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This paper examines the interaction between designer
and machine. The view that designs can be seen &s the
outcome of dialogue between a designer and a machine
is promoted and is illustrated by a detailed reference to
the MOLE system, MOLE provides a logic modelling en-
vironment for spatial and non-spatiaf object descriptions
constructed from a hierarchy based on kind-slot-filler re-
lationships and two distinct forms of inberitance rela-
tionships. Design descriptions can be updated or queried
by part expressions which consist of a kind together with
a conjunction of slots. Lastly, the role of MOLE in a de-
sign system is considered; a schema for design systems
that can be customized ta reflect the intentions of indi-
vidual designers is suggested.

“The possibility of all imagery, of all our pictorial
modes of expression, is contained in the logic of
depiction”

Ludwig Wittgenstein—Tracratus
Logico-Philosphicus, 4.0101

COMPUTER MODELLING OF DESIGN

Many approaches to design are advocated and prac-
ticed by architects, While these approaches to design-
ing may differ, there is one belief that the various ar-
chitects and designers appear to share, namely, that
their methods encapsulate the “essence’ of designing.
If we are 10 build machine-based design systems that
support designers” intentions, then these systems must
be based on a view of design that embedies this ¢s-
sence of designing. Furthermore, the view of design
incorporated into these systems should not be biased
towards any particular approach to designing.

This paper explores the connection between design-
ers’ perceptions of their design tasks, and the com-
puter modelling of design activities, and supgests a
paradigm for design wherein design solutions are ar-
rived at through conversations between a designer and
a design mediunt.

From an information processing standpoint, the be-
havior of a designer can be deseribed as in Figure
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(annotated with respect to design}.’ In the case of a
traditional architect, the representation is held in the
drawings that describe a design, and the reasoning that
led 1o the ‘‘creation’” of the design is kept in the
thoughts of the architect. To realize a machine-based
environment for design. we need to be able to transfer
the intelligence that lies beneath the reasoning pro-
cesses into some sort of design support procedire that
the machine can execute. The machine must not only
carry a set of design descriptions (perhaps as draw-
ings) but it must be capable of “'understanding’” what
each component in the design means.

The conventional CAAD approach to modelling de-
sign has been influenced by the principles of problem
solving.? In problem solving, design:tasks are hierar-
chically structured into subtasks that are, ultimately,
simple to resolve. In terms of Figure 1, the knowledge
base is expressed as a collection of prescribed rules for
design. Indeed, Simon® presents a powerful case 1o
support problem solving as a vehicle to tackle ill-struc-
tured problems as typified by design. Akin* illustrates
how notions of problem restruciiring, generate-and-
rest, and henristic search can be applied 10 design
problems.

Alternative formulations correspond to generative
approaches, rooted in language theory. Stiny and
March® describe a “‘design machine” based on al-
gorithmic descriptions of designs as illustrated by
shape grammars.®’ The shape grammar fermalism has
been adopted by Flemming®® in his gencrative expert
system for spatial layouts based on loosely packed rec-
tangles, and applicd by Coyne and Gero'®! in their

design grammar and planning based method.

However, one can question whether the problem
solving paradigm—in its widest sense-—is sufficient to
specify an “‘open’” design environment, Attached to
this question is the expectation a CAAD system must
fulfifl, namely, that it should mimor the process{es}
that designers perceive or rccognize as designing.
Bijl" presents a holistic view of design that bears some
connection with Hnguistic theory. and he suggests that
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Figure 1. Information processing madel of designer's behavior.

design objects have a syntax and a semantics that have
to be bridged in order 10 get a clear understanding of
the design process. The deeper issues raised by the
question are far too complex to detail in a single paper
(see Heath'® for a treatise on Method in architectural
practice).

One assertion that we can make is that designing is
an activity in which the architect’s intention is to give
form to a loosely defined thing—to make something
essentially new. That is. designing is constructive, The
architect is confronted with a demand—typicaily, for a
kind of building. Associated with this demand is a **de-
sign environment™ or “*problem space’ that defines
the constraints that the architect must resolve.

Many factors influence this design environment.
Some of these factors are conditioned by the nature of
the demands and expectations made on the architect.
Some evolve or change during the process of design-
ing, through interactions between the architect, the
client and ethers whose opinions are consulted. Some
call to play the intuitive ““feel™ of all parties involved
in a design. For example, the architect does not often
carry out, say, lengthy calculations for the sizing of
lintels; instead, he or she resorts to intuitive “judge-
ment'” about what will or will not work. This feel for
design manifests itself in the externalized deseription
of the design. The major effort on the part of the archi-
tect is to determine whether something is to be done.
what is to be done, or how it is to be done. Part of the
design process is to determine what the design prob-

lem is, To sum up, the essence of architectural design
can be modelled as performing actions based on some
decisions and in then deciding whether the decisions
taken are appropriate.

Dialogue Paradigm

No single model can capture the processes involved
in architectural design, in the same way that no single
characterization of buildings can be specified. How-
ever, itis possible to envisage a design system wherein
the knowledge base and the reasoning processes are
maintained in a fluid state: they go through a transient
and, in principle, non-monotonic sequence of closed
world states. Whilst each temporal state has an affect
on the subsequent state during the course of a design,
there is no requirement that the knowledge and rea-
soning rules that apply at any instance in the design
process need be consistent with those at any later in-
stance.

