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Sortal Structures: Supporting Representational
Flexibility for Building Domain Processes
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Abstract: We present a formal approach to represen-
tational flexibility, sorts, to support alternative represen-
tations of an entity. The approach is constructive, based
on a part relation on elements within a sort, which en-
ables the recognition of emergent information. The use
of data functions as a sort provides for the embedding of
data queries within a representational structure. We dis-
cuss the application of sorts to supporting alternative data
views, illustrating this through a case study in building
construction.

1 INTRODUCTION

In the building domain, there is always a need for multi-
ple representations of the same entity. A building may be
considered in its entirety, as a shape, a collection of parts
or some grouping of properties. The building domain
is multi-disciplinary, involving participants, knowledge
and information from various specializations; problems
require a multiplicity of views, each distinguished by par-
ticular interests and emphases. In this article, we consider
the representation of such views.

Problems in the building domain are mainly data-
driven. Important issues that arise in solving building
domain questions stem from knowing what kind of data
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exists, how effectively can the data be queried and more
over, as data is shared across different problem solvers,
how effectively can the data be structured to suit a spe-
cific need. We have been working on a formal approach,
named sorts, to deal with these issues, one that looks
at data as opposed to knowledge as the driving force in
representations

2 MULTIPLE REPRESENTATIONS
IN THE BUILDING DOMAIN

The architect is typically concerned with configurational
and aesthetic aspects of a design, the structural engi-
neer considers structural members and their relation-
ships, and the performance engineer is interested in
thermal, lighting, or acoustical performance. Each actor
takes their own professionally oriented view—derived
from an understanding of current problem solution tech-
niques in their respective domain—that requires a dif-
ferent representation of the same (abstract) entity. Each
view specifies a particular selection of information, pre-
sented in a particular way. As such, different views—
or different representations—may derive from different
design stages, and may also support different persons or
applications within the same design stage. Even within
the same task, or by the same person, various repre-
sentations may serve different purposes defined within

C© 2007 Computer-Aided Civil and Infrastructure Engineering. Published by Blackwell Publishing, 350 Main Street, Malden, MA 02148, USA,

and 9600 Garsington Road, Oxford OX4 2DQ, UK.



Sortal structures 99

the problem context and selected approach. This is cer-
tainly true in architecture, where the design process,
by its exploratory and dynamic nature, invites a vari-
ety of approaches and representations (see, for example,
Kolarevic, 2000).

There has been concerted effort in developing inte-
grated product models that span multiple disciplines,
multiple methodologies and support different views
(e.g., Kiviniemi, 2006). These models enable information
exchange between representations and collaboration
across disciplines; examples include the ISO STEP stan-
dard for the definition of product models (ISO, 1994),
and the Industry Foundation Classes (IFCs) of the Inter-
national Alliance for Interoperability (IAI), an object-
oriented data model for product information sharing
(Liebich, 2006). These efforts characterize an a priori
top-down approach: an attempt is made at establishing
an agreement on concepts and relationships, which offer
a complete and uniform description of the project data,
mainly independent of any project specifics (Stouffs and
Krishnamurti, 2001). We consider here how data can be
effectively structured a posteriori.

2.1 Design representation and creativity

In general, integrated product models do not support the
creative aspects of building design, especially, in early
design phases. This is because design creativity often re-
lies on restructuring information as yet not captured in
a current information structure—that is, emergent infor-
mation, as, for example, when the design provides new
insights that lead to a new interpretation of the con-
stituent design entities. To some extent, creativity can
be supported by descriptions of design entities, which
have “known” parts. When a design description is con-
sidered to have indefinite parts, new design entities be-
come recognized as alternative collections of these parts,
and the description can be reinterpreted as composed of
different new “known” design entities. These descrip-
tions can be augmented with properties that have defi-
nite descriptions, again, with definite or indefinite parts.
Classic representation schemes deal with definite de-
scriptions, generally with definite parts, and properties
are certainly expressed as definite descriptions with defi-
nite parts. The classic product modeling approaches em-
ployed in CAD require specification of design entities
as objects (with properties) that are maintained at all
times, unless explicitly altered. Any reinterpretation of
design entities requires a specification of change—for
our purpose, computational change—that not only fixes
the source and destination object types beforehand, but
also fixes the numbers and mapping between proper-
ties. Previously, we have shown that continuity of such
computational changes, from the standpoint of design ra-

tionale, requires anticipation of the particular structures
that are to be changed (Krishnamurti and Stouffs, 1997).
Creativity, on the other hand, goes beyond such anticipa-
tion. See Knight and Stiny (2001) for further elaborations
on classical versus nonclassical computation in design.

2.2 Emergent information and rules

Recognizing emergent information structures requires
determining a transformation under which a specified
structure is similar to a part of the original (Krishnamurti
and Earl, 1992). There are two prime requirements to
consider.

Firstly, we need a specification of allowable transfor-
mations. Which kinds of transformations are permitted
depend on the kind of information being recognized.
For example, in spatial recognition, the transformations
are, commonly, Euclidean: a square must be computa-
tionally recognized as a square, irrespective of scale, ori-
entation or location. Likewise, transformations can be
considered for other kinds of information—for example,
search-and-replace in text editing allow for case trans-
formations of the constituent letters.

Secondly, we need a definition for the part relationship
that governs when an information structure is considered
a part of another. Formally, this part relationship may be
freely defined so long as it constitutes a partial order.
For shapes this part relation defines an algebra—that is,
a shape is specified as an element of the algebra, ordered
by a part relation, closed under operations of sum, dif-
ference and product, and affine transformations (Stiny,
1991; Stouffs, 1994). Moreover, under the part relation,
any part of a shape is a shape. As a shape specifies an
indefinite number of (sub-) shapes, each a part of the
original, it follows that we can deal with shape indeter-
minately, and in this way, new shapes emerge.

