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previously (Krishnamurti and Stouffs, 2004). Here, we describe algorithms for 
classifying the boundary of a shape with respect to another, coequal, shape and 
for constructing the description of a shape given parts of the boundary that 
make up the shape. Specifically, algorithms for classification and construction 
of shapes in U23 (plane shapes) and in U33 (volume shapes) are described in this 
paper. These procedures form a unified basis for shape arithmetic. 
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1 Basic problems 

In a companion paper (Krishnamurti and Stouffs, 2004), we laid out a unified framework 
for computing the boundary of a shape, for applications where structured descriptions of 
shapes are important, as, for example, in the implementation of shape grammars 
(Krishnamurti and Stouffs, 1993; for an extended motivation we refer to Krishnamurti 
and Stouffs, 2004). The structured descriptions have two parts: carrier, a shape that 
embeds the given shape, and boundary, a shape that specifies the form of the shape.  
The structured descriptions concern shapes as composed of segments: a shape is a 
segment if it has no nonempty proper subshape (i.e., part) the boundary of which is a part 
of the boundary of the segment. A segment is thus a shape with a ‘minimal’ boundary 
with respect to the shape. We showed that the boundary of a shape can be classified with 
respect to another shape by splitting the boundary segments into disjoint classes so that 
each split segment can be identified as inner, outer, shared in the same way or shared 
oppositely with respect to the other shape. Further, for any shape operation, the segments 
that make up the boundary of the resulting shape consist of segments from specific 
subsets of classes as indicated in Table 1. The letters I, O, M, and N respectively denote 
classes of inner, outer, same-shared, and oppositely-shared segments of the specified 
shape with respect to the other. 

Table 1 Classified boundary segments that make up the boundary of the shape resulting from a 
shape operation 

Operation:* X + Y X · Y X – Y X ⊕ Y 

Boundary: boundary [X * Y] OX + OY + M IX + IY + M OX + IY + N IX + IY + OX + OY 

*Any of the four operations ‘+’, ‘·’, ‘–‘ and ‘⊕’. 

The following classes of problems form the basis of these operations: 

• classifying a segment with respect to a coequal shape where a carrier of the segment 
is embedded within the carrier of the shape 

• constructing the representation of a shape – that is, its maximal segments – from the 
given parts of the boundary of the shape obtained from the classification. 

We present classification and construction algorithms for shapes in algebra U3  
(Stiny, 1991), that is, linear shapes in a 3-dimensional Euclidean space. The original 
versions of these algorithms were first presented in Stouffs’ dissertation (Stouffs, 1994), 
and rely implicitly on an isomorphism between U3 and subsets of ℘(E3). As such, for  
our presentation, we operate simultaneously on hyperplanes in E3 and segments in U3  
(as if these objects exist in the same space); for example, the intersection of a line and 
line segment refers, specifically, to the point of intersection of the line with the point set 
in E3 isomorphic to the given line segment. In our development, we freely borrow  
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from conventional geometrical modelling methods; at the same time, we note that, 
although it is possible to find similar algorithms based on more conventional boundary 
representations for solids (see, for example, Hoffman, 1989; Mäntylä, 1988),  
these algorithms generally require additional special procedures to handle specific 
properties – for example, non-manifold shapes – if such properties are present. Moreover, 
the algorithms require adaptation to cater for the kinds of spatial problems that we are 
interested in. For instance, conventional boundary representations do not readily deal 
with arbitrary subshapes of a shape. Alternatively, algorithms may reflect on operations 
that are not closed within one dimensionality and, instead, are defined across 
dimensionalities (Gursoz et al., 1991). In this case, shapes cannot be defined to share 
boundary. 

2 Preliminary 

We rely on the following general representation for a maximal shape as a unique set of 
maximal segments each represented by a carrier-boundary pair. The carrier is identified 
by a tuple, its co-descriptor, which, for a segment x is denoted by co[x]. Typically, this is 
a representation of the equation of the carrier shape. A boundary shape consists of a set of 
simple boundaries {bi} (that is, ‘minimal’ boundary shapes), each a maximal shape; the 
boundary shape is represented as a set, boundary[x] = »bi. For any boundary segment k 
of a shape X, inside[k] represents its neighbourhood relationship with respect to X.  
The decomposition of a maximal shape into its maximal segments is unique. So too is the 
decomposition of a boundary shape into its simple boundaries. 

We impose a total order on shapes according to their constituent segments. In turn, 
we impose a total order on the segments according to their co-descriptors, and for 
coequal segments according to their boundaries. The same total order applies to the 
simple boundaries that define a segment. In the particular case of comparing two 
discontiguous (that is, disjoint and no shared boundary segments) segments x and y, it 
suffices to compare the first segment from boundary[x] and boundary[y]. 

Procedures such as SUM, PRODUCT, DIFFERENCE, CLASSIFY and 
CONSTRUCT are used independent of the algebra of their arguments, even though their 
implementation may differ with each algebra. For example, SUM(X, Y) returns the sum 
of two shapes X and Y, where X, Y and the resulting shape all belong to the same shape 
algebra. 

As a convention, we use capital letters to denote shapes, that is, sets of (maximal) 
segments, and lower case letters for single segments. Thus, a segment x considered as 
shape would be written as {x}. We adopt the following convention: letters s and t denote 
volume segments; f and g plane segments; k and l line segments; and p and q points.  
The co-descriptor for any segment x is a description of the equation of its carrier, and is 
represented in two ways: as a functional by co[x], and as a value by co-x. [It should be 
noted that for any segment there are infinitely many carriers, and we consider the 
maximal carrier that carries all other carriers of the segment for algorithmic purposes.] 
The following vector notation is employed: pq denotes the vector from point p to q; dl 
denotes the direction vector for a line or line segment l; and nf denotes the normal vector 
for a plane or plane segment f. Vectors can be positive or negative depending on whether 
or not v > 0, specified in the usual way. The norm of a vector v, denoted as ||v||, is a 
normalisation of both its magnitude and sign; that is, ||–v|| = ||v||. The capital letters  
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I, O, M and N are reserved to denote classes of inner, outer, same-shared, and  
oppositely-shared segments with a single subscript to denote the shape this class  
pertains to. For example, IX denotes the class of inner segments of shape X, with respect 
to the other shape. The symbols +, – and U respectively denote the set operations join, 
delete and merge (not removing any duplicate elements), the latter operating on sorted 
sets. The operators + and – should not be confused with the shape operations of sum  
and difference which, as algorithms, are represented by the procedures SUM and 
DIFFERENCE. 

Procedures for shape operations: SUM, PRODUCT, DIFFERENCE  
and SYMMETRIC-DIFFERENCE, and shape relations: CONTAIN, OVERLAP,  
SHARE-BOUNDARY and DISCONTIGUOUS, that we describe in Krishnamurti and 
Stouffs (2004), rely on two procedures for their result: CLASSIFY and CONSTRUCT. 
CLASSIFY operates on two coequal shapes and classifies the boundary segments of each 
shape with respect to the other into the four classes. CONSTRUCT takes as input a set of 
(line or plane) segments that defines the boundary of a coequal shape and constructs this 
maximal shape. Classification and construction algorithms for U23 (plane shapes) and U33 
(volume shapes) are described in this paper. The conventions and form of the English like 
pseudo-code for the algorithms are due to Cormen et al. (1990). We use the symbols ‘←’ 
and ‘=’ to represent the assignment operator and equality relation respectively. Moreover, 
unless specifically referenced, data structures are also taken from Cormen et al. (1990). 
Comments within the algorithms are expressed italicised. 

We use other procedures to assist in the development of the algorithms. We list in 
Table 2 basic procedures that are common to the subsequent algorithms. All other 
procedures are defined upon use. 

Table 2 Common basic procedures 

INTERSECTION (co-k, co-l) Returns the point, if any, isomorphic to the point of 
intersection of the lines l and k 

INTERSECTION-2 (l, co-k)  Returns the point, if any, isomorphic to the point of 
intersection of all carriers of the line segment l and line 
k; p must be coincident with l 

LINE-SEGMENT (p, q) Returns a line segment with endpoints p and q 
INTERSECTION-LINE (co-f, co-g) Determines the co-descriptor of the line of intersection 

of the planes f and g 
NORMAL-PLANE (co-l, co-f) Determines the co-descriptor of a plane normal to the 

plane f and through the line l 
PARALLEL (co-x, co-y) Compares two co-descriptors of segments or shapes in 

the same algebra and returns TRUE if they are either 
equal or represent parallel carriers and FALSE 
otherwise 

Procedures SUM, PRODUCT and DIFFERENCE as well as relations CONTAIN, 
OVERLAP, SHARE-BOUNDARY and DISCONTIGUOUS on shapes in U0 (point 
shapes) are trivial. The same procedures on shapes in U1 (comprising line segments) are 
well-known (see Chase, 1989; Krishnamurti, 1980). The arithmetic of plane segments is 
proven in Krishnamurti (1992). An overview of shape arithmetic is given in Krishnamurti 
(1980). We note that SUM, PRODUCT and DIFFERENCE take linear time in the size of 
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their input, for point and line shapes. Here, we restrict our treatment to plane and volume 
shapes. 