In such a system, design can be scen as a kind of
dizlogue between an “opponent™ and a “‘propo-
nent”"." The problem constraints oppose or attempt 1o
oppose what the architect proposes or attempts 1o pro-
pose. This “*battle of wits™* ends when the architect
decides that a design has reached a sutisfactory state
of existence or when constraints, such as the client’s
budget cannot be further exceeded, deem it to be so.

The crucial element in this dialegue is the abitity of
the destgner to convey (partial) descriptions to the ma-
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chine. and that these descriptions can be manipulated
or changed according to some criteria that the designer
may wish to apply. Moreaver, the machine must ye-
spond in the Linguage of the designer, namely, using
the same deseriptionad terms that the Jesigner em-
ploys. These descriplions must possess @ quality of
“truth’ in that they must reflect the (factual or other-
wise) beliefs held by the designer. One way to treat
these descriptions is to regard them as statements that
belong to some logical framework. This is the ap-
proach adopted in the MOLE system,

THE BASICS OF MOLE

The name. MOLE, is an acronym for ““modelling
objects with logic expressions.”” As the name implies.
statements about objects are modelled as expressions
that are treated as logically true. Queries are expres-
sions that become true enly if the variables in any
query can be unified to facts currently residing in the
database.

The central concept in MOLE is that of a descrip-
tion, namely, a collection of **features™ one associates
with an object. Some of the features, in turn, may be
further described. For example, one might describe a
car in terms of its make, model, capacity, color and so
on. Descriptions are not unique and reflect choices
that one considers important. Clearly, a car designer
working with a CAD system will employ an entirely
different set of features to those used by, say an archi-
tect. Thus, descriptions are reflective with no system-
imposed object types,

MOLE employs a representational structure that is
akin to frames?S or semantic nets.'® Where MOLE es-
sentially differs from frames or semantic nets is that
there is no prescribed interpretation associated with
the relational links between objects. MOLE uses three
sorts of entities: kinds, slors and fillers. A Kind corre-
sponds to an object, the name of which is, by conven-
tion, capitalized. A filler can be any object, and repre-
sents a value for some feature that a kind may have.
There are no restrictions imposed on fillers. For in-
stance, a filler may be a kind. A slot denotes a relation-
ship (attribute) between a kind and a filler, and its
name is, again by convention, given in lower case.
Kinds, slots and fillers are the building blocks from
which descriptions can be created.

In principle, there is nothing novel about MOLE's
structuring of object descriptions that cannot be cap-
tured within, say a relational database."’ One excep-
tion is that there is no explicit notion of kind and filler
types. That is, MOLE does not adopt any conventions
as to what a particular slot stands for. Slots with the
same name occurring in different descriptions may be
associated with fillers of differing types. Whether or
nat this is useful in a design context remains to be
seen,

A B

Figure 2. An arrangement of three cubes,

As an itlustration, consider Figure 2 showing an ar-
rangement of three cubes A, B, and €. Here cube B is
beside cube 4 (or vice versa) and cube C is on top of
cube A.

A possible MOLE description for the arrangement
of cubes is as follows (indented for easy reading):

A
is.a = (CUBEY

beside = B
above = C
B:
is.a = (CUBEY
beside = (CUBEY
C:
is.a = (CUBEY
below = A

Each filler (CUBE)™ denotes a distinct instance of
some kind, CUBE, whose MOLE description will typ-
jcally contain the geometry, perhaps parametrized, of
a cube.

The example indicates another feature of MOLE,
namely, that of inheritance of propesties from one ob-
ject by another. Here, each instance of a cube inherits
the attributes of some cube albett with different filless,
There are two forms of inheritance schemes allowed in
MOLE. Instances provide one form of inheritance. A
second form of inheritance, referved to as a variant of
a kind, provides a view of an object as seen with re-
spect to the attributes of another. The distinction be-
tween the two forms lies in the roles played by the
attributes in a kind, Thus, we could say that JOE is a
variant of some archetypal MAN and some archetypal
MUSICIAN. Itis possible that both man and musician
may have slots with the same name, say “‘prefer-
ence,”’ where for the former it may refer to manly
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Figure 3. Graphical representation of the description of a kind using a labelied directed eraph.

preferences and for the latter specifically to musical
preferences. In the description of JOE, the slots are
disambiguated only when the context in which they
occur are specified. That is, when the context AfAN
and MUSICIAN are specified.

Instances are created when two kinds contain in
their descriptions references to the same object, and
when the description of one of the kinds is altered
without changing the other. We give an example of one
such situation. Before doing so we remark that a de-
scription of an object can be pictorially drawn as a
directed graph wherein the nodes denote kinds and
fillers and each edge represents a slot labelled with its
name. Figure 3 presents a graph representing a single
level description of the kind DOOR. An inherited slot
can be unambiguously labelled with the slot name with
the kind in whose description it is defined as illustrated
in Figure 4. (This is technically referred to as tagging)
In Figure 4, the kind BLUE.DOOR has, in addition to
its own celor slot, the slots inherited from the kind
DOOR. In principle, as it is shown later, it is not nec-
essary to maintain a copy of the inherited slots so long
as a reference to the inheritance relationship is kept in
the database.

By replacing all kinds in a description by their
graphical counterparts, we can build a complex graphi-
cal representation of the description of a kind. Parhs in
this graph relate a kind and a filler through a conjunc-
tion of slots.