Geometrically, the maximal element representation
(Krishnamurti, 1992; Stouffs, 1994) captures this no-
tion precisely. Consider the combination of two squares
shown in Figure 1. Each square defines an object made
up of four line segments. Visually, however, the compo-
sition contains not two, but three squares. To recognize
this third square, each square “object” needs to be rein-
terpreted as a collection of six line segments, such that
two can be taken from each to define the middle square
object. However, the transformation of a square object
into such a collection of six line segments is specific to
this particular context, and not generally pertinent. Un-
der the maximal element representation, each object is,
in a minimal way, made up of maximal line segments,
and each such maximal line segment specifies an indef-
inite number of (sub-) segments that are each part of
the original segment. Thus, the four line segments defin-
ing the middle square object can always be found in the
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Fig. 1. A composition of two or three squares.

representation of the original two squares, each a col-
lection of four maximal line segments. Furthermore, al-
though an indefinite number of other collections of line
segments can be determined and represented, none is of
any higher importance, except by designer choice. This
provides the designer with the freedom to reinterpret a
design in any way, and to have this interpretation sup-
ported by the system.

Recognizing emergent information is useful, espe-
cially, when the emergent information is subsequently
the subject of an operation or manipulation, as in situa-
tions that rely on a restructuring of emergent informa-
tion. Data recognition and subsequent manipulation can
be considered part of a single computation s – f (a) +
f (b), where s is a data collection, a is a representa-
tion of the data pattern, f is a transformation under
which a is a part of s, and f (b) is the data replacing
f (a) in s. In Krishnamurti and Stouffs (1997) we discuss
s – f (a) + f (b) as a computational expression of spatial
change, derived from a design rule: a → b. Rule applica-
tion, then, consists of replacing the emergent data cor-
responding to a, under some allowable transformation,
by b, under the same transformation.

Formally and technically, rules can be grouped as a
device for specifying a language, namely, the set of all
designs generated. Each design in the language is gen-
erated from an initial design, and employs the rules to
arrive at the design. In spatial design, the specification of
rules leads naturally to the generation and exploration of
possible spatial designs. Both Mitchell (1993) and Stiny
(1993, 1994) as well as more recently in the special issue

on design spaces (Stouffs, 2006), some authors have re-
marked on the importance of emergent spatial elements
and/or rules in design search.

The concept of search is much more fundamental than
any generational form alone might imply. Any muta-
tion of a data collection into another, or parts of oth-
ers, constitutes an action of search. As such, a rule may
be considered to specify a particular composition of op-
erations and/or transformations that is recognized as a
new, single, operation and applied as such. Individually,
rules serve to facilitate common operations, for exam-
ple, for the changing of one data collection into another
or for the creation of new design information based on
existing information in combination with a rule. Collec-
tively, rules act as generators for the creation of cer-
tain sets of designs and for the derivation of certain
information.

3 SORTS

The algebraic model for shapes and the maximal ele-
ment representation have their origin in shape grammar
research (Stiny, 2006). These were initially developed
for shapes, made up of points and line segments, and
later extended to planar and volume segments (Stouffs,
1994). Each spatial element type specifies its own alge-
bra. We employ the notation, Uij, to refer to the algebra
of shapes made up of i-dimensional linear elements in
a j-dimensional Euclidean space, and use Ui, as short-
hand, whenever the dimensionality of the space is known
(Stiny, 1991). Algebraically, a shape made up of more
than one type of spatial element, belongs to the Cartesian
product algebra of its constituent spatial element types,
for example, a shape comprising points and line segments
belongs to U0 × U1. The algebraic model can also ap-
ply to shapes augmented with nongeometric properties,
for example, labels, weights (e.g., line thickness; Stiny,
1992), and colors (Knight, 1989)—likewise, Vi refers to
shapes in Ui augmented with labels, and Wi to shapes
augmented with weights (Stiny, 1991).

We have extended this algebraic model to the for-
malism, named sorts, initially presented in Stouffs and
Krishnamurti (2002), and one that we are still revising.
Briefly, a sort is a basic entity, conceptually, specifying
a set of similar data elements, for example, a class of
objects, equivalently, a set of tuples solving a system of
equations. For example, points and lines are sorts, as are
triangles and squares. Each sort defines its own algebra:
a sort of points corresponds to U0, a sort of line segments
to U1, a sort of plane segments to U2 and a sort of vol-
ume segments to U3. Sorts are not limited to geometrical
objects; colors are sortal, as are other data types. Sorts
subsume conventional class representations.
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We define a conjunctive attribute operation on sorts.
For example, we can define a sort of labeled points,
(≈V0), from a sort of points and a sort of labels. Like-
wise, we can define a sort of weighted line segments,
(≈W1), or a sort of linear shapes (≈U0 × U1 × U2 ×
U3). Sortal conjunction has similarity to the Cartesian
product of algebras. Two observations can be made in
this respect.

Firstly, conjunction is not commutative: a sort of la-
beled points is not identical to the sort of “pointed” la-
bels. The former sort comprises points with associated
labels, the latter, labels with associated points. This dis-
tinction derives from the fact that each sort defines its
own algebraic operations, based on its own part relation-
ship, and the resulting algebraic operations for the two
conjunctive sorts may behave differently (see below).
Note that a table of unsorted coordinates and labels can
be sorted either as labeled points or pointed labels, and
the two sorts are distinct.