Since we are also interested in the computational complexity of the algorithms,  
we employ the standard functional notation, namely: Θ, O and Ω, to refer,  
respectively, to the worst case, asymptotic upper bound and asymptotic lower bounds 
(see Cormen et al., 1990). 

The procedures in Table 3 take O(n log n) time, where n is the number of segments. 

Table 3 Basic procedures on shapes (sets of segments) that take O(n log n) time, where n is 
the number of segments 

MAXIMAL (X) Converts an unsorted set of line segments that may share boundary, but do 
not overlap, X, into the corresponding maximal shape 

SORT (X) Sorts a set of segments, X, in correspondence to the total order defined on 
segments. Note that for any given set of discontiguous segments, the time 
complexity of SORT is dependent only on the size of the set and not on the 
sizes of the boundary shapes 

The procedures in Table 4 all take linear time in the size of their input. 

Table 4 Basic procedures on shapes (sets of segments) that take time linear in the number of 
segments 

REDUCE (X) Removes multiple occurrences of elements in a sorted set X 
REDUCE-DUPLICATES (X) Removes pairs of duplicate elements in a sorted set X 
REMOVE-MULTIPLES (L) Removes multiple occurrences of coincident line segments 

from a line shape 
REMOVE-DUPLICATES (L) Removes pairs of duplicate or coinciding line segments from 

a line shape 

Where needed, we take, as given, that a line segment l is specified by a pair of endpoints, 
tail[l] and head[l], with tail[l] ≤c p ≤c head[l], where ≤c denotes lexicographical ordering 
on their coordinates. Whenever a segment is embedded within the carrier of a shape,  
we say that the segment is coincident with the shape, e.g., a line segment lying  
(or embedded) in a plane segment is coincident with the plane segment. 

The remainder of this paper is divided into two parts. These two parts deal, 
respectively, with plane shapes and volume shapes. Each part describes the classification 
of the boundary of a shape with respect to another and the construction of the maximal 
element representation of a shape given its constituent parts. 

3 Part I: classifying the boundary of a plane shape 

3.1 Classification of line segments 

The first instance of the problem is in classifying a line with respect to a plane shape.  
We consider a coequal plane shape F and an infinite line l coincident with the carrier of 
F. Boundary segments of F have associated shape neighbourhoods that define insides and 
outsides in relationship to F. In this case, the boundary of F defines an inside and outside 
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region in the carrier plane such that any part of l that does not intersect the boundary of F 
can be deemed inner or outer with respect to F. Without considering degenerate cases, 
each point of intersection of l and the boundary of F is an endpoint to two disjoint parts 
(segments) of l, one of which is deemed inner, while the other is deemed outer, with 
respect to F. As such, the set of intersection points of l and the boundary of F defines an 
alternating sequence of inner and outer segments. Since both infinite ends of the line l can 
be considered outer and each intersection point alternates the classification, the total 
number of intersection points of l and the boundary of F must be exactly even. 

Procedure A 

The points of intersection of the boundary of a coequal plane shape F and an infinite line 
l within the carrier of F, when sorted, define an alternating sequence of inner and outer 
segments, starting with an inner segment. 

Figure 1 illustrates the different cases for the intersection of a (horizontal) line l and the 
boundary of a plane shape F, where the line and shape are coplanar. Cases (b)–(e) are 
degenerate in that the point of intersection coincides with the endpoint of (at least) two 
boundary segment. Other degenerate cases are compositions of the cases. In order for the 
cases to be consistent with Procedure A for a set of intersection points on l, cases (a) and 
(b) must constitute a single point of intersection, case (c) zero or two coincident points of 
intersection, case (d) zero or two non-coincident points of intersection, and case (e) again 
a single point of intersection. 

Figure 1 Simple cases of intersection of an infinite line with the boundary of a plane shape. 
Cases (b)–(e) are degenerate 

 

Consider a line l′ parallel to the given line l at an arbitrarily small distance from l, within 
the carrier of F. For any boundary segment of the plane shape F intersected by l in one of 
its endpoints, the segment either intersects l′ in a single point that is not an endpoint or 
does not intersect at all. Furthermore, whether there are zero or one intersection points 
depends solely on which side the boundary segment is with respect to the line l, within 
the carrier of F. Such a line l′ always exists, and none of the degenerate cases for l can be 
a degenerate case for l’. Figure 2 illustrates the resulting cases for l′. 
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Figure 2 All degenerate cases are resolved by translating the line of intersection over  
an arbitrarily small distance perpendicular to its axis 

 

If we consider only those intersection points for l that correspond to the intersection 
points of l′, and remove pairs of coincident points of intersection (lower diagram in case 
(c)), then all cases are consistent with Procedure A. However, the class of inner segments 
determined from these points of intersection using Procedure A, may contain shared 
segments, i.e., those boundary segments of F coequal with l. Then, the segments  
that are deemed inner with respect to the shape F result from taking the difference of this 
class of inner segments with the class of shared segments previously determined. 
Whether a single boundary segment has an intersection point with l does not depend  
on the particular case. As a result, we distinguish four basic cases (i–iv in Figure 3)  
for the intersection of a single boundary segment with a line. Any degenerate case  
is a composition of two or more of these four cases. When comparing the degenerate 
cases ii–iv, we note that an intersection point is retained only if the boundary segment lies 
on one side of the line l and not on the other, nor if it is a part of l. It suffices to check 
only for one point on the segment, for instance, the other endpoint. 

Figure 3 Four cases for the intersection of a line segment with a line. Cases ii–iv are degenerate. 
Only cases i and iii result in an intersection point 

 
 i ii iii iv 

The following inequality constitutes a simple condition to determine whether the point of 
intersection of a line segment k on the boundary of F is to be included: 

DOT-PRODUCT (co[tail[k]], co-g) > 0 or  
DOT-PRODUCT (co[head[k]], co-g) > 0. 
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The plane g is normal to F through l. This condition holds for all cases including 
degenerate ones. For case i, the endpoints of k lie on different sides; for case iv, the  
DOT-PRODUCT is zero for both endpoints; for cases ii and iii, one endpoint has a  
DOT-PRODUCT different from zero, and one of the conditions must be positive while 
the other is negative. 

This discussion is summarised in procedure CLASSIFY-LINE (Figure 4) with input, 
the co-descriptor co-l of a line l and a coequal plane shape F, with the condition that l is 
coincident with the carrier of F. The procedure returns the classes of inner and shared line 
segments, with respect to F, with the given co-descriptor. The influence of Procedure A 
can be seen in the loop defined by steps 11–13. The dot product condition on the 
inclusion of the point of intersection of a line segment k is captured in steps 6–8. 

Figure 4 CLASSIFY-LINE: classifying a line l with respect to a coequal plane shape F with l 
coincident with the carrier of F 

 

Let n denote the number of maximal boundary segments of maximal segments of F; 
n = |boundary[F]|. Then, the sizes of both M and P, and hence I, are O(n). SORT  
takes O(n log n) time; REDUCE-DUPLICATES takes O(n) time; for line shapes, 
DIFFERENCE takes time linear in the input size; MAXIMAL takes O(n log n) time, and 
all other procedures take constant time. The – operator, used to remove the first two 
elements of a set, is achieved in constant time. Thus, the time complexity of procedure 
CLASSIFY-LINE with input size n is O(n log n). The following then holds: 

(1) The inner and shared segments of a line embedded within the carrier of a plane 
shape F, with respect to F, can be determined in O(n log n) time and Θ(n) space 
where n = |boundary[F]|. 

 



      

 

   

 

   

   62 R. Stouffs and R. Krishnamurti    
 

    
 
 

   

 

 

       
 

The following result is immediate: 

(2) The line segments of intersection for a pair of plane shapes F and G,  
each coequal, can be determined in O(n log n) time and Θ(n) space where 
n = |boundary[F]| + |boundary[G]|. 