[t is convenicnt to think of MOLE's dutabase as
consisting of parts expressed by the identity, K5 = F,

where 5 is a slot that associates filler F to kind K. Part
relationships are asserted to the database by state-
ments each of which comprise of compositions of one
or more slots relating a kind and a filler. Thus. for
instance the statement

Kpgqr=F

is deemed to be true provided there are fillers .Y and ¥
such that identities K:p = X, X:q = Yand Yo = Fare
derivable from the part relationships in the database.
A query is a statement-like expression consisting of at
least one variable which when unified to slots or to a
kind or filler becomes a statement. It should be re-
marked that the evaluation statements {and thus que-
ries) can pose problems since fillers are not necessarily
Kinds. The formal treatment for evaluating of part
statements for certain types of fillers has been pre-
sented elsewhere. '8

Updating a MOLE Database

We now consider an example of changing a MOLE
database. The database initially contains the following
part identities:

TOMS_HOUSE front_door = DOOR

DOOR:construction = HOLLOW

DOOR docr_knob = DOOR_KNOB
DOOR:color = BLUE

INCKS HOUSE:back dvor = DOOR

i
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(DOOR) {DOOR)
HOLLOW 1600

Figure 4.,

An equivalent pictorial view of the above relationships
is given in Figure 5.

Suppose we wish to state that the door knob on the
back door of Dick’s house is made of brass. At the
same time, since we have not made any statements
about the nature of the door knob on the front door of
Tom's house, its description should remain unaltered.
In other words we want the following statement to
hold:

DICKS_HOUSE:back_door:knob:maierial =
BRASS

but not the statement
DOOR_KNOB:marterial = BRASS

which if it were true would change the description of
Tom’s house. We do this by introducing instances of
kinds. The picture of the altered database is shown in
Figure 6. Here. instances DOOR- and DOOR_KNOB-
have been created. In the diagram. => represents the
inheritance relationship between Kinds and instances.
The door knob and material slots of DOOR- and

16145 _HIJSE DIGKS_HOWSE

"

bagk_door

/
RS

frent_doof

-

colout corstruclion door_kaob
!
/ \\
BLUE HOLLOW DOCR_FROB
Figure 3. A spapshot of & MOLE datibase.

manufaciurer
{PCOR)

\

UNDERWOOD & CO BLUE

slets inherited from DOCR

Graphical representation of the description of a kind indicating inherited slots.

DOOR_KNQOB- respectively mask the fillers inherited
from the corresponding slots in DGOR and DOOR

_KNOB.
A similar situation would resuit if instead of the part

identifies:

TOMS_ _HOUSE front_door = DOCOR
DICKS_HOUSE:back_door = DOOR

we had stated the separate doors as variants:

TOMS. . HOUSE front. door <= DOOR
DICKS_HOUSE:back_door <= DOOR

to read as: “‘the front door of Tom's house and the
back door of Dick's house inherit attributes from the
archetypal Door.”" In this case, the resulting database
would be pictured as shown in Figure 7. Here as in

TOMS HOUSE DICKS_HOUSE

fronl_door b:}{w bask_doot

g DOCR

N |

door_hnob door_knoh

N |

DOOHA_KNOB =% DOOR_KNOB -

|

matedinl

DOoA

.

colour conslruction

/ |

BLUE HOLLOW

BRASS

Figure 6. Updating the database shown in Figure 5. % marks the
deleted slot, = indicates inheritunce between a kind and its in-

stince.
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* LS BOTR .
tolour cohxirucliph dpor_inoh goor_knob{DDOR}
i
/ , \ |
BLUE HOLLOW

BOOR KNOB  =====  DOOH_KNOB -
|
i

malerial

BRASS

Figure 7. Updating the filler of a siot inherited from a variant,
Observe that the updated door_knob slot has been tugged by the
parent kind DOOR. Asterisk (=} indicates a kind or fller that is not
explicitly named.

Figure 6, => denotes an inheritance relationship be-
tween a kind and another, instance or otherwise. Ng-
tice that in Figure 7, the fillers of TOMS_HOUSE:
Sfront_door and DICKS_HOUSE back_door are
denoted by an asterisk =" which signifies that the
fillers correspond to kinds that are not explicitiy
named. Moreover, the newly created slot door_knob
in the new description of Dick’s house is tagged by the
kind DOOR 10 indicate from where the slot was origi-
nally inherited. Notice that the description of Tom's
house remains unaltered.

Indirections

Consider the description of a semi-detached house.
It has two houses—a left house and a right house.
Morcover, the right wall of the left house is the left
wall of the right house, namely the party wall of the
semi-detached house. One way this can be achieved is
by ensuring that the fillers of the appropriate slots refer
to the same kind, say PARTY_WALL. That is

SEMIleft _house:right wall = PARTY_WALL
SEMIright _houselefi_wall = PARTY_WALL
SEMI:party _wall = PARTY_WALL

However, if we were 1o make a change to the party
wall using the part statement

SEMIeft_house:right wall:material = BRICK

we would—as discussed in the previous section—end
up with a new instance of PARTY_WALL which has
the material slot filled with BRICK that is seen in the
description of the left house but not in the deseription
of the right house. What we require is 1that no matter
what changes are effected to the semi-detached house
(so long as it remains semi-detached) the description of
the party wall as seen by both houses should slay in-
tact. We achieve this by an indirection and is reflected
in the part descriptions

SOMt

e hrose nght_hovee Pty _wall

i
. HDUSE i \
HOUSE-1 4 N HOUSE -2 PARTY_WALL
|
righl_wail il wadl
! I
SEMLparty_wall SEMIparty_wail

Figure 8. Indirections: the indirectian SEMIpurtvowall is s
peinter o the kind that fills the parlv_wail slot in SEMI.