Secondly, an element belonging to a conjunctive sort
necessarily contains elements from its constituent sorts.
For example, a shape belonging to a Cartesian product
of algebras, for example, U0 × U1 × U2 × U3, must con-
tain (spatial) elements from each algebra, otherwise it
necessarily belongs to the algebra specified by the actual
Cartesian product of the algebras of its specific element
types.

To define a sort—where neither the ordering of com-
ponent sorts is important, nor the presence of ele-
ments from the different component sorts is necessarily
explicit—we define a disjunctive operation on sorts. Un-
der this disjunction, any element of the resulting sort
is necessarily an element of a constituent sort. Sortal
disjunction consequently defines a subsumption rela-
tionship on sorts: a disjunctive sort subsumes each con-
stituent sort, because each element of a constituent sort
is also an element of the disjunctive sort.

Subsumption is a powerful mechanism for comparing
alternative representations of the same entity. When a
representation subsumes another, the entities of the for-
mer represent those of the latter, without data loss. There
are a number of representational formalisms that spec-
ify a subsumption relationship, to achieve a partially or-
dered type structure. Most are based on first-order logic.
A good example in the building design domain is Wood-
bury et al. (1999), who model design spaces by typed
feature structures, which represent data types through
record-like data structures. These structures facilitate the
encapsulation of property information as (a variation of)
attribute/value pairs (Aı̈t-Kaci, 1984). Moreover, prop-
erties themselves may be typed by type structures, that
is, expressed in terms of record-like data structures, con-
taining (sub-) properties. In this way, a subsumption re-
lationship defines a partial ordering on type structures.

Furthermore, the algebraic operations of intersection
and union (or others similar) may be defined on type
structures so that the intersection of two type structures
is subsumed by either type structure, and the union of
two type structures subsumes either type structure.

Sorts are likewise conceived, with, at least, one ex-
ception: the association of properties to a sort occurs
through sortal conjunction—that is, each property of a
sort is itself a sort. Primitive sorts are the exceptions to
this rule. Like primitive data types, primitive sorts are the
smallest building blocks for building sortal representa-
tional structures. Primitive sorts combine to form com-
posite sorts under compositional operators over sorts.
A primitive sort defines the domain of possible values,
for example, a primitive sort of weights specifies the do-
main of positive real numbers, and a primitive sort of
line segments specifies the domain of intervals on lin-
ear carriers. Primitive sorts may be constrained over the
extent of their domain, for example, limiting weights to
values between 0 and 1. The subsumption relationship
between sorts then derives from the disjunction on sorts
(similar to a union of two or more type structures) and
an expression of constraints on primitive sorts. Spec-
ifying an intersection-like operation on sorts adds no
further value, as the intersection of two sorts can al-
ways be reduced, through distributive and associative
rules, to the intersection of primitive sorts (Stouffs and
Krishnamurti, 2002). The intersection is nonempty only
when the primitive sorts are identical, except for possible
constraints.

The subsumption relation specifies a hierarchy; more-
over, it can be considered in terms of information speci-
ficity. However, there is a distinction to be drawn in
the way in which subsumption is treated in sorts and in
first-order logic based representational formalisms as
exemplified by type feature structures. First-order logic
formalisms generally consider a relation of inclusion
(hyponymy relation), commonly denoted as an is-a re-
lationship. Sorts, on the other hand, consider a part-of
relationship (meronymy relation).

Two simple examples illustrate this distinction. Con-
sider a disjunction of a sort of points and a sort of line seg-
ments; this allows for the representation of both points
and line segments. We can say that the sort of points
forms part of the sort of points and line segments—note
the part-of relationship. In first-order logic, this corre-
sponds to the union of points and line segments. We can
say that both are bounded geometrical elements of zero
or one dimensions—note the is-a relationship.

This distinction becomes even more important when
we consider an extension of sortal subsumption to
conjunction. Consider a sort of labeled points as a con-
junction of the sorts of points and labels. If we relax the
requirement that an element belonging to a conjunctive
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sort necessarily contains elements from its constituent
sorts, we can consider the sort of points to be part of
the sort of labeled points, that is, a point is a labeled
point without an associated label or, preferably, a point
is part of a labeled point. Thus, the sort of labeled
points subsumes the sort of points. In logic formalisms,
a relational construct is used to represent such associ-
ations. For example, in Baader et al. (2003), roles are
defined as binary relationships between concepts. Con-
sider a concept Point and a concept Label; the concept
of labeled points can then be represented as Point ∩ ∃
has-Attribute.Label, denoting those points that have an
attribute that is a label. Here, ∩ denotes intersection and
∃R.C denotes full existential quantification with respect
to role R and concept C. It follows then that Point ∩ ∃ has
Attribute. Label ⊆ Point; that is, the concept of points
subsumes the concept of labeled points—this is quite the
reverse of how it is considered in sorts.

Another important distinction is that first order logic-
based representations generally make for an open world
assumption—that is, nothing is excluded unless it is done
so explicitly. For example, polygon objects may have an
assigned color. When looking for a yellow square, logi-
cally, every square is considered a potential solution—
unless, it has an explicitly specified color, or it is other-
wise known not to have the yellow color. The fact that
a color is not specified does not exclude an object from
potentially being yellow. Sorts, on the other hand, hold
to a closed world assumption. That is, we work with just
the data we have. A polygon has a color only if one is
explicitly assigned: when looking for a yellow square,
any square will not do; it has to have the yellow color
assigned.

