid. If these are discounted, the number of nontrivial
tatami plans results. All tatami plans for p = 3, 4, and 4£ are shown in figure 11.

Table 3. Numbers of nonequivalent tatami plans.

p 3 4 A\

Tatami plans 3 5 6
Trivalent tatami plans 3 4 5

6

15
9

8

31
14

10

85
27

12

272
56

15

990
152

Figure 11. Tatami plans for p - 3, 4, and A\.

Conclusions
In this paper we have presented the following.
1. A minimum lexicographic colouring for any arrangement of polygons on unit grids,

which allows for the detection of symmetry isomorphs without having to search a
list of generated objects or, indeed, without requiring any external storage device.

2. The notion of a threading pattern which describes the natural unfolding of a plan
and its relation to the minimum colouring and to the definition of canonical plans.

3. The recursive specification of plans via predicate-controlled colouring rules as
computational expressions of formal shape grammars.

Algorithmic aspects of plan generation and enumeration 177

4. The outline of the generation algorithm based on these colouring rules. The
production of duplicates does, however, depend on the uniqueness of all possible
sequences of rule application.

5. Four specific plan problems involving rectangular elements, which are representatives
of larger classes of arrangements on gratings:
(1) rectangulations—as examples of arbitrary arrangements;
(2) Palladian plans—as examples of arrangements with predefined empty spaces or
courtyards;
(3) C4- and Arplans—as examples of arrangements possessing certain symmetry
properties and as an illustration of a nontrivial threading pattern; and
(4) tatami plans—as examples of arrangements which implicitly employ the physical
attributes of the plan elements.
The proof of any computational strategy does not lie so much in the elegance of

the ideas but rather in the correctness of its algorithms and in its computational
complexity. As a measure of the technique's efficiency for generating plans, we
present some run times on the IBM 370/165 computer (approximate to the nearest
minute or second): three minutes for the [9, 2]-rectangulations, a total 58072
nonequivalent arrangements; eight minutes for the Palladian plans on the (7, 5) unit
grid, of which there are 2 6 0 4 7 9 1 ; and under ten seconds for the (7, 7) C4-plans and
15-mat tatami designs.

Finally we claim that the ideas in this paper are easily adapted to higher-dimensional
plans. In fact we have developed an algorithm based on these concepts for enumerating
solid rectangular packings of cuboids, namely, the [p, 3]-rectangulations. The results
of that enumeration will be published in a forthcoming paper.

Acknowledgements. The first author (RK) is grateful to the University of Waterloo for financial aid
in the form of a graduate studentship, and he would like to thank Dr Ho and Professor March for
their encouragement and support.

References
Biggs N, 1969 "Rectangulations" Proceedings of the Cambridge Philosophical Society 65 399-408
Bloch C J, 1976 "On the set and number of minimal gratings for rectangular dissections"

Environment and Planning B 3 71-74
Bloch C J, Krishnamurti R, 1978 "The counting of rectangular dissections" Environment and

Planning B 5 207-214
Earl C F, 1977 "A note on the generation of rectangular dissections" Environment and Planning B

4 241-246
Earl C F, 1978 "Joints in two- and three-dimensional rectangular dissections" Environment and

Planning BS 179-187
Gips J, 1975 Shape Grammars and Their Uses: Artificial Perception, Shape Generation and

Computer Generation and Computer Aesthetics (Birkhaiiser, Basel)
Gropius W, Tange K, Ishimoto Y, 1960 Katsura Tradition and Creation in Japanese Architecture

(Yale University Press, New Haven, Conn.)
Kirby J B, 1962 From Castle to Teahouse (Charles E Tuttle, Tokyo)
Krishnamurti R, Roe P H O'N, 1979 "On the generation and enumeration of tessellation designs"

(in preparation)
Morse E S, 1961 Japanese Homes and Their Surroundings (Dover, New York); originally published

by Ticknor and Company in 1886
Reingold E M, Neivergelt J, Deo N, 1977 Combinatorial Algorithms: Theory and Practice (Prentice-

Hall, Englewood Cliffs, NJ)
Stiny G, 1975 Pictorial and Formal Aspects of Shape and Shape Grammars: On Computer

Generation of Aesthetic Objects (Birkhaiiser, Basel)
Stiny G, 1977 "Ice-ray: a note on the generation of Chinese lattice designs" Environment and

Planning B 4 S9-98
Stiny G, 1979 The Grammar of Form (Pion, London) forthcoming
Stiny G, Mitchell W J, 1978a "The Palladian grammar" Environment and Planning B 5 5-18
Stiny G, Mitchell W J, 1978b "Counting Palladian plans" Environment and Planning B 5 189-198
Yoshida T, 1955 The Japanese House and Garden (Praeger, New York)