SEMIeft_house:right wall = SEMIparty _wall
SEMIright _houselefi_wall = SEMIpariv_wall

The expression SEMpariv_wall is an indirection in
the description of the left and right houses. and it acts
as an instruction to the description svstem 10 find the
part that is identified by the part name.

Consider the database as shown in Figure 8. Here
the left and right side houses are variants of some
archetypal house. Suppose we wish 10 assert that the
party wall is made of bricks. That is. either statement

SEMI.‘!Q}Q‘_.hous.e:rr'g!z!_n'a.".’.'m'aren'ni = BRICK
SEMIright _houseleft wall:material = BRICK

should have the same effect. The updated database is
shown in Figure 9. Here a new instance of the party
wall PARTY_WALL, PARTY_WALL-, is created
which contains the asserted material slot, The new
instances of the party wall inherit the attributes of the
original party wall description, and consequently is
seen in the description of both the left and right house.

The concept of indirections can be extended. Imag-
ine an estate of semi-detached houses say SEM/[- ],
SEMI- 2, SEMI- 3, ctc., each of which is an instance
of some archetypal semi-detached house. The descrip-
tion of each semi-detached house should contain the
fact that its left and right houses refer to the same
party wall but not the party wall of any other semj-
detached house. To ensure this we could laboriously

SEWE
/ | \
leH_house right_hours porly_wall
/ HOUSE \
HOUSE1 ‘/ HOUSE-2 PARTY_WALL - ‘f&'?:-Iz PARRTY_WALL
E !
i
righl_wall beH wati maleriat
'
SEM . party_wall BE M party_wall BRICK

Figure 9. Updating the description of the indirected part in Figure
8. > denotes inheritance between o kind and one of its instunces,
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a b

Figure 10, Examples of spatial relations between a trisngle and a square.

change the indirection SEMI:party_wall to SEMI-
Lparty_wall, SEMI- 2:party_wall, SEMI- 3.party
-wall, etc., in each description. Alternatively, the indi-
rection SEMI:party_wall can be regarded as an in-
struction to find the part referred to in the particular
instance of the semi-detached house. That is, the part
name SEMI- 3:left_house:right -wall which has the
filler SEMI:party_wall should be interpreted as the in-
struction SEMI- 3.partv.owall. For a rigorous treat-
ment of such complex indirection examples together
with the algorithm to handle the evaluation of indirec-
tions, the reader is referred to Krishnamurti.'®

Drawings

The major visible effort in any design activity is
spent on the design drawings. The implication for
MOLE is that it must provide a mechanism for carry-
ing descriptions of the geometry of spatial objects.
This mechanism—typically a graphics editor—pro-
vides a representation for graphical objects. This rep-
resentation may either correspond exactly to the
MOLE format or can be translated into such. fFor the
sake of convenience we may assume the former.

Consider Figure 10 which gives arrangements of
shapes formed by spatial relations between a triangle
and & square.

MOLE descriptions for the triangle. square, and
spatial relation b in Figure 10 are shown in Figure 11.
These descriptions are based on the graphics proces-
sor elaborated in the papers by Szalapaj and Bijl, 19
Briefly, a shape is considered to be made up of ink
lines placed on pencilled construction lines which are
arbitrarily placed somewhere on a piece of paper (or
screen}. Shapes made up of two or more shapes in
some spatial relationships are determined by relation-
ships between the attributes of one shape and the
others,

In Figure 11, the slots have fixed interpretation inso-
far as the graphics processoris concerned. Thus. slots
with the prefix “'line’” refer to ink lines with end points
given by slots with prefix “'ep’ and which lie on con-
struction lines whose descriptions are attached to slots
prefixed by "ef.”” Both ink lines and construction lines
can be parametrized. Ink lines have length fitlers that
either determine or are determined by their end points.,
Construction lines may be fixed in their oricntation. It
should be noted that we could have given an equiva-
lent MOLE description where fillers are typed expres-
sions to enable interpretation by a graphics processor.
For instance, a point could have been described by the
filler point( X, ¥} thereby providing the freedom to re-
fer to points on, say a square, by stots such as rop-lefi-
fand. The choice depends entirely on the graphics
processor employed. s straightforward 1o show how
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Figere 11, MOLE descriptions of the (a) triangle: (b) square; and {c) spatial relation b given in Figure 10.

spatial relationships can be constructed through se-  define the spatial relation corresponding to the de-
quences of MOLE statements. The expressions below scription in Figure 11,

(1) SPATIAL _RELATION _b:shapel = SQUARIE
SPATIAL_RELATION b:shapel = TRIANGLE
SPATIAL_RELATION  brorigin = SQUARE :crigin

i

(2) TRIANGLE:inel:epl = SQUARElined:ep2

(3) TRIANGLE rotate = TRIANGLElinel:epl .l angle
TRIANGLE line2:ep2:cl2 = @QexpritRIANGLE votate - )

(4} TRIANGLE:scale = @expri0.6 = SQUARE Jined lengih)

(3) TRIANGLEdine3 dength = TRIANGLEline2 length
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TRIANGLE

@expr (0.6 * SQUARE lined:length) |

rotate ————I TRIANGLE:linel:ept:cit:angle }

TRIANGLElInet:ept |

| @expr(TRIANGLE:rotate - 40)

(¢)

Figure 1. (Continned).