This can be shown by considering procedure INTERSECTION (Figure 5) with two plane 
shapes F and G, each coequal, as input. The result is the shape of line segments of 
intersection from F and G. If the carrier planes of F and G are either identical or parallel, 
the resulting shape of intersection is empty. Otherwise, we define the (infinite) line of 
intersection and use CLASSIFY-LINE to find the inner and shared segments of this line 
with each shape (steps 2, 3 and 6). The product of the two sets of segments is the  
set of line segments of intersection of both shapes (which is returned in step 9). The line 
of intersection l of two non-parallel planes f and g is easily determined from their  
normal vectors. The time complexity stems from the fact that PARALLEL and 
INTERSECTION-LINE each take constant time, CLASSIFY-LINE takes O(n log n) 
time, and returns a shape of O(n) size. Procedures SUM and PRODUCT each take linear 
time in the size of their input, for shapes of line segments. 

Figure 5 INTERSECTION: lines of intersection of two plane segments or shapes (each coequal) 

 

In a few cases we are interested in finding the intersection of a plane segment  
with a plane (e.g., see CLASSIFY-FACE in Figure 20). Procedure INTERSECTION-2 
(Figure 6) takes as input, a plane segment and the co-descriptor of a plane.  
The complexity is necessarily the same as that of CLASSIFY-LINE. 

Figure 6 INTERSECTION-2: intersection of a plane segment with a plane 

 

Another instance of the classification problem arises when classifying a boundary  
line segment with respect to a coequal plane shape. We consider procedure  
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CLASSIFY-EDGE (Figure 7) with input a line segment l that is a boundary segment to 
some plane shape and a coequal plane shape F. The results of the procedure are the 
classes of inner, outer, same-shared and oppositely-shared segments of l with respect to 
F. We borrow steps from CLASSIFY-LINE with arguments co[l] and F to determine the 
inner and shared line segments with co-descriptor co[l]. Taking the product of these inner 
segments with l yields the class of inner segments of l. The class of same-shared 
segments results from the product of l and the boundary segments k of F for which 
inside[k] equals inside[l]. Similarly, the class of oppositely-shared segments equals the 
product of l and those boundary segments k of F for which inside[k] differs from 
inside[l]. Finally, the class of outer segments of l equals the difference of l with the 
classes of inner and shared segments. 

Figure 7 CLASSIFY-EDGE: classifying a boundary line segment l with respect to a coequal 
plane shape F 

 

The complexity of CLASSIFY-EDGE is easily determined. Let n denote the size of the 
boundary of F. Procedures PRODUCT, DIFFERENCE and MAXIMAL applied to line 
shapes all take time linear in the size of their arguments. Therefore, PRODUCT ({k}, {l}) 
(see steps 6 and 7) takes constant time, while all other instances take O(n) time. It follows 
then that the complexity is identical to the complexity for procedure CLASSIFY-LINE; 
from which, we claim that: 
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(3) Classifying a boundary line segment with respect to a coequal plane shape F with 
the carrier of the line segment coincident with the carrier of F takes O(n log n) time 
and requires Θ(n) space where n = |boundary[F]|. 

A simple generalisation of the above yields an O(n2 log n) algorithm to classify the 
boundary of one shape with respect to another shape. We use a plane-sweep algorithm 
(Bentley and Ottman, 1979) to determine the points of intersection of the boundary line 
segments of shapes F and G and to classify the split segments with respect to the other 
shape. Consider a vertical line sweeping the carrier plane of F and G from left to right.  
At any position, the sweep-line defines a cross section of the shape composed of the line 
segments of F and G. Define the topology of a cross-section to be the ordering of these 
segments intersecting the sweep-line, about this cross-section. This topology remains 
invariant except at a finite number of transition points. These include the endpoints of the 
line segments and the points of intersection of segments from F and G. Two consecutive 
transition points define a slice of the plane. The topology of each slice is encoded in the 
status of the sweep-line, at the time it sweeps this slice. This status is updated at each 
transition point. 

Initially, we consider only endpoints as transition points. For line segment l with 
endpoints tail[l] and head[l], we say that l leaves from tail[l] and arrives at head[l]. Then, 
two line segments intersect at a point p only if the two segments are either consecutive, 
within the slice that immediately precedes transition point p, or separated by one or more 
segments arriving at p. In the former case, an inspection of the sweep-line status at the 
preceding transition point, after the update, reveals both line segments to be consecutive. 
In the latter case, p constitutes an initial transition point. At each transition point, the 
status of the sweep-line is updated by removing the line segments arriving at p and, 
subsequently, inserting the line segments leaving from p, in the correct order. The only 
segments affected by this update, with respect to possible forthcoming intersection 
points, are the two segments immediately above and below p, not containing p. 

Nievergelt and Preparata (1982) distinguish four basic types of transition points: start, 
end, bend and intersection. Figure 8 illustrates, for each basic type, the pairs of line 
segments that need to be examined for forthcoming intersection points. These consist of 
the two segments immediately above and below p, not containing p, together with their 
immediate predecessor (below) and successor (above), respectively. As a result, at most 
two new transition points may be revealed at each transition point. 

Figure 8 Pairs of line segments to be examined for forthcoming intersection points, for each  
of the four basic types of transition points 

 

A plane-sweep algorithm operates on two basic structures: the task schedule, which 
contains the sorted list of transition points known thus far, and the sweep-line status.  
Let H denote the structure representing the task schedule. Transition points are removed 
as these are processed, in order, and, upon determination, the intersection points are 
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inserted. Thus, the structure H requires the functionality of extracting the minimum 
element from H, inserting an element into H, and checking membership in H. Such a 
structure may be considered as a priority queue (Cormen et al., 1990). Let D denote the 
structure representing the sweep-line status. At each transition point p, the line  
segments arriving at p are removed from, and the line segments leaving from p are 
inserted into D. Line segments intersecting at p are split and, subsequently, replaced by 
their right sub-segments, in reverse order. Then, the left sub-segments as well as any 
removed segments are classified into the classes of inner, outer, same-shared and 
oppositely-shared segments with respect to either shape. Thus, the structure D is a 
dynamic set that requires the operations of insert, delete, search and reverse to be 
supported. 

The line segments that define the status of the sweep-line, partition this line into inner 
and outer segments, by Procedure A. Similarly, by the same procedure, regions of the 
plane defined by these line segments, in the proximity of the sweep-line, can be classified 
into inside and outside regions, with respect to either shape. Then, a split line segment is 
deemed inner if it lies in a region classified as inside with respect to the shape that does 
not contain this segment, and outer if it lies in an outside region. Two coincident 
segments, belonging to different shapes, are deemed same-shared if either region, 
neighbouring the coincident segments, is classified equal with respect to both shapes, and 
are deemed oppositely-shared otherwise. 

The preceding discussion is summarised in procedure CLASSIFY (Figure 9) with 
input two coequal plane shapes F and G. The results of the procedure are the classes of 
inner and outer segments of each shape’s boundary with respect to the other shape and 
the classes of same-shared and oppositely-shared boundary segments of both shapes. 

Figure 9 CLASSIFY: classifying two coequal plane shapes (or segments) 
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Figure 9 CLASSIFY: classifying two coequal plane shapes (or segments) (continued) 

 

Procedure NEIGHBOURING-SEGMENTS (see Figure 9) determines the segments 
immediately above and below the current transition point, not containing this point.  
It invokes procedure COMPARE-POINT-WRT-LINE, which compares the location  
of a point p with respect to a line (segment) l. In particular, it returns the direction.  
This results in 0 if p lies on l, a positive value if p lies ‘above’ l, and a negative value 
otherwise (Figure 10). 
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Figure 10 Comparison of the location of a point p with respect to a line segment l by checking the 
sign of the cross-product dl × qp 

 

If we associate each region, as defined by two consecutive line segments in the status of 
the sweep-line, with the lower of these two bounding segments, then, we can augment  
the status of the sweep-line with the classifications of each region (whether it is inside or 
outside with respect to either shape). tag[l, F] denotes the classification of the region 
associated with l, with respect to F, which, during a split, is alternatively TOGGLE’d 
from INSIDE to OUTSIDE and vice versa (see CLASSIFY, steps 22 and 23). 
CLASSIFY-SEGMENT utilises this information to classify each split segment with 
respect to the other shape. 

The operations, on the structure H, of extracting the minimum element  
(EXTRACT-MIN), inserting an element (INSERT), and checking membership are 
bounded by O(log |H|) time, where |H| denotes the size of H, when H is implemented as a 
heap or balanced tree. Procedures INSERT, DELETE and SEARCH, on the structure D, 
take time bound O(log |D|), when D is implemented as a balanced tree or a splay tree 
(Sleator and Tarjan, 1985). By augmenting the tree structure to include predecessor 
(pred[]) and successor (succ[]) links, the procedure REVERSE takes time linear in the 
number of segments to be reversed. 