This restriction is used to constrain emergence. More
specifically, labeled points commonly serve to con-
strain the applicability of shape rules, which encap-
sulate both shape recognition (emergence) and shape
transformation (computational change). Another way
of looking at this distinction between the open or closed
world assumptions is to consider their applicability to
knowledge representation. To reiterate, logic-based rep-
resentations essentially represent knowledge; sorts, on
the other hand, are intended to represent data—any
reasoning (computational change) is based purely on
present (or emergent) data.

3.1 Behavioral specification

Sortal algebra implies the specification of a part relation-
ship on the elements of a sort. The part relationship not
only governs when an element is a part of another, but
also how elements combine and intersect, and what the
result is of subtracting one element from another or from
a collection of elements from the same sort.

The simplest specification of a part relationship corre-
sponds to the subset relationship in mathematical sets.
Such a part relationship applies to points and labels, for
example, a point is part of another point only if they are
identical, and a label is a part of a collection of labels only
if it is identical to one of the labels in the collection. Here,
sortal operations of addition (combining elements), sub-
traction, and product (intersecting elements) correspond
to set union, difference, and intersection, respectively.

Another kind of part relationship corresponds to in-
terval behavior. Consider, for example, the specification
of a part relationship on line segments. A line segment
may be considered as an interval on an infinite line (or
carrier); in general, one-dimensional quantities, such as
time, can be treated as intervals. An interval is a part of
another interval if it is embedded in the latter; intervals
on the same carrier that are adjacent or overlap com-
bine into a single interval. Specifically, a behavior for
intervals can be expressed in terms of the behavior of
the boundaries of intervals (Krishnamurti and Stouffs,
2004). This behavior applies to indefinite intervals too,
providing that there is an appropriate representation of
both (infinite) ends of its carrier. Likewise, behaviors
can be specified for area intervals (plane segments) and
volume intervals (polyhedral segments). The notion ex-
tends to intervals of higher dimensions.

Behaviors apply to composite sorts as well; that is, the
part relationship is defined on data elements belonging
to a sort defined by conjunction (attribute) or disjunc-
tion. Specifically, a composite sort inherits its behavior
from its component sorts depending upon the composi-
tional relationship. For example, consider the following
situation, common in CAD applications, of classifying
data elements, say line segments, into layers. Here, we
define the sort of labeled line segments as a composition
under the attribute operator of a sort of line segments
and a sort of layer labels. When layers are considered
as attribute values, it may seem intuitive to allow just a
single label for each line segment (most CAD applica-
tions do not normally allow the same object to exist in
multiple layers at the same time). However, there is no
common notion of a layer ordering (or a corresponding
part relationship) that can be used to define sortal op-
erations on layer labels. Instead, were we to allow a set
of layer labels to be assigned as an attribute to a line
segment, the result may be interpreted as a collection
of identical copies of the same line segment existing in
different layers, and could be presented as such to the
user. To deal with or manipulate a single-layer copy, that
is, a copy of the line segment associated with a single
label (or singleton subset of labels), this copy needs to
be differentiated from the other copies of the same line
segment existing in the other layers. The sortal data ele-
ment representing the single-layer line segment is a part
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of another sortal data element representing a multi-layer
line segment if the first line segment is a part of the sec-
ond (under the interval behavior for line segments) and
if the single label of the first entity is a member of the
set of labels for the second entity. Consequently, by sub-
tracting the first entity from the second, the single-layer
line segment is distinguished (i.e., selected) from the re-
mainder. Thus, under the attribute operator, a data el-
ement is part of a data collection if it is a part of the
data elements of the first component sort, and if it has
an attribute collection that is a part of the respective at-
tribute collection(s) of the data element(s) of the first
component sort it is a part of. When data collections of
the same composite sort (under conjunction) are pair-
wise summed (differenced or intersected), identical data
elements merge, and their attribute collections combine,
under this operation. Elements with empty attributes
are, necessarily, removed. Under conjunction, the com-
posite behavior, in the first instance, is that of the first
component sort.

The disjunctive operator distinguishes, instead, all
operand sorts such that each data element belongs ex-
plicitly to one of these sorts. For example, a sort of points
and lines distinguishes each data element as either a
point or a line. Consequently, a data element is part of a
disjunctive data collection if it is a part of the partial data
collection of elements from the same component sort. In
other words, data collections from different component
sorts, under disjunction, never interact; the resulting data
collection is the set of collections from all component
sorts. When the operations of addition, subtraction or
product are applied to two data collections of the same
disjunctive sort, each operation applies to the respective
component collections.

Behaviors play an important role when assessing data
loss in data exchange between different sorts. When re-
organizing the composition of the component sorts, un-
der the attribute operator, the corresponding behavior
may be altered in such a way as to trigger data loss.
Consider a behavior for weights (e.g., line thickness or
surface tones) as is apparent from drawings on paper—a
single line drawn multiple times, each time with a dif-
ferent thickness, appears as if it were drawn once with
the largest thickness, even though it assumes the same
line with other thicknesses. When using numeric values
to represent weights, the part relation on weights corre-
sponds to the less-than-or-equal relation on numeric val-
ues. Thus, weights combine into a single weight, with its
value as the least upper bound of the respective individ-
ual weights, that is, their maximum value. Similarly, the
common value (intersection) of a collection of weights
is the greatest lower bound of the individual weights,
that is, their minimum value. The result of subtracting
one weight from another is either a weight that equals

the numeric difference of their values or zero (i.e., no
weight), and this depends on their relative values. Now
consider a sort of weighted points, that is, a sort of points
with attribute weights, and a sort of pointed weights,
that is, a sort of weights with attribute points. A col-
lection of weighted points defines a set of noncoincident
points, each having a single weight assigned (possibly
the maximum value of various weights assigned to the
same point). These weights may be different for differ-
ent points. The behavior of the collection is, in the first
instance, the behavior for points. On the other hand, a
collection of pointed weights, which is defined as a sin-
gle weight (which is the maximum of all weights con-
sidered) with an attribute collection of points, adheres,
in the first instance, to the behavior for weights. In both
cases, points are associated with weights. However, in the
first case, different points may be associated with differ-
ent weights, whereas, in the second case, all points are
associated with the same weight. In a conversion from
the first to the second sort, data loss is inevitable. An
understanding of when and where exact translation of
data between different sorts or representations is or is
not possible is important for assessing data integrity and
controlling data flow (Stouffs et al., 1996).