The expressions have been grouped into five classes
labelled (1} through (5).Class (1) siates that the spatial
relation consists of two shapes, namely. a square and a
triangle, with its origin coincident with that of the
square. Class (2) translates the triangle so that a paint
on each shape coincides. Class (3) rotates the triangle
so that one side in each shape coincides. That is, their
construction lines coincide. This will rotate the other
constructions lines of the triangle correspondingly.
The value of @ is the angle between the construction
lines that meet at the origin of the triangle. In this case,
it equals 10°. The filler '@ expr™’ invokes a procedure
(see next section) that evaluates the indicated expres-
sion which may be parametrized. Class {4} scales the
entire triangle by a factor of (1.6 so that the length of
the side of the teiangle coincident with the square is 0.6
times the length of the square. Class (5) moves the
other vertex of the triangle so that the nonceincident
sides of the triangle are cqual. This will affect the de-
scription of the negatively sloped construction line.
Notice that the description of the resulting spatial refa-
tion remains parametrized. A “fixed” shape is ob-
fained when some of the points or line fengths have
been specified. In other words when all filler bindings
have been resolved,

Procedures
Some effort in the design task is spent on calcutation
or computation. A common example is the routine

fioor area calculation to check whether a room satisfies
the statuatory minimum or maximum given in the
building regulations. Computations in general can be
described by evaluable expressions that return a value
according to some criteria of evaluation (not necessar-
ily numerical). We have seen already an example of
evaluable expressions—namely, indirections. Typi-
cally, an evaluable expression corresponds to a call to
a procedure or a call to a nesting of several proce-
dures. A procedure can be thought of as consisting of a
head together with associated parameters and a body
that defines the procedure. For simple functions such
as calculating the area of a circle, it is possible to pro-
vide a MOLE-like description. This is illustrated in
Figure 12. The slots with prefix “‘arg’’ contain the
arguments to the procedure. The slots labelled 1.
2,. . . . are the statements, in order, within the body
of the procedure. The result is contained in the filler of
e “head” slot. To distinguish between an ordinary
filler and a fitler that invokes a procedure, the latter is
prefixed by the symbol @',

For complicated functions, a MOLE-like descrip-
tion may prove difficult 1o formulate, Itis likely thata
Lisp-like or Prolog-like notation provides a more suit-
able format. This is not entirely desirable since the
intended user is an architect with no prior program-
ming ability. An investigation into MOLE-dike descrip-
tions for non-simple functions forms part of another
rescarch project to commence shortly.
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Figure 12,

The preceding remarks must be seen in light of the
MOLE approach to medelling. MOLE is designed to
be reflective of user intensions and descriptions. That
is, the user sees onfy what he inputs. in the form that
he inputs. The internal representations and workings
of MOLE must at all times be transparent 10 the user.

As it now stands. MOLE is far from complete but it
has the capability of accepting object descriptions.
both textually and graphically. MOLE has two major
components: a knowledge base manager and a graph-
ics editor. The latter provides a representation for
graphical objects similar 1o that described in this pa-
per. The knowledge base manager has the capability of
accepting and evaluating function descriptions using a
mixture of Lisp and Prolog syntax. In addition MOLE
provides facilities such as a mini Emacs-like editor and
a history mechanisni. MOLE is written in an enhanced
version of C-Prolog.” The details of the current imple-
mentation can be found in Tweed.”* In a forthcoming
paper,” Tweed discusses some experiments that have
been conducted with MOLE with applications to
kitchen space planning problems; to simple shape
grammar implementations: and to subshape recogni-
tion problems,

CONVERSING WITH MOLE

In the preceding section it was seen that design de-
scriptions can be made up of relationships, cach be-
tween a kind and a filler via a slot. We now briefly look
at how such relationships can be presented to MOLE,

Suppose that a designer is engaged in a dialogue
with MOLL. Let us assume, for case of explanation,
that MOLLI accept as logically true any statement pre-
sented to it. In other words, any statement relating a
part of a kind and the fillers of its slots is treated as a
fact; if it is a query, i1s answer makes it o fact (as

@ times (body:1, 3.1415923)

{imes

7

arg1 arg2 body head
| body:1

@expr{arg1*arg2}

MOLE-like descriptions for simple evaluable functions.

represented in MOLE). Thus. we can describe the dia-
logue using an exiended form of the paris expression
(the precise syntax is unimportant here). Below are
given sample extracts of possible dizlogues between a
designer and the sysiem. Each dialogue has three
parts: (a) the meaning of the dialogue. (b) a parts ex-
pression and (¢} the system response. Where neces-
sary, additional remarks or pictures are given: other-
wise each dialogue should be self-explanatory,

statement> A red door of height 1600 mm {1}
made to BSI standard.

DOOR: [ color = RED. height

= 1600, made..to-BSI = ves ]
MOLE> DOOR created

The database is shown in Figure 13.

designer>

In addition, the door has a ()
deor knob which is made of

brass, and it has a stile

DOOR: [ door_knob: [ mate-

rial = BRASS |, stile }

DOOR updated

DOOR:door. knol created

The modified database is shown in Fieure 14, Notice
that the filler of DOOR:door_knob is not explicitly

Statement >

designer>

MOLE>

DOOR
made_to_BSI hefght colour
yes 1600 RED

Figure 13 Dialogue 1—defining the Jdescription of DOOR.
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DOCR

made_to_BSI height col
yes 1600

our

RED

stile door_knob

material

BRASS

Figure 14. Dialogue 2—updating the description of DOOR { ] denotes an uninstantiated filler.

named, and is indicated by an **x.”" The filler of stile is
unspecified and is equivalent to the expression stile =
[ 1, where [ ] denotes an uninstantiated filler.

statement> Does the door have a brass {3
door knob ?

designer>  DOOR:door._knob:material =
BRASS?