Each boundary segment of F and G is inserted into and removed from D exactly once. 
Let n denote the total number of boundary segments of both F and G. At each transition 
point, D contains at most n + 2 segments. Thus, insertion and deletion of the n segments 
take O(n log n) time. Let m denote the number of intersection points between segments of 
F and segments of G (m = O(n2)). Then, updating the sweep-line status at the m 
intersection points takes time linear in m. Initialising the task schedule H is performed in 
O(n log n) time. The total number of transition points is at most m + n and therefore, 
processing the task schedule takes O((m + n) log (m + n)) time. CLASSIFY-SEGMENT 
takes constant time. Thus, the entire plane-sweep, given m and n as defined above, takes 
O((m + n) log n) time with m = O(n2). 

This gives the main result of this section: 

(4) The boundaries of two coequal plane shapes F and G can be classified with respect 
to each other in O((m + n) log n) time and Θ(m + n) space where 
n = |boundary[F]| + |boundary[G]|, and m = O(n2) is the number of intersection 
points between the boundary segments of F and G. 

Remark: The resulting shapes IF, IG, OF, OG, M and N that correspond respectively  
to the classes of inner and outer (with respect to either shape), same-shared and 
oppositely-shared segments are not necessarily maximal. On the other hand, applying 
procedure MAXIMAL to each of these line shapes will not affect the asymptotic running 
time. 
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On practical considerations for classifying boundary shapes 

It is important to note that the algorithms can be improved to run faster in practice 
without affecting their asymptotic time bounds. For instance, through preprocessing, line 
(and plane) segments can be arranged as interval trees (de Berg et al., 1997) to eliminate 
from consideration those pairs of segments that definitely will not intersect. More 
specifically, CLASSIFY-EDGE can be improved by storing, in P, just those intersection 
points that lie between tail[l] and head[l] while keeping a tally of the intersection points 
to the left of tail[l]. This count determines whether or not the first segment starting at 
tail[l] is inner or outer with respect to F. We can still use Procedure A to classify all 
subsequent segments. However, this tactic will not alter the complexity of the algorithm. 
Such improvements and other considerations such as effective storage management, 
while essential for practical implementations, neither add to the understanding of the 
algorithms nor alter their complexity. 

3.2 Constructing the boundary of a plane shape 

Once the given plane shapes have been classified, the shape resulting from a shape 
operation has to be constructed from its defining segments. In the procedures below we 
assume that we are always given a set of line segments that forms the boundary of a plane 
shape. 

Construction of plane segments 

The first instance of the problem occurs when extracting simple boundaries from a  
set of non-intersecting boundary line segments. We assume that the given set of  
line segments forms the boundary of a plane shape. We assume that the given line 
segments neither intersect (except at endpoints), nor overlap, although they may be 
coincident (i.e., identical). The result is a division of the given segments into subsets of 
line segments each of which defines a simple boundary as a maximal line shape. 

However, there may not be a unique solution to the partitioning of a set of line 
segments into (non-intersecting) simple boundaries. Figure 11 illustrates an example of a 
plane shape that allows for two distinct interpretations of its boundary: 

• made up of four outer boundaries 

• made up of an outer and inner boundary. 

Figure 11 Two possible interpretations for the boundary of a plane segment: either (a) four outer 
boundaries or (b) one outer and one inner boundary. For a maximal segment 
representation of shapes we adopt interpretation (a) 
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For maximal segments, we employ the former interpretation. We note that two polygons 
are allowed to share more than one endpoint only when they both represent boundaries of 
the same type, either inner or outer. 

We describe procedure EXTRACT-POLYGONS (Figure 12) that satisfies the 
requirement on the input line segments as well as the interpretation of Figure 11(a). 
However, line segments may be coincident, that is, cases such as those shown in  
Figure 13 are possible. The need to handle these cases derives from procedure SPLIT 
which applies to plane segments (see Figure 30). In Figure 13(a), the result of procedure 
EXTRACT-POLYGONS is a set of two simple boundaries that overlap. In Figure 13(b), 
each pair of coinciding segments results in a trivial boundary cycle that is removed 
accordingly (see step 23 of procedure CYCLES in Figure 12). The following outline 
formalises this distinction. It assumes that all simple boundaries are traversed in a 
counterclockwise manner. 

Figure 12 EXTRACT-POLYGONS: extracting the simple boundaries for a plane shape using a 
depth-first search 
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Figure 13 The role of coinciding line segments in the determination of simple boundaries: (a) the 
double concatenation of coinciding line segments defines the overlap of two boundaries 
and (b) redundant boundary segments in a single boundary 

 

Procedure B 

1 Starting from the bottom left-most endpoint, proceed along the line segment closest 
to the bottom in a counterclockwise order about that endpoint. 

2 At each endpoint on the path, proceed along the line segment that is closest to the 
last segment in a clockwise order about the endpoint. 

It is important to note that the notion of clockwise and counterclockwise angle is 
independent of any particular line segment under consideration. For three points p, q and 
r, the angle ∠qpr is said to be counterclockwise if pq × pr ≥ 0, and clockwise, otherwise. 
Thus, for any set of coplanar line segments, the vector product of the direction vectors of 
any two line segments is a vector with a fixed direction (apart from the sign). 

Consider three line segments a, b and c, no two overlapping, with a common endpoint 
p. Let the order of the line segments about p be represented as a triple, such that (a, b, c) 
be a clockwise ordering and (a, c, b) counterclockwise. All other permutations of 
{a, b, c} are cyclic permutations of these two. Thus, we need only consider cycles 
(a, b, c) and (a, c, b). Either defines three angles about p (the sum of which add up to 
360°) and only one can be greater or equal to 180°. Figure 14 illustrates clockwise and 
counterclockwise configurations in the cases when all angles are less than 180° or when a 
single angle is greater or equal to 180°. Table 5 formalises these results. We conclude 
that three line segments a, b and c are configured clockwise about a common endpoint if 
at least two of the angles ∠ab, ∠bc and ∠ca are clockwise (cases i–iv), and otherwise, 
are configured counterclockwise (cases v–viii). 
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Figure 14 Clockwise (cases i–iv) and counterclockwise (cases v–viii) configurations of three line 
segments a, b and c about a common endpoint. Cases i and v indicate the situations 
when all angles are less than 180°. Cases ii–iv and vi–viii indicate the situations when a 
single angle is greater or equal to 180° 

 

Table 5 Combinations of clockwise −  and counterclockwise +  angles for ∠ab, ∠bc and 
∠ca grouped with respect to the overall ordering (a, b, c) or (a, c, b) 

 ∠ab ∠bc ∠ca 
(a, b, c)    

i −  −  −  
ii −  −  +  
iii −  +  −  
iv +  −  −  
(a, c, b)    

v +  +  +  
vi −  +  +  
vii +  −  +  
viii +  +  −  

Let li, i ≥ 1, denote all line segments that have p as an endpoint. For each segment li, let qi 
denote the other endpoint (qi ≠ p). Consider step 2 in Procedure B. If the last segment is 
lk, then the continuation segment is lj (j ≠ k) if and only if (lk, lj, li) defines a clockwise 
ordering for all i ≠ j, i ≠ k. 

The bottom left-most endpoint is the greatest lower bound of the set of all endpoints 
under lexicographical ordering, ≤c. Let p denote the bottom left-most endpoint. Let f 
denote the carrier plane of all line segments. Consider the line of intersection of f and a 
plane parallel to YZ through a point p. If f is parallel to YZ, then consider the line of 
intersection of f and a plane parallel to XZ through p. This line of intersection defines the 
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bottom direction b (see Figure 15(a)). b denotes the direction vector of this line. 
Irrespective of its sign, for any line segment li with endpoint p, one of the angles ∠bli and 
∠lib is counterclockwise and the other clockwise. Therefore, the starting segment is lj if 
and only if (b, lj, li) defines a counterclockwise ordering, i.e., ∠ljli is counterclockwise, 
for all i ≠ j. 

Figure 15 Two examples illustrating the (a) start and (b) continuation steps in procedure B  
to extract the simple polygons from a set of boundary segments 

 

The greedy approach outlined above yields the smallest enclosed surface for the given 
starting segment. Figure 15 illustrates both steps in the algorithm. Let G denote the graph 
derived from the set of line segments by associating a vertex with each (unique) endpoint 
and an undirected edge with each line segment. Then, the simple boundaries correspond 
to simple cycles in the planar graph G, which are extracted using a depth-first search on 
the graph. Starting from the bottom left-most vertex and proceeding as described above, a 
cycle or boundary is found when a vertex or point is reached that has been visited earlier 
in the traversal. If this vertex is the starting vertex, the traversal is concluded; other cycles 
may then be found by traversing the remaining graph, from a (possibly) new vertex. 
Otherwise, the search is continued to find other cycles, until the starting vertex is 
reached. If more than one cycle is determined within a single traversal, all but the last one 
necessarily represent inner boundaries for the shape defined by the boundaries from this 
traversal (see Figure 16). However, since all are treated as outer boundaries, the insides 
of the inner boundaries’ line segments are inversed accordingly. For each line segment l 
added to the cycle, its inside is indicated by nf × dl provided l has retained the direction 
given in the counterclockwise traversal (see steps 17–19 of procedure CYCLES,  
Figure 12). Let V[G] denote the vertex set and E[G], the edge set. Each undirected edge is 
represented as two directed edge-halves, in opposite directions; each directed edge-half 
(u, v) is defined as an entry in the adjacency list, denoted Adj[u], of the vertex u. 