Additionally, a behavioral specification is a prereq-
uisite for the uniform handling of different and a pri-
ori unknown data structures. Consider the association
of building performance data to design geometries. The
behavior of these data, as a result of an alteration to the
geometry, can be expressed through a number of opera-
tions chosen to match the expected behavior. When an
application receives the data along with its behavioral
specification, the application can then correctly inter-
pret, manipulate, and represent this information without
unexpected data loss. Furthermore, the part relationship
that underlies the behavioral specification for a sort en-
ables the matching problem to be implemented for this
sort. As composite sorts inherit their behavior and part
relationship from their component sorts, any technical
difficulties in implementing matching apply just once,
for each primitive sort.

3.2 Data functions

Computational design relies on effective information
models, not just for the creation of design artifacts, but
also for querying the characteristics of such artifacts.
With respect to geometry, Mäntylä (1988) remarked
that these (geometric) representations must adequately
answer “arbitrary geometric questions algorithmically.”
Even without the emphasis on geometric aspects,
this remains as important today. However, current
computational design applications tend to focus on rep-
resentations of design artifacts, and on the tools and
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operations for their creation and manipulation. Tech-
niques for querying receive less attention and are often
constrained by the data representation system and meth-
ods. Nevertheless, querying a design is as much an in-
tricate aspect of the design process as is creation and
manipulation.

Querying design information, as distinguished from
visual inspection, generally requires the analysis of ex-
isting information to derive new information that is not
explicitly available in the information structure. A viable
query language has to be based on a model for repre-
senting the different kinds of information that adhere
to a consistent logic, providing access to information in
a uniform and consistent manner, so that new queries
can be easily constructed and posed, based on intent
instead of availability. Sorts offer the flexibility to sup-
port constructing alternative representations, to com-
pare representations with respect to scope and coverage,
as well as support the specification of operational behav-
ior on data in a uniform way, based on a partial order
relationship.

Data recognition, or pattern matching, plays an impor-
tant role in the specification of design queries, as does
counting. Stouffs and Krishnamurti (1996) show how a
query language for querying graphical design informa-
tion can be built from basic operations and geometric
relations which are defined as part of a maximal element
representation for weighted geometries, augmented with
operations derived from techniques of counting and pat-
tern matching. For example, by augmenting networks
of lines that are represented as volume (or plane seg-
ments) with labels as attributes, and by combining these
augmented geometries under the operation of sum, as
defined for the representational model, colliding lines
specifically result in geometries that have more than one
label as attribute. These collisions can easily be counted,
whilst the labels, each associated with a geometry identi-
fying colliding lines, and the geometry itself specifies the
location of the collision.

To consider counting and other functional behavior
as part of the representational approach, sorts consider
data functions as a kind of data, offering functional be-
havior integrated into the data constructs. Data functions
are assigned to apply to one or more selected property
attributes of selected sorts, each of which may, itself, be
a data function. The resulting value of the data func-
tion is then computed from the values of the respective
property attributes of valid compositions of data enti-
ties of these sorts. A composition of data entities is a
valid composition if the data entities are encountered
along the same path of object-attribute relationships,
with some restrictions. Therefore, the target sorts must
be related to the data function’s sorts within the repre-
sentational structure under a sequence of one or more at-

tribute relationships. The resulting value is automatically
recomputed each time the data structure is traversed, for
example, when visualizing the structure. As data kind,
data functions specify a functional description, a result
value, and one or more sorts and their respective prop-
erty attributes.

Data functions can introduce specific behaviors and
functionalities into representational structures, both
for the purposes of counting and for other numerical
operations. Consider, for example, a data structure cor-
responding to a composition of two sorts under the at-
tribute operator where the attribute sort specifies a cost
per unit length to the other sort. By augmenting the data
structure with an inner product function, applied to the
numeric value attribute property of the cost sort and the
length attribute property of the other sort, the value of
this function is then automatically computed as the sum
of all cost values multiplied by the respective lengths of
the other entities.

3.3 Implementation

For ease and brevity, we describe the implementation of
sorts in terms of UML classes (Rumbaugh et al., 2005).
Some basic definitions are, however, needed. A sortal de-
scription includes sorts, individuals and forms; a sort is a
class structure, specifying a single data type or a composi-
tion of other class structures; an individual is a basic sor-
tal element, that is, an instance of a class structure; and, a
form is a collection of individuals of the same sort. These
are the three main abstract classes in our Java implemen-
tation. Figure 2 shows a conceptual UML model of the
abstract Sort class and its five subclasses: PrimitiveSort,
AttributeSort, DisjunctiveSort, Aspect and AspectsSort.
A Sort has a context in which it is defined, a description
and an optional name. A PrimitiveSort specifies a single
data type; its individuals have a data value of the same
type. An AttributeSort is the composition of a simple
sort (its base)—a primitive sort or an aspect—with an-
other sort (its weight) under a conjunction. Its individu-
als comprise an individual of the base sort (the associate
individual), which is assigned a form of the weight sort
as its attribute (the attribute form). A DisjunctiveSort is
a co-ordinate composition of two or more component
sorts—which can be a primitive sort, an attribute sort,
or an aspect. A disjunctive sortal form (or metaform) is
a composition of forms from the respective component
sorts. An AspectsSort is a sort of undirected relationships
between two or more primitive sorts. Each undirected
relationship is represented as two or more directed rela-
tionship Aspects. AttributeSort and DisjunctiveSort can
be recursively defined. The actual implementation model
for the corresponding package of classes is shown in
Figure 3.
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Fig. 2. UML conceptual model of the abstract Sort class and its subclasses.