MOLE> yes

Here the following convention is adopted, namely.
that the presence of 7" should always denote a
query. Any statement that includes 2?7 should not
have the effect of changing MOLE's knowledge base
with the exception of the '*not’” and “match™ state-
ments. As a later example shows, a “not’” statement
implies a query and negates the answer. The *'match”
statement allows conditional updating. The 7" may
also be considered as a wild card as illustrated in the
following two examples.

What is the door knob (of the -
dooer) made of ?
DOOR:door_knob:material =7

Statenment >

designer>

MOLE> BRASS
statement> What objects are colored red ? (5)
designer>  T.color = RED
MOLE> DOOR

Suppose there are several doors DOOR - 1. Door -
2, . .., etc., some but not all of which have brass

door knobs. Then, the query about which doors have
brass door knobs may evoke the response:

statement > Which doors have brass door {(6)
knobs ?
designer>  DOORZ:door_knob:material = BRASS
MOLE> DOOR - 1
DOOR -3

DOOR - 7 (say)

One could go further and inquire about the list of red
colored doors which have brass door knobs.

statement>  Which doors colored red have N
brass door knobs ?
DOOR:{door-knob:material

= BRASS. color = RED ]

MOLE> DOOR - 3 {say)

The next example shows how inheritance relation-
ships can be specified.

designer >

[#=]

Tom has a house and its front (
door has the same descriplion

as DOOR

TOM: [ house = TOMS

_HOUSE: [ front_door <= DOOR ] ]
TOM

TOMS_HOUSE created
TOMS_HOUSE:front. door

made a variant of DOOR

statenient >

designer >

MOLE>

Here, unlike in example (2), the filler of the intermedi-
ate part TOM:house—namcly TOMS_HOUSE—is
an explicitly named kind. Observe that the filler of
TOMS_HOUSE:front.door is unnamed (see Figure
15).
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TOM

house

TOMS_HOUSE

front door

* <= DOOR
//‘]
(Filler is not explicitly named)

Figure 15, Dialogue 8—the description of TOM. Observe that the
front_door slot is unnamed and is a variant of DOOR.

The following examples (9) and (10) are two alterna-
tive ways of presenting the same description.

statemenr >  Tom's house has a living (9
room. a Kitchen. two bed-

rooms and a nursery.

TOMS_HOUSE: [ living =

LIV, kitchen = KIT, bed_1,

bed. 2, nursery = NURS )

designer >

MOLE > TOMS_HOUSE updated
Or
statement > Tom’s house has a living (10)

room, a kitchen, two bed-
rooms and a nursery.
TOM:house: { living = L1V,
kitchen = KIT, bed..1, bed.2,
nursery = NURS |
{TOMS_HOUSE)- created

designer >

MOLE>

If (9) is applied Tom's house is explicitly updated,
whereas if (10} is applied the filler of the “house™ slot
of the kind TOM has been updated, That is, a new
instance of Tom’'s house is created (see Figure 16).
MOLE creates a new instance of the indicated part to
ensure that any other reference to the indicated part is
not corrupted, and thereby ensure part update consis-
tency.

The next three examples introduce the i opera-
tor and which is used to denote all possible slot expres-
sions of the form **:7: . . %", That is, the variables
7 are instantiated to slots so that these slots to-

pether with the entities on cither side of the 227 corre-

spond to a vahd part description Jderivable from the
information known to MOLE,

statement > 1s there anything red in Tom's (1
house ?

designer>  TOMS_HOUSE::? = RED

MOLE > TOMS_HOUSE:front_door;color
= RED
statement> Describe Tom's house ? (FN

TOMS_HOUSE::? = 2
TOMS_HOUSE:
front_door:
color = RED
height = 1600
made-10-BS] = ves
stile = [ ]
door_knob:
material =

BRASS

designer >
MOLE>

living = LIV
kitchen = KIT
bed_1 = {]
bed.2 =1{]
nursery = | j

Here MOLE’s response is pretty-printed for easy
reading.

statement > Is any part of the description {13)
of Tom’'s house inherited from

any other description ?
TOMS.HOUSE::? <=7
TOMS_HOUSE:front_door

<= DOOR

designer >
MOLE >

Suppose Dick’s house is similar to Tom's house.

starement™>  Dick’s house is similar 1o {14)
Tom’s house

DICK: [ house = DICKS

-HOUSE <= TOMS_HOUSE ]

DICK created

DICKS_HOUSE made a vari-

ant of TOMS_HOUSE

designer>

MOLE>

The next example introduces the “'not™ statement.

statement > (However) Dick’s house does (13)
not have a nursery

not (DICKS_HOUSE: nursery = 7))
DICKS..HOUSE updated

designer >
MOLE >

Notice that the “‘not” statement has taken the answer
from the query 1o delete the nursery slot from Dick’s
house,

starement > Docs Dick’s house have a (16)
nursery ?

designer>  DICKS_HOUSEmursery = 7

MOLE > no
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TOM

house

TOMS_HOUSE

A7 TANN

front_door living kilghen  bed! bed2  nursery

VNN

DOOR —> * KIT * NURS

(a)

TOM
house
TOMS_HOUSE = TOMS_HOUSE~
front_door living kitchen bedl  bed2 nursery
AV NN
LIV KIT . * * NURS

pOOR ——==k> *

(b)

Figure 16. Two different ways of presenting the same description. i) corresponds to dalogue 9—the new slots are appended 1o the
ew instance of TOMSLHOUSE is created.

description of TOMS . HOUSE. (b) correspondsto Jialogue 10—an
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The following example illastrates the sitation
where MOLE treats a pot’” statement as a query,
Since the slot to be defeted is not in the description of
the kind, MOLE answers the deletion in the affirmu-
nve.

statement>  Dick’s house does not have a (I
nursery,

designer>  not IDICKS_HOUSE:nursery
= T}

MOLE> ves

We see no conflict between the use of “'not’™” as a
statement and as a query, since the intention in both
cases is to ensure that the indicated kind-slot-filler re-
lationship is no longer in the knowledge base.