Figure 16 An exemplar result of the procedure CYCLES, consisting of four simple cycles of 
which all but one represent an inner boundary for the defined shape. Shown in detailed 
is part of the traversal 
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The complexity of EXTRACT-POLYGONS is easily determined. Let n denote the 
number of line segments. Procedure STARTING-EDGE takes time linear in the size of 
the adjacency list. Determining the continuation edge with respect to the current edge 
(procedure CONTINUATION-EDGE) is achieved in constant time, so too is the deletion 
of an edge from E[G] (i.e., from an adjacency list). All other steps in procedure CYCLES 
take constant time. Each time a vertex is pushed on the stack P, an edge is traversed  
and both directed edge-halves are consequently removed from the graph. Each  
vertex popped from the stack results in a single line segment inserted into the cycle L. 
Extracting a single cycle c takes O(|c|) time, and summed over all cycles or simple 
boundaries, the total time taken is O(n). Since |V[G]| ≤ |E[G]|, initialisation of the  
graph (ADJACENCY-GRAPH) requires Θ(n log n) time; procedure MAXIMAL takes 
O(n log n) time in total. Therefore: 

(5) For a set L of non-intersecting (except at their endpoints) line segments that specifies 
the boundary of a plane segment or plane shape F, constructing the simple 
boundaries that specify the plane segments of F takes Θ(n log n) time and requires 
Θ(n) space where n = |L|. 

The next step is to distinguish the outer and inner boundaries from a set of  
simple boundaries and thereby, construct the corresponding plane segments.  
EXTRACT-POLYGONS gives the simple boundaries. CLASSIFY-POLYGONS, 
implemented using a plane-sweep, performs the classification of these boundaries.  
Thus, we have the two-step procedure for CONSTRUCT giving a maximal plane 
segment representation of a plane shape. The algorithm is shown in Figure 17. L is a set 
of line segments, in which neither the lines intersect (except at their endpoints) nor 
overlap, though may be coincident, that forms the boundary of a plane shape. 
CLASSIFY-POLYGONS takes O(n log n) time where n denotes the number of line 
segments in the subsets of L. Hence: 

(6) For a set L of non-intersecting (except at their endpoints) line segments that defines 
the boundary of a plane segment or plane shape F, constructing the plane segments 
that make up F takes Θ(n log n) time and requires Θ(n) space where n = |L|. 

Figure 17 CONSTRUCT: construct maximal plane segment representation from its set  
of boundary line segments 

 

EXTRACT-POLYGONS can be modified so as to classify cycles as they are returned by 
procedure CYCLES. Consider the set of all simple boundaries extracted from the set L of 
line segments and the shape defined by this set of boundaries. Because of the choice of 
the starting segment, the first cycle returned represents an outer boundary for the defined 
shape and all other cycles returned from the same traversal represent inner boundaries. 
Consider the remaining set of simple boundaries and the shape defined by this set. Again, 
because of the choice of the starting segment, the first cycle returned represents an ‘outer’ 
boundary for the defined shape and all other cycles returned from the same traversal 
represent ‘inner’ boundaries. Moreover, this ‘outer’ boundary is either an outer boundary 
for the overall shape, in which case nothing changes, or an inner boundary, in which case 
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the ‘inner’ boundaries become outer boundaries for the overall shape. Thus, each set of 
cycles returned by procedure CYCLES can be classified at that moment, independently 
of any cycles subsequently found (see arguments leading up to (12) on a similar approach 
to the classification of simple boundaries in U2). In the worst case, each traversal 
determines only a single cycle that has to be classified with respect to all of the cycles 
previously found. In such a case, the plane-sweep yields the best overall result. 

We can use the previous result when determining the maximal shape given a set of 
plane segments that may share boundary (but neither overlap nor one contains another). 
Procedure CLASSIFY (see Figure 9) when applied to (sets of) plane segments, takes as 
arguments two coequal (maximal) plane shapes. We know that the boundary segments of 
a maximal shape do not overlap (nor one contains another) nor intersect. As such, at any 
transition point (in the plane-sweep) at most two line segments intersect, one from each 
shape. However, no such assumption is included in the algorithm to procedure 
CLASSIFY. For example, when examining the segments immediately above and below 
the transition point for forthcoming intersection points, no distinction is made as to 
whether both segments that may intersect belong to different shapes or not (see steps  
26 and 28 of CLASSIFY). Also, no restriction is made on the number of line segments 
that are split at each transition point (steps 8–15), nor the number of segments reversed 
(step 16). Therefore, if either shape contains intersecting boundary segments, their points 
of intersection are found and inserted into the list of transition points and, subsequently, 
the respective segments split. Procedure SPLIT is a variation on procedure CLASSIFY:  
it takes as its argument a single set of line segments and converts this into a set of  
non-intersecting segments, at the same time, extracting overlapping segments (as they are 
classified either same-shared or opposite-shared). Note that it is possible to combine the 
functionality of procedures SPLIT and CONSTRUCT into a single plane-sweep. 

This is summarised in procedure MAXIMAL (Figure 18) with input a set F of 
possibly overlapping plane segments; the result is the plane shape as a set of maximal 
plane segments upon removing pairs of coincident segments. We assume the set F is 
sorted such that all coequal segments are consecutive and all classes are in the correct 
order. 

Figure 18 MAXIMAL: converts a (sorted) set of plane segments into its maximal segment 
representation 

 

Let n denote the number of line segments in L. Let m denote the number of intersection 
points between segments of L (m = O(n2)). Procedure SPLIT has the same computational 
complexity as procedure CLASSIFY when applied to plane shapes, i.e., O((m + n) log n). 
The same time bound also holds for the procedure CONSTRUCT. Whence: 
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(7) Converting a (sorted) set F of plane segments into its maximal segment 
representation takes Θ((m + n) log n) time and requires Θ(m + n) space, where 
n = |boundary[F]| and m is the number of points of intersection of the boundary line 
segments of the plane segments of F. 

4 Part II: Classifying the boundary of a volume shape 

4.1 Classification of plane segments 

Unlike line segments, the boundary of a plane segment does not have a fixed size. 
However, given a volume shape S, the total number of boundary line segments of 
boundary plane segments of S is related to the number of boundary plane segments of S. 
For a manifold solid, by the Euler-Poincaré equation: v – e + f = 2(s – g), where v, e, f, s 
and g are respectively the number of vertices, edges, faces, shells and genus (handles), we 
have f < e. Thus, f = Θ(e). We represent volume segments and shapes as manifolds; 
therefore, n = Θ(e), m = Θ(f) and, thus, m = Θ(n). In other words, for a volume shape S, 
|boundary[S]| = Θ(|boundary[boundary[S]|). 

We consider (finite) plane segments only. 
In order to classify a plane segment against a volume shape, we need to consider  

the line segments of intersection of a plane with the boundary segments of the shape. 
Figure 19 illustrates the four possible cases of a plane segment intersecting a plane. It is a 
simple exercise in vector arithmetic to determine whether the inside of a plane segment 
with respect to a boundary line segment lies on one or the other side of a plane through 
this line segment. 

Figure 19 Four cases for the intersection of a plane segment with a plane. Cases ii–iv are 
degenerate. Only cases i and iii result in a line segment of intersection 

 
 (i) (ii) (iii) (iv) 

We consider procedure CLASSIFY-FACE (Figure 20) with input, a plane segment  
f that is a boundary segment of some volume shape and a (necessarily coequal) volume 
shape S. The results of the procedure are the classes of inner, outer, same-shared and 
oppositely-shared segments of f with respect to S. 
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Figure 20 CLASSIFY-FACE: classifying a plane segment against a volume shape 

 

Let n denote the number of boundary line segments of boundary plane segments of S.  
Let k denote the size of the boundary of f. The procedure employs an auxiliary set of line 
segments L constructed in steps 7–11. 