Each primitive sort is specified by a name, charac-
teristic individual, and behavioral category. A charac-
teristic individual is a subclass of the Individual class
and specifies the representation of its data values and
behavioral methods. Figure 4 shows a UML implemen-
tation model for the Individual class, with some of its sub-
classes. The behavioral category is a subclass of the Form
class and specifies the operational behavior of the sortal
forms; it is assigned in a categorization of the character-
istic individuals. Figure 5 shows a UML implementation
model for the “form” package of classes. The following
behavioral categories have been implemented: discrete,
interval, ordinal, and relational.

4 ASDMCON: SORTAL STRUCTURES
IN BUILDING CONSTRUCTION

4.1 Background

The ASDMCon (Advanced Sensor-based Defect Man-
agement at Construction sites) project involves col-
laboration among researchers from three different
disciplines at Carnegie Mellon University: Architec-
ture, Robotics, and Civil and Environmental Engineer-
ing (Yue et al., 2006). The premise underlying the project
is that defects can be detected as they occur by per-
forming frequent, complete, and accurate assessments
of the actual (as-built) condition of a facility throughout
the construction process. Advanced sensor technologies,

including 3D imagers (i.e., laser scanners) and embed-
ded sensors are central to this assessment process. Laser
scanners provide a capability of accurately modeling the
geometry of a facility, while embedded sensors monitor
nongeometric aspects, such as concrete strength. This in-
formation is combined with a design model, an ontology
for construction specification, and a project schedule to
create an “integrated project model” (IPM), which is dy-
namically updated throughout the construction period
(Figure 6).

Research has shown that a semantically rich inte-
grated project database combining the views of project
participants can support various project management
and facility management during the construction phase
(Cleveland, 1996; Froese et al., 1999; Fischer et al., 1998;
Yu et al., 1998). Accordingly, an important element of
our system is a capability of generating multiple views
to serve the purposes of the different collaborators (and
potential users). From the outset, we have looked at sorts
towards achieving this.

The team conducted four case studies on construction
sites near Pittsburgh, Pennsylvania. These case studies
serve to identify the challenges in applying a specific
design representation to suit the different perspectives
from various objectives during the construction devia-
tion identifying process (Gordon et al., 2003).

Overall, for each case study, the process starts with
information gathering to build an IPM. The as-designed
model has a level of geometric detail, useful for compar-
ison, with features extracted from a current condition
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Fig. 3. UML implementation model of the classes in the “sort” package.
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Fig. 4. UML implementation model of a subset of the classes in the “ind” package.

of construction. For nongeometric features, components
are presented with expected performance attributes that
correspond to gathered data. The sequence for the
reality capturing process, comprises the iterative steps
described below.

IPM initialization is based on architect-supplied
documents, from which a building information model

is developed. This model is a resource for determining
measurement goals. Depending upon the property to be
measured, goals are set for each specific sensing method
for data collection. For example, goals with geometric in-
formation use laser scanning to be able to compare spe-
cific shapes from the as-designed and as-built models.
Other properties, such as inside concrete temperature,
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Fig. 5. UML implementation model of the classes in the “form” package.

are measured by embedded sensing. Even when a prop-
erty has no geometric relevance, distributing sensors in
a building element requires dealing with the as-designed
geometry. Once measurement goals have been deter-

mined, planning for each method of data collection pro-
ceeds. For a given construction schedule, as-designed
model, and measurement goals, an embedded sensing
plan is made by multiple decisions of when, where, what
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Fig. 6. The integrated project model and the cyclical processing pipeline used in the ASDMCon project (adapted from Akinci

et al. (2006)).

properties, how long, and which sensors are needed. For
laser scan planning, a further goal is to optimize scan-
ner use to achieve a given set of measurement goals
within the construction area. These iterations continue
until construction is completed.

Laser scans produce low data format geometry,
namely, point clouds. In the analysis stage, as-built
modeling involves registering scans with one another
and with the design model, segmenting the as-built
data into components and associating each with corre-
sponding components in the as-designed model. This
is done using a nearest neighbor algorithm, working
on the premise that the point cloud counterparts in
the as-designed model are in close proximity. Sup-
pressing point cloud noise due to certain temporary
construction site conditions, for example, temporary
storage of construction material, formwork, tools, etc,
is through user-intervention. Matched point clouds rep-
resent surfaces, each associated with a component in the
as-designed model. See Figure 7. In this way, as-built
models can be created and stored in the IPM. The as-
designed and as-built models can be compared, looking
for discrepancies by overlaying the models within allow-
able tolerances described in the construction specifica-
tions. This visual inspection provides a more detailed
comparison than traditional on-site inspection methods.

From our case studies we have identified changes from
diverse directions—as seen from the perspective of—

the architect or engineer, the construction manager, the
building part fabricator, and the defect detection team.
Some changes are updates to existing building elements;
some others are, notably, new entities added to the build-
ing system, though not described in any current doc-
ument. We can directly bring these new entities and
changes into the building information model.