One more example to illustrate the simple use of the
7" operatar:

siatement >  Which rooms in Dick’s house (1)
have blue ceilings 7
DICKS_HOUSE: M ceiling:color
= BLUE
MOLE> living

bed..]

designer>

So far we have seen how kinds can be updated and
queried. Suppose we wish 1o update kinds only when
cerlain conditions hold, We ¢an do so by the “'match™
statement. Suppose we have a list of lintels numbered
1.2, 3, etc.. and we wish to update those that are made
of concrete. Then we can invoke the conditional match
statement:

statement> Lintels made of concrete are (19
reinforced
designer>  LINTEL?:material = CONCRETE

maich [ reinforce = STEEL_BARS ]
LINTEL-1 updated

LINTEL-4 updated

LINTEL-3 updated (say)

MOLE>

Matching is a binary operation in which its left-hand
side expression is a query that returns a kind and the
right hand side expression is a part statement. It is
casy (o see that by matching we can carry out & global
update as the example below shows.

statement> The tlintels have width of 800 mm  (20)
designer>  LINTEL? match [ width =
900 | -

MOLE=> LINTEL-l updated

LINTEL-> updated (say)

The matching facility, indeed the simple query facil-
ity, can be extended by allowing comparisons to be
made on filler values, The example below shows how

designer >

only those doors which are wider thun 850 mm should
be panelled.

statement > Doors wider than 830 mm are (21
panclled

AMPDOOR T width > 850 match

[ type = PANELLED ]

MOLE> FRONT_DOOR updated

We now indicate how indirections can be specified
and indirected parts updated.

cratement> A semi-detached house with 4 (22
left and right house that share
a party_wall
SEMI: { left_house =
HOUSE : [ right_wall =
SEMI:party._wail I,
right_house = HOUSE :
[ left_wall = SEMI:party.wall |,
parly.wall = PARTY_WALL ]
MOLE> SEMI
HOUSE-]
HOUSE-2 created

statement> Define an estate of - say 7 - (23)
semi-detached house

designer>

designer>  ESTATE: [ dwelling(1-7) =
SEMI1 ]
MOLE> ESTATE created

The expression ‘“‘dwelling(1-7)" is short-hand for
dwellingl. . . . ., dwelling7.

Now suppose the 5th dwelling in the estate has a
party wall made of bricks and arranged in a flemish
bond.

designer> ESTATE:dwelling3:left.house: (24)
right wail: [ material =
BRICK, bond = FLLEMISH ]
MOLE> (SEMI)-

{PARTY. WALL}) created

Snapshots of the database before and after the descrip-
tion of the party.wall in the fifth dwelling is updated
are shown in Figures 17 and 18.

The examples above are not exhaustive, nor are
they intended to be so. They serve to demonstrate
how, with a simple interface structure. one can build a
powerful modelling environment. As stated earlier,
fillers need not be simple entities, For instance, con-
sider the following description of a rectangle,

designer>  RECT = { length = 5, width {25)
= §, area = @ poly_arca
(length,width) ]

MOLE> RECT created

followed by the query:

designer>  evaluate RECTrarca = 7 (26)
MOLE> 40
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ESTATE

dwellings
SEMI
left_house right_house party_wall
HOUSE \
HOUSE-~1 HOUSE-~2 PARTY_WALL
right_wall left_wall

SEMI:party_wail

SEMl:party_wall

Figure 17. A snapshot of the database after dialogues 22 and 23 illustrating the

presentation of indirections.

Here MOLE evaluates the procedure ‘'poly_area”
which takes as its arguments the length and width of
the rectangle and returns it value, The "'@" symbol
denotes that the filler is a call to a procedure.

The *‘evaluate’ function can be used with any part
expression as indicated the query:

designer>  evaluate RECT (27)
MOLE> RECT:
length = 8
width = 5
area = 40

A more complicated example is illustrated by the
situation where the designer may supply with the de-
scription of a beam, the description of a bending mo-
ment analysis and a filler containing an instruction to
carry out the analysis. Clearly, queries such as—are
the dimensions of the beam sufficient to bear a (stated)
load 7—can then be evaluated as the fragments of dia-
logue below indicate.

designer > BEAM:moment = @proc..bm (28)
(LOAD, BEAM:length)
MOLE> BEAM updated
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followed by the query

evaluate BEAM:moment (29)

ves

designer>
MOLE>

In the above example (29), it is natural to expect
MOLE to display the bending moment diagrams on the
screen. As stated in the preceding section, the current
implementation of MOLE cannot provide answers 1o
such queries in a clean manner, However, when the
next phase of the MOLE project which is focused on
function and procedure descriptions is completed. this
will be possible.