First, consider the construction of the inner segments I. For a given boundary segment 
g of S, let ng denote the size of the boundary of g. Procedure INTERSECTION-2  
(Figure 6), intersecting g with respect to all carriers of f, then takes O(ng log ng) time, for 
each boundary segment g, and the resulting sets L’ and K have O(ng) size. Note that the 
line segments in K have received their inside[] information from g through procedure 
CLASSIFY-LINE, called from within INTERSECTION-2. Summed over all boundary 
segments g of S, steps 7–11 take O(n log n) time and result in a set L of O(n) size. Sorting 
the set L, removing duplicate line segments and constructing the set of plane segments I, 
steps 12–14, all take O(n log n) time. The resulting set I still has O(n) size. 

Next, consider the sets of shared segments, M and N. The product of f and g involves 
at most kng points of intersection and, therefore, takes O(kng) time. The resulting sets M 
and N have O(kn) size and take O(kn) time to be assembled. By (7), procedure 
MAXIMAL (see Figure 18) applied to sets of plane segments takes O(kn log (kn)) time 
for input size O(kn). Steps 16 and 18 compute the difference of f with the classes of 
same-shared and oppositely-shared plane segments. Since M ≤ f, N ≤ f and M · N = 0, 
these steps can be replaced by the following (partial) algorithm. 

L ← boundary[M] U boundary[N] 
REMOVE-DUPLICATES (L) 
L ← L U boundary[f] 
REMOVE-DUPLICATES (L) 
R ← CONSTRUCT (L) 
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Since boundary[f] has size k and both boundary[M] and boundary[N] have O(kn) size, the 
preceding algorithm takes O(kn log (kn)) time. 

Steps 19 and 20 compute the classes of inner and outer segments, respectively, 
resulting from the product and difference of R and I. Using the characteristics of the 
classification approach, these steps can be replaced by the following (partial) algorithm. 

(IR, II, M, N, OR, OI) ← CLASSIFY (R, I) 
L ← IR U II U M 
I ← CONSTRUCT (L) 
L ← OR U II U M 
O ← CONSTRUCT (L) 

The computational complexity of CLASSIFY-FACE applied to plane shapes is 
dominated by the number of intersection points between boundary segments from both 
shapes. In this specific case, these intersections can only occur between boundary 
segments of f and segments of I or at the vertices of S. Thus, the number of intersection 
points is at most O(kn) and the algorithm takes O(kn log (kn)) time. 

(8) A boundary plane segment f can be classified with respect to a volume shape S into 
classes of inner, outer, same-shared and oppositely-shared segments in 
O(kn log (kn)) time and O(kn) space where n = |boundary[S]| and k = |boundary[f]|. 

We next consider procedure CLASSIFY (Figure 21) with input two coequal volume 
shapes S and T. 

Figure 21 CLASSIFY: classifying two coequal volume shapes 

 

This procedure relies on CLASSIFY-FACE (see Figure 20). Each plane segment of S, 
quite simply, is classified with respect to T (steps 2–11) and vice versa (steps 12–17).  
The results of CLASSIFY are the classes of inner and outer segments of each  
shape’s boundary with respect to the other shape and the classes of same-shared and 
oppositely-shared boundary segments of both shapes. 
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For volume shape X, let nX = |boundary[boundary[X]]|. For a boundary segment f of 
S, let nf denote the size of the boundary of f. Then, CLASSIFY-FACE (f, T) takes 
O(nf nT log (nf nT)) time; summed over all boundary segments f of S this becomes 
O(nS nT log (nS nT)), and similarly for the boundary plane segments of T with respect to S. 
Since the sizes of all IS, IT, M, N, OS and OT are O(nS nT), all sorting takes 
O(nS nT log (nS nT)) time. 

(9) The boundaries of two coequal volume shapes S and T can be classified with  
respect to each other in O(n log n) time and O(n) space where 
n = |boundary[S]| × |boundary[T]|. 

We can improve upon this result by partitioning the boundary segments into coequal 
classes. Let n denote the size of the boundary of a volume shape S. Let k denote  
the number of classes upon partitioning the boundary of S into coequal classes.  
Even though k = O(n), it does not hold that k = Θ(n). Figure 22 illustrates a volume shape 
where k = Ω(3√n), due to Karasick (1988). The following procedure demonstrates  
the improvement through using this distinction. Additionally, it incorporates multiple 
applications of the INTERSECTION-2 procedure into a single plane-sweep algorithm. 

Figure 22 A volume shape consisting of 43/2 = 32 segments (cubes), 43 × 3 = 192 boundary plane 
segments, but only 3 × (4 + 1) = 15 coequal classes of boundary segments 

 
Source: Karasick (1988) 

We consider procedure CLASSIFY (Figure 23) with input two coequal volume shapes  
S and T. The results of the procedure are the classes of inner and outer segments of each 
shape’s boundary with respect to the other shape and the classes of same-shared and 
oppositely-shared boundary segments of both shapes. 

Procedure PARTITION partitions the set of boundary segments into a set of coequal 
classes. Each class can be parted further into two sub-classes, denoted in[F] and out[F], 
where in[F] contains all boundary segments s with inside[s] equal to +1, and out[F] 
contains all other segments (with inside[] equal to –1). Then, the class of same-shared 
boundary plane segments of S and T equals the sum of the products of in[F] and in[G], 
and out[F] and out[G], for all coequal classes F and G in S and T, respectively (step 19). 
Similarly, the class of oppositely-shared boundary plane segments equals the sum of the 
products of in[F] and out[G], and out[F] and in[G] (step 20). 
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Figure 23 CLASSIFY: classifying two coequal volume shapes (improved) 
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Each line of intersection between two classes of boundary segments, one from S  
and one from T (step 8), is classified with respect to either class to yield inner and  
shared segments (step 15). Procedure CLASSIFY-LINES is functionally similar to 
CLASSIFY-LINE (see proof of (1)), except that it classifies multiple lines with respect  
to a single coequal shape. However its asymptotic running time can be improved upon by 
using a plane-sweep approach similar to the procedure CLASSIFY applied to sets of line 
segments (see proof of (4)), when classifying all lines in a single sweep. 

Given a class F from S and the corresponding set of inner and shared segments for all 
intersecting classes from the shape T, this set, upon removing the shared segments on one 
side of the carrier of F (see discussion leading to (8)), defines the boundary of the planar 
section of T by this carrier. Then, the product of F with the shape corresponding to this 
section determines the class of inner segments, including some shared segments.  
Let I denote the shape corresponding to this section (steps 38 and 48). Consider the shape 
R that is the difference of the class F and the shared segments of F (with respect to 
classes of T). The product of R and I determines the inner segments of F with respect to T 
(steps 41 and 51); the difference of R and I determines the outer segments of F with 
respect to T (steps 42 and 52). Same-shared and oppositely-shared segments are gathered 
from the classes of S or T (steps 43 and 44). Thus, all classes of inner, outer, same-shared 
and oppositely-shared segments can be found by simple arithmetic on plane shapes. 

Let n denote the sum of the sizes of the boundaries of (the boundaries of) S and T. 
Partitioning both sets of boundary segments into coequal classes takes O(n log n) time. 
Let k denote the total number of classes. Determining the lines of intersection between 
classes of S and T takes Θ(k2) time; classifying these lines of intersection with respect to 
each of its defining classes takes O(kn log n) time in total (steps 6–15). The resulting sets 
of line segments total Θ(kn) size. Determining the same-shared and oppositely-shared 
line segments takes time linear in n (steps 18–20). Procedure EXTRACT extracts the line 
segments with a given co-descriptor from a set of line segments that results from a call to 
procedure CLASSIFY-LINES. This can be done in O(log k) time if this set is subdivided 
into sets of coequal segments and these subsets are stored in a tree with depth log(k). 
Then, collecting the line segments of intersection for each class takes O(k2 log k + kn) 
time in total (steps 16–34). Finally, constructing the classes of inner and outer segments 
for either shape, and collecting the classes of same-shared and oppositely-shared 
segments takes O(kn log n) time. The number of intersection points, m, is on the same 
order as the number of line segments of intersection. The sizes of the resulting classes is 
on the order of the number of boundary segments n and the number of line segments of 
intersection m, i.e., O(m + n) with m = O(kn) = O(n2). This establishes the main result of 
this section: 

(10) The boundaries of two coequal volume shapes S and T can be classified with respect 
to each other in O(kn log n) time and Θ(kn) space, where k = |classes[boundary[S]]| 
+ |classes[boundary[T]]|, and n = |boundary[S]| + |boundary[T]|. 

Remark: Note that, unlike in procedure CLASSIFY (Figure 9) applied to line segments 
(see proof of (4)), for plane segments, the resulting shapes IF, IG, OF, OG, M and N 
corresponding to classes of inner and outer (with respect to both shapes), same-shared 
and oppositely-shared segments are necessarily maximal. 
 