Fig. 7. The recognition progress for a steel column from a

case study: (left) As-designed model (center) Point cloud,

(right) Recognized column.
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4.2 Modeling “changes” in the integrated
project model

The IPM is a learning repository, containing traces of
building evolution from design to completion of con-
struction, based on incomplete attribute information, in
the form of IFC data (though any data protocol will
work). To capture a current site condition, two new en-
tities were added to the IPM: embedded sensor data,
and as-built geometry from the laser scans. Entities are
connected through their as-designed element identity.
Embedded sensor entities have as substratum, an as-
designed element and a location within that element.
Sensor entities contain other attributes, such as type, us-
age, and time-stamped values. Each as-built geometric
entity maps to an as-designed element. Ideally, this map-
ping is one-to-one, from an as-built surface to a surface
of an as-designed element. Also, a new entity named
“Defect” was added into the IPM. The defect entity
relates as-designed and as-built elements through their
identities. It may also include either or both sensor entity
and as-built geometry.

The IPM was designed to capture both changes in
the as-designed model, and for a given construction
site (as-built). The as-designed model contains compo-
nent geometry as well as attributes data, such as mate-
rial, install-start time, install-end time, etc. Defect and
sensor data are attached to related components in the
as-designed model. Change in the drawings implies an
update of the as-designed model. All attribute and at-
tached data are updated, or copied component by com-
ponent. Data from any new updated version of the
as-designed model is recorded in a different subdirec-
tory from the previous version. Consequently, the IPM
contains history data (changes). An as-built model rep-
resents whatever has been built on the construction site.
It represents the latest recorded progress on the con-
struction site, and thereby, records all changes on the
construction site since the last scan session. In this way,
each new scan session reflects an update of the as-built
model.

4.3 Modeling “different views” in the integrated
project model

For illustration, we provide three different views on
the IPM, namely, that of the construction inspector,
embedded sensor planner, and laser scanning technician.
It is important to note that when the as-designed model
is incorporated into the building construction process,
information reflecting the construction specification,
owner and construction contracts, construction process
model, and so on, accumulate into the IPM.

The construction inspector decides upon measure-
ment goals, to reason about deviations. For this, the
construction specification, design specification, a de-
tailed 3D as-designed geometry and construction pro-
cess model are required. The information is categorized
according to the required properties. For instance, geo-
metrical elements have to be visually recognizable, con-
nectivity to other relevant elements clearly understood,
and relevant information includes nongeometric data
such as material type, construction process data and con-
struction method.

An embedded sensor planner deals with planning
and sensing of embedded sensors to collect data from
a construction element. For this, element geometry,
its location and construction process information are
required. Furthermore, a construction method is speci-
fied to relate material type to a specific time of instal-
lation. The as-designed model does not contain such
information, and additional information is needed in the
IPM.

To optimize scanner use to attain laser scan goals in the
dynamically changing environment, the laser scanning
technician employs a scanner path planner. From the
path planner’s perspective, construction site elements
are either obstacles or goals; the net objective is to pro-
duce the shortest path for collecting data. The elements
include static building entities such as walls, columns,
doors and so on, and temporary site entities such as scaf-
folding, forms, temporary material stacks and so on. De-
pending on the specific range of the laser scanner, goal
location and elevation are crucial. For example, the Z+F
scanner is capable of scanning 360◦ horizontally and 70◦

vertically with a maximum range of 25 m. For the Z+F
scanner, goals are kept to within that region to capture
data of sufficient quality to produce a three-dimensional
as-built model.

Table 1 summarizes the information required for the
different participants (views). The as-designed geometry
is sufficiently rich enough to be able to generate infor-
mation appropriate to the individual needs, for exam-
ple, a full model view for the construction inspector,
and a regional view for laser scanner path planning.
As can be seen in the table, the requirements for the
three different views of the design model represent dif-
ferent ways of serving as domain specific viewpoints.
When a construction inspector decides upon the object
to be inspected, detailed information of the target is pro-
vided to the other two actors. This includes the what,
when, and where data that has to be collected to achieve
an inspection. The other two actors see the same ob-
ject from their own perspective. The embedded sensor
planner needs geometric information, material type, and
construction method of the target object. On the other



Sortal structures 111

Table 1
Information required by different users

View Requirements

Construction inspector • As-designed model

• Design specification

• Construction specification

• Construction process

Embedded sensor • Target and its inspection goals

planner • Construction process information

of the target

• Construction methods of the

target

• Geometric information of the

target element

• Material type of the target

Laser scanning • Target and its inspection goals

technician • Construction process information

of the target

• Geometric information of the

region around the target element

• Geometric information of the

target element

• Location of the target

hand, the laser scan technician needs the target region
geometry, and target object geometry and location. See
Figure 8.

We define the target object geometry by its shape, and
material type as a composite of the material types of
the compound object. We can consider the same target
object view in the two sorts built from the same com-
ponents using the attribute operator, “∧,” by taking the

Fig. 8. Different representational needs on a slab.

components in a different order. For example, consider
the components, slabs and materialtypes, both of which
are sorts of labels, locations, a sort of points, and shapes,
a sort of volumes:

In an embedded sensor view, materialtypes has loca-
tions as an attribute, and is, itself, considered, as an at-
tribute to shapes, which we express as:

slab embeddedSensor targets: slabs ∧ shapes ∧ materi-
altypes ∧ locations

In a laser scan view, shapes is instead considered as an
attribute to locations, which itself is an attribute of slabs.

slab laserScan targets: slabs ∧ locations ∧ shapes ∧ ma-
terialtypes

In this case, the laser scan technician’s view provides
the location of the target slab instead of multiple material
locations for the embedded sensor planner.