[n a similar fashion drawings may be described and
quericd. As a simple iNMustration, based on a functional
description for shapes™ == one could say

designer> SHAPE:drawing = (30)
@beside(@abovc(FLAT,FLA’F),
@yscale(FLLAT,2))

MOLE> SHAPE updated

Here the drawing of the kind SHAPE contains a func-
tional description of a kind FLAT above itself and
beside another which has been scaled in y-direction by
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ESTATE

dwellings

SEMI p—— SEMI~
laft_house tight_house party_wall party_wall
HOUSE
HOUSE % HOUSE-2 PARTY_WALL PARTY_WALL.
right_walt left_wall material bond
SEMI:party_wall SEMI:party_wall BRICK FLEMISH

Figure 18, Dialogue 24—upduting the description of the party wall in Figure 17,

a factor of 2. FLAT defines a rectangular space. No-
tice that the arguments to a procedure may also be
calls to procedures. If the drawing is to be displayed,
one could say:

designer>  draw SHAPE:drawing 30
MOLE > yes

Figure 19. The displayed drawing according 10 the Tunctivnal de.
scription given in dialogue 30,

The displayed drawing would appear as shown in Fig-
ure 19,

It is envisaged that spatial compositional rules such
as those encapsulated by shape grammars®? can be
described in such functional terms.

TOWARDS A DESIGN SYSTEM

In this section the use of MOLE in a design system
is considered.

First, a further observation about designing is made.
Designing may be considered as analogous to textual
composition, albeit with additional constraints. How-
ever. 10 produce a text composition system about—
say grammatical constructs, language “‘style,”” and an
understanding of the subject matter of the composed
text—is unrealistic. A text composition system serves
to assist the user. Likewise, the role of a design system
is seen primarily as an assistant to the designer and not
as an automatic gencrator of a design selution. Follow-
ing this analogy, at the lowest level, a design syslem
may be, simply, a dumb drawing program.

Discarding dumb drawing programs as the solution.
a design system must have the machinery capable of
representing both the designer’s understanding of
drawings and his understanding of design descriptions.
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Design

Design
Lexicon

Library

Other torreter
Utilit)
es (MOLE)

User
Defined

User
Detined
Lexicon

Support

——

Routines

(PARTIAL
DESIGN DESCRIPTIONS }

!

{USERINPUT)

Effecior

t

Receptor

Figure 26, A schema for a reflective design system based on MOLE.

Further, it must be able to interact between the two. In
practical terms. a design systemy must have both a
graphics manager and a knowledge maintenance sys-
tem and it must have procedures 1o link between
knowledge about designs and their drawing descrip-
tions, Design knowledge can be characterized as:

(1} reflecting the conventions and constraints that

the designer has to adopt,

(ii) reflecting the constraints and rules that the de-

signer chooses to adopt.

There is no general way of determining what cate-
gory any particular design constraint falls into, For
instance, in some situations, site and layout con-
straints may be forced on a designer. In other cases,
the designer may be free 1o adopt or reject the need for
such constraints. The only certainty is that no single
design system can be prescribed to meet the needs of
each and every designer (or design proklem). This
leads us to consider schemas for a design system that
can be customized for each individual designer. A sug-
gestion for one such schema is given in Figure 20.

At the heart of the schema in Figure 20 is the inter-
preter, say MOLE or equivalent, that provides both
the modelling and decision support environment nec-
essary for designing. The user communicates with the
interpreter through the receptor which translates the
user input, either textual or graphical, into a semantic
represendation. The user input may be a description
that the user wants asserted to the knowledge base
(after perhaps undergoing some previously defined set
of consistency checks.) Or, it may be a query about
some aspect(s) of the partially constructed design. The

interpreter responds (feeds back) through an effector,
usually by expressing partial design descriptions, The
knowledge base comes in two compartments: (i) a l-
brary of design terms and rules that the designer has at

~ his disposal, and (i) a collection of terms and rules that

apply to the specific design problem on hand.

DISCUSSION

The premise of this paper is that designs are the
outcome of dialogue between the designer and a
knowledge base. The gist of the argument is as fol-
lows. If the knowledge base represents statements in
some first-order logic, then dialogue theory? for de-
sign is simply a theorem prover for deduction in that
logic. However, in real design, any new assertion
about a design may have the effect of invalidating any
previous assertion about the design. In other words,
designing is essentiaily nonmonotonic. Consequently,
dialogue theory for design must be equipped with deci-
sion procedures based on rules that allow new asser-
tions and invalidate old deductions.

The paper goes on to suggest that dialogue can be
supported by a common representation for the de-
scription of the spatial and non-spattal elements in de-
sign. The paper describes the MOLE modelling envi-
ronment wherein descriptions are given using a
kind-slot-filler based hicrarchy together with two dis-
tinct mechanisms for inheritance, The paper illustrates
how with a uniform interface based on part expres-
sions, MOLE's knowledge base can be updated and
queried, It also indicates how design support facilities

KRISHNAMURTI: THE MOLE PICTURE BROOK ON A LOGIC FOR DESIGN 187



and design graphics can be incorporated through the
nse of procedures and other evaluable expressions as
fillers in descriptions.

Design suppart rules are essential if we are 1o verify
the validity of design descriptions against some mode]
of the world, Moreover, design rules should have
some form of Aexibility built into them. For instance,
where cost constraints are to be used as a guide for the
designer and not as a maximum, a change introduced
by the designer might have the effect of an “accept-
able™ increase in cost which would otherwise be re-
Jjected by the decision procedure that handles cost con-
straints. On the other hand, spatial consistency rufes
are examples of “strong' design rules that shouid
have the power to invalidate changes that would other-
wise result in drawings that yield physically unrealiz-
uble buiidings.

To complete the picture from theory to practice, the
paper concludes that viable compuier-based design
svstems for the future will be design assistants that can
be tatlored to the reflect the intentions of the individual
designer.
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