 



      

 

   

 

   

    Algorithms for classifying and constructing the boundary of a shape 81    
 

    
 
 

   

 

 

       
 

4.2 Constructing the boundary of a volume shape 

Construction of volume segments 

When applied to the construction of volume segments, boundary traversal becomes a tree 
traversal. Suppose we are given a set, say F, of plane segments that forms the boundary 
of a volume shape. We assume the plane segments in F neither overlap nor intersect, 
except at their boundary line segments. Furthermore, we assume the boundary line 
segments neither intersect nor overlap, but they may be coincident, that is, be identical. 
(This assumption ensures that each boundary line segment can be considered as a single 
entity, either as a part of the boundary of a segment, or disjoint from that boundary).  
We can divide F into subsets of plane segments, each of which defines a simple boundary 
as a maximal shape. We define the horizon in a boundary traversal to be the set of 
boundary line segments that have been reached but not yet completed. The following is 
an outline of the algorithm to create polyhedral shells of plane segments. 

Procedure C 

1 Starting from a left-most boundary line segment, proceed along the plane segment 
that is closest to the bottom direction. 

2 Insert the boundary line segments of the current plane segment into the horizon, 
remove any duplicate line segments (in the horizon). 

3 Take any line segment in the horizon, proceed along the plane segment that makes 
the smallest inside angle with the shell, about the line segment. 

4 Proceed from 2. 

Note that for three non-overlapping plane segments f, g and h that share a boundary line 
segment l, their ordering is identical to the configuration of the vectors vf, vg and vh about 
a point p on l. See Figure 24. The angle ∠fg is equal to the angle defined by vf and vg 
about p, which is counterclockwise if vf × vg ≥ 0. 

Consider the set S of all boundary line segments that have the bottom left-most 
endpoint p as an endpoint. A left-most line segment l is a segment in S that makes  
the smallest angle with a plane a parallel to the YZ plane through p. The angle of a line 
segment l with a equals the angle between l and the normal projection of l on a  
(see Figure 25(a)). (Since the sine of the angle is proportional to the length of the vector 
product it suffices to calculate the length |dl × t| for each line segment l in order to find 
the segment with the smallest angle). The bottom direction is defined by a plane  
b through l and a line perpendicular to l within a. Then, vb is given by 
|| nb × dl|| = ||na × t||, where t denotes the normal projection of l. The selection of the 
starting segment proceeds in a similar way as for the boundary traversal of plane 
segments (see proof of (5)), that is, the selected segment makes a smallest angle, e.g., 
counterclockwise, with the bottom direction plane b. The inside of the shell under 
construction with respect to the starting segment is dependent upon the actual angle 
between the bottom direction plane and the starting segment f and the direction of its 
normal vector nf. That is, inside[f] equals 1 if vb × vf and vf × nf are simultaneously 
positive or negative, and equals –1, otherwise. 
 
 



      

 

   

 

   

   82 R. Stouffs and R. Krishnamurti    
 

    
 
 

   

 

 

       
 

Figure 24 The configuration of three plane segments f, g and h about a common boundary line 
segment l is identical to the configuration of the vectors vf, vg and vh about a point p  
on l, where vf denotes a vector perpendicular to dl and nf, within f (and likewise for g 
and h). Counterclockwise (+) and clockwise (–) are defined relative to dl 

 

Figure 25 Illustrations of (a) a left-most line segment l and (b) the bottom direction plane b with 
respect to l. The plane a is parallel to YZ and contains p. l is a segment that makes the 
smallest angle with a. The bottom direction vector vb is perpendicular to the direction 
vector of l and the normal vector of a 

 

The determination of the continuation segment is dependent upon the inside of the plane 
segment that it continues from. Again, consider the configuration of plane segments f, g 
and h shown in Figure 24. Suppose f is the reference segment, that is, the segment 
continued from. Let cf ( = inside[f] nf) indicate the inside of the shell being constructed 
with respect to f. If cf defines a counterclockwise angle from vf, then the continuation 
segment is the segment closest to the reference in a counterclockwise order about l,  
e.g., segment g. The inside of the shell with respect to g is indicated by a vector cg 
clockwise from vg; that is, inside[g] = +1 if ng = cg = vg × ||dl||, and –1 otherwise. 
Similarly, if cf defines a clockwise angle from vf, then the continuation segment is the 
segment closest to the reference in a clockwise order about l and the orientation of the 
inside of the shell with respect to the continuation segment is ‘counterclockwise’. 

Consider the graph derived from the given set of plane segments by associating a 
vertex with each unique boundary line segment and an edge with each plane segment. 
Given that this set of plane segments constitutes the boundary of a volume shape,  
we say that the graph defines a boundary shape. We denote a simple shell any subgraph 
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that defines a simple boundary; we denote a composite shell any subgraph that defines a 
boundary shape other than a simple boundary. Thus, the polyhedral boundaries that 
define the volume segments of the resulting maximal shape, correspond to simple shells 
in the graph, that are extracted using a tree-traversal process: starting from a left-most 
vertex and proceeding as described in the algorithm outlined above, a shell is completed 
whenever the horizon is empty. However, similar to the boundary traversal in the 
construction of plane segments, a single traversal may not yield a simple shell, but a 
(composite) shell that defines a shape composed of a single outer boundary and zero,  
one or more inner boundaries. Unlike the two-dimensional problem, the recognition  
of the simple shells that make up the current construction is not an obvious task  
(see Figures 26 and 27). 

Figure 26 Shells: (a) a shape defined by six outer boundary shells; (b) an exploded view of the 
same shape and (c) a shape defined by one outer and six inner boundary shells 

 

Figure 27 A shape defined by one outer boundary and three inner boundaries. Each boundary, 
with the exception of a single inner boundary, is constructed as two partial shells 
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Let the multiplicity of a vertex denote the number of edges it adjoins, that is, the number 
of boundary plane segments of which the corresponding boundary line segment is a part. 
The multiplicity of a vertex is, necessarily, even. Let a partial shell denote a maximal 
part of a shell that can be constructed by traversing vertices with multiplicity equal to 2, 
only (see Figure 28). Therefore, the horizon of a partial shell defines a closed 
concatenation of boundary line segments corresponding to vertices with multiplicity 
greater than 2. Consider the partial shells resulting from a single application of  
Procedure C on the given graph. Then, the combined horizon of these partial shells, under 
the set operation of symmetric difference, is empty. Let each partial shell be represented 
by a single (composite) edge and consider the (sub)graph of these edges joined by the 
common vertices in their horizons. Then, in a second traversal, within this (sub)graph, we 
consolidate partial shells that have a common vertex of multiplicity equal to 2 into new, 
partial or complete, simple shells (with an empty horizon). In the next cycle of the 
algorithm, we repeat both traversals on the remaining graph, and such until the entire 
graph is traversed and all simple shells are determined. 

Figure 28 Partial shells: (a) a composite shell and (b) an exploded view of the constituting partial 
shells. The emphasised partial shells are constructed in a single cycle 

 

For this algorithm to succeed, it is imperative that, at each step in the second traversal, a 
vertex of multiplicity equal to 2 exists within the current (sub)graph. Suppose no such 
vertex exists. Then, at least some of the boundaries must form a meta-shell as illustrated 
in Figure 26. However, in case (a), because of the choice of the continuation edge, the 
construction of each outer boundary results in a separate cycle of the algorithm. Also, in 
case (c), since the outer boundary is defined by a single partial shell, the construction of 
this outer boundary results in a separate cycle of the algorithm, after which the 
construction is reduced to case (a). 

We consider procedure EXTRACT-POLYHEDRA (Figure 29) with input a set F of 
plane segments that forms the boundary of a volume shape. 
 
 
 
 



      

 

   

 

   

    Algorithms for classifying and constructing the boundary of a shape 85    
 

    
 
 

   

 

 

       
 

Figure 29 EXTRACT-POLYHEDRA: creating a volume shape from its boundary plane segments 
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Figure 29 EXTRACT-POLYHEDRA: creating a volume shape from its boundary plane segments 
(continued) 

 

Let G denote the graph derived from the set of plane segments by associating a vertex 
with each (unique) boundary line segment and an edge with each plane segment.  
Note that each edge links at least three vertices. Let V[G] denote the vertex set and E[G], 
the edge set. Each edge is represented as an entry in each of the adjacency lists of the 
vertices corresponding to the boundary line segments of the edge’s plane segment. 
Assume each adjacency list to be a cyclic list with the edge-halves ordered clockwise 
about the common vertex. A colour scheme is used to distinguish the edges that partake 
in each stage of the construction. 

Initially, all edges are white. The first traversal constructs partial shells using only 
white edges. When an edge becomes part of the current construction its colour is altered 
to grey. Upon completion of the first traversal, all grey edges compose the subgraph to be 
used during the consolidation process. As shells are completed, the composing edges are 
coloured black. These edges no longer participate in the process. 