4.4 Representing the integrated project model

Figure 9 illustrates the relationship between the various
actors and the IPM.

The IPM is represented in three ways. First, we have
a general view, which is a dynamic graph representa-
tion of the IPM and its component connectivity. Second,
we have a participant-specific sortal view of the model,
wherein sorts can be created, edited and/or modified.
Third, for representational flexibility, new views can be
dynamically generated, from components in the general
view combined with specific functions (for example, vol-
ume calculation, face generation, etc). Figure 10 shows
the current prototype, with the view panels, illustrating,
in this case, the relationships of building element to both
element type and material usage and the sorts editor. The
node and edge conventions used in the different repre-
sentation panels are given in Table 2.

The sortal representation schema development con-
sists of retrieving specific relationships within the build-
ing elements, and their geometric information. One
scenario that we have tested is the restructuring of
building elements. Building elements have specific at-
tributes. Some are physical, for instance, geometry, build-
ing storey containment, etc., and some conceptual, such
as project, space, time, etc. Figure 11, specifically, high-
lights the different dependencies (and thus, the different
classification) of building elements by Material Usage,
Building Story, and Building Element Type, in one of
the case studies.

Table 3 gives the sorts that were created for the case
studies. Figures 12 and 13 illustrate two example com-
posite sorts, shown as screen shots from the prototype
development. As can be seen from Figure 12, the left
side shows the definition of the composite sort: Building
Storey Containment + Building Element + Material,
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Fig. 9. Relationship between the actors and IPM.

Fig. 10. Current prototype (left) view panels (right) sorts editor.

with the Building Element, graphically, as the focus of
attention. The right hand side shows the filtering of the
project database, corresponding to the Building Ele-
ment, highlighting an instance and its related entities.

Figure 13 is interpreted in a similar manner. Through
such means we were able to easily filter the informa-
tion specifically needed for laser scanning and defect
detection.
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Table 2
Node and edge conventions in the prototype

Graphic representation (node)

View panel Color + Shape Example In IFC2×2 In Sorts

General Orange Rectangle Class name

Light Gray Ellipse Data (No outbound edges)

Dark Gray Circle Enumeration (Outbound edges)

Sorts Display/ Green Rectangle Primitive:

Edit Relationship

Green Circle Sum:

Function

Green Rectangle Attribute:

Function

New Rectangle Class Name

Ellipse Line Number (IfcBuildingElement)

Rectangle Line Number (Other than an

IfcBuildingElement)

Rectangle Relationship

Graphic representation (edge) In IFC2×2 In Sorts

A contains B From A to B

From our experiences with the case studies, it is clear
that there is a need to explicitly identify certain tar-
get building elements. To pinpoint these target elements
from the rest of the building model, we embedded a

Fig. 11. Conceptual diagram of building elements dependencies.

string tag, “Target,” as the entity—Tag: IfcIdentifier—
in the IfcBuildingElement class. The text in Figure 14
shows a target tag in an IFC file, and a screen shot of the
target element filtered from the building model.
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Table 3
Example sorts defined for the construction case studies

Primitive sorts

Spatial structure Levels of decomposition in spatial structure for the building project (IfcSite,

IfcBuilding, IfcBuildingStorey, and IfcSpace)

Building Element Building elements in the building project

Building Type Building element type information in the building project

Building Story Containment Storey containment information in the building project

Material Material usage information in the building project

Target Target element information in the building project

Geometry Representation Geometry information in a building element

Sortal operators Name Function
+ Sum Sum of primitive sorts
∧ Attribute An attribute of building element

Composite sorts Examples
Building Storey Containment + Building Element + Material

#133 ∧ Geometric Representation

Fig. 12. Composite sort: (Building Storey Containment + Building Element + Material): (left) Sorts Display/Edit panel; and

(right) New View panel.

Fig. 13. Composite sort: (#133 ∧ Geometric Representation): (left) Sorts Display/Edit panel; and (right) New View panel.
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Fig. 14. Target tagged building elements: (top) in the IFC file; (bottom) filtered in the New View panel.

5 CONCLUSION

We have presented a formal approach to representa-
tional flexibility, sorts, for developing alternative rep-
resentations of an entity, thereby supporting different
viewpoints, essential to any multi-disciplinary, multi-
participatory endeavor such as the building domain.

We have highlighted this in addressing certain building
construction related problems.

In the case studies, we were able to show the value
of sorts for its ability to flexibly modify/alter a represen-
tational structure, through creation, update, and dele-
tion of sortal relationships. There are three aspects of
sorts that we have illustrated through description and
examples.

Firstly, sorts support the specification of operational
behavior of data in a uniform way. This specification is
based on a partial order, which enables: (1) the recogni-
tion of components and structures that are not explicitly
present in any current information (and its representa-
tion); and (2) the restructuring of such information.

Secondly, sorts provide for two composition opera-
tors: (1) an attribute operator that defines a convertibility
relation that assists in indicating compatibility and data
loss, when conjunctive compositions of sorts are com-
pared; and (2) a disjunctive composition operator that
defines a subsumption relation, distinguished from the
conjunctive attribute composition operator that does not
adhere to the subsumption relation, quite distinct from
most first order logic-based representations.

Thirdly, sorts formally provide support for compar-
ing representational structures with respect to scope and

coverage, to determine potential data loss whenever data
is moved from less restrictive to more restrictive repre-
sentations. In doing so, data loss is not necessarily an un-
welcome side effect in exchange of information between
different representations, rather, it can be the result of
a conscious deliberate decision that takes into account
any distinct advantage of the alternative views for the
process under consideration.
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