Procedure SHELLS returns a set of boundary shells, which is composed of a single 
outer boundary and zero, one or more inner boundaries; PARTIAL-SHELL extracts a 
partial shell as a composite edge containing two parts, a shell and a horizon. The shell is 
the shape of plane segments that is defined by the partial shell. The structure H is a 
priority queue (prioritised on the vertices’ white or grey multiplicity), that represents  
the horizon under construction, and supports the operations INSERT, DELETE and 
MINIMUM. Procedure ORDERED-SET (Figure 29, PARTIAL-SHELL: step 19) 
converts the structure H into an ordered set, representing the horizon. This supports the 
set operations » (union), … (intersection) and ⊕ (symmetric difference). 

Procedure PRIORITY-QUEUE (Figure 29, SHELLS: step 19) rebuilds the set into a 
priority queue, using only the grey edges to determine the multiplicity for each vertex. 
For each vertex inserted in the horizon the last-edge field is updated to reference the edge 
to which the vertex belonged at the time of the insertion, as is necessary in order to 
determine the continuation edge at a later time. 
 
 



      

 

   

 

   

    Algorithms for classifying and constructing the boundary of a shape 87    
 

    
 
 

   

 

 

       
 

R denotes a registration table that supports procedures REGISTER, UNREGISTER 
and RETRIEVE. Registration links an edge (whether composite or not) to a composite 
edge of which the former now makes a part. Registration removes the need for updating 
the edge for each of its vertices. 

During the first traversal (SHELLS: steps 1–18), H’ constitutes the set of vertices that 
have been reached (an odd number of times) but not yet completed (an even number of 
times). Whenever a new partial shell is constructed, its horizon is added to H′ and 
duplicate vertices removed (through the symmetric difference operator). H constitutes the 
global horizon and guides the second traversal (SHELLS: steps 19–43). When two partial 
shells are consolidated, their horizons are merged and duplicate vertices removed. If the 
resulting horizon is empty, then a complete shell has been constructed. Otherwise, a new 
composite edge is created for the combined shell and horizon. As a result of the choice of 
the starting edge, we know that the first partial shell must define a part of an outer 
boundary (with respect to the shape defined by the current composite shell). The outer 
field of the composite edge encodes this information. As partial shells are consolidated, 
the outer information is passed on to the new composite edge. At any time, only one 
composite edge represents an outer shell. 

Consider a single execution of procedure SHELLS. Let n denote the number  
of plane segments processed, with the number of boundary line segments equal to Θ(n). 
Procedure CONTINUATION-EDGE takes constant time and so do procedures 
COMPOSITE-EDGE, REGISTER, UNREGISTER, MINIMUM and the set operator +. 

Consider the calls to procedure PARTIAL-SHELL. On a priority queue of size h, 
procedures INSERT and DELETE take O(log h) time. Since each vertex is inserted or 
deleted exactly once for each edge it joins, processing the priority queue H takes 
O(n log h) time. Converting the queue into an ordered set takes Θ(h log h) time for an 
arbitrary ordering. Since h = O(n), the combined time for all calls to PARTIAL-SHELL 
is O(n log n). 

Procedure STARTING-EDGE is invoked only once and has O(n) as an upper bound. 
Unregistration of the edges (plane segments) of the completed shell takes Θ(n) time in 
total. The set operations », … and ⊕ take linear time in the size of the sets, O(n). Let K 
denote the number of incomplete, partial shells. As the set operations are executed 
possibly once for each partial shell, the combined time is O(nK). Each time two partial 
shells are consolidated, retrieving any simple edge belonging to either partial shell takes 
one more step. Thus, in a dumb way, retrieving an edge from the registration table takes 
O(K) time. However, if the information is propagated backwards upon retrieving the final 
edge, the retrieval time can be reduced probably to almost constant time. Converting a set 
into a priority queue takes Θ(n log n) time. Thus, the total time taken to execute SHELLS 
once is O(nK + n log n)). K is a measure of the complexity of the resulting set of shells. 
In many instances, K will equal 1; in the worst case, K is in the order of the number of 
simple boundaries (see Figure 27). 

Consider procedure EXTRACT-POLYHEDRA. Let n denote the input size, let k 
denote a characteristic of the complexity of the traversed shells. The initialisation of the 
graph requires Θ(n log n) time. Extracting the shells takes O(n (log n + K)) time. 
Procedure MAXIMAL takes O(n log n) time in total. Hence: 
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(11) For a set F of non-intersecting plane segments that defines the boundary of a 
volume segment or volume shape S, constructing the simple boundaries that define 
the volume segments of S requires O(nK + n log n) time and Θ(n) space where 
n = |F| and K is the number of simple boundaries. 

The next step is to distinguish the outer and inner boundaries from a set of simple 
polyhedral boundaries and to construct the corresponding volume segments. We consider 
procedure CONSTRUCT (Figure 30), with input, a set F of plane segments that forms the 
boundary of a volume shape. We assume that neither two plane segments in F overlap 
nor one contains the other. The result of the procedure is a volume shape as a set of 
maximal volume segments. 

Figure 30 CONSTRUCT: constructing the volume segment from a shape of boundary plane 
segments 
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Figure 30 CONSTRUCT: constructing the volume segment from a shape of boundary plane 
segments (continued) 

 

Once we have extracted the simple boundaries from the set F, we need to distinguish the 
inner and outer boundaries and, subsequently, create the boundary shapes as these define 
the maximal volume segments of the resulting shape. We say that a boundary x encloses a 
boundary y if the shape defined by x, Γ(x), contains the shape defined by y, Γ(y). 
Moreover, if Γ(x) × Γ(y) ≠ 0 for two extracted boundaries x and y, then either Γ(x) ≤ Γ(y) 
or Γ(y) ≤ Γ(x) (Krishnamurti and Stouffs, 2004). 

Given the set of simple boundaries resulting from procedure EXTRACT-
POLYHEDRA (Figure 29), consider the enclosure-tree of these boundaries, defined as 
follows. Let vertex[x] denote the vertex in the tree representing boundary x. If a boundary 
x encloses a boundary y, then, vertex[x] is an ancestor of vertex[y] (and vertex[y] is a 
descendant of vertex[x]). If vertex[x] is the parent of vertex[y], then, boundary x encloses 
boundary y and any boundary that encloses y (with the exception of y itself) also encloses 
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x. Consider an imaginary root that encloses all boundaries. Then, all children of the root 
represent outer boundaries that are not enclosed by any other boundaries. Consequently, 
the grandchildren of the root represent inner boundaries that are enclosed by one of the 
previous boundaries. 

Let the level of a vertex denote the distance from the root and consider the root as an 
inner boundary. Then, all vertices on even levels represent inner boundaries while all 
vertices on odd levels represent outer boundaries, with respect to the resulting shape. 
Thus, the set of boundaries from a single vertex on an odd level and its children, defines a 
maximal segment of this resulting shape. Figure 31 illustrates the enclosure-tree for a 
plane shape. 

Figure 31 The enclosure-tree of an exemplar shape defined by six simple boundaries. Inner 
boundaries are drawn dashed 

 

We use the following algorithm to check enclosure for a single point within x, with 
respect to y. 

Procedure D 

1 Consider the carrier of any boundary line segment l of a segment of x. 

2 Determine the number of piercing points of this carrier with the segments of y that 
are to the left to or equal to the tail of the line segment l. 

3 y encloses x only if this number is odd. 

The piercing point of a line and a plane segment is the point of intersection of this line 
and the point set isomorphic to this plane segment. When determining the piercing point 
of a line with a plane segment, we distinguish whether the line pierces (the inside of) the 
plane segment, intersects (the inside of) the boundary of the plane segment, or contains 
an endpoint of a boundary segment of the plane segment; the latter two constitute 
‘degenerate’ cases. In order to resolve these degenerate cases, we define two reference 
directions with respect to the carrier line. That is, we consider translating the carrier line 
over an arbitrarily small distance along directions perpendicular to this line. This is 
similar to the determination of the points of intersection of a line with the boundary  
of a plane shape or a plane with the boundary of a volume shape (see the algorithms in 
Figures 4 and 20). 

Let l denote the carrier line, and r1 and r2 denote two unit reference direction vectors, 
with dl, r1 and r2 mutually perpendicular. Consider the half-plane f with boundary l such 
that r1 indicates the inside of f with respect to l. The normal vector of f equals the 
normalised vector product of dl and r1, i.e., nf = ||dl × r1||. We have nf = ±r2. Also, inside[f] 
equals +1 if nf × dl = r1 and –1, otherwise. This is illustrated in Figure 32. 
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Figure 32 A point on the inside of a boundary segment k of a plane segment g is a valid piercing 
point: (a) if the direction vector of the line of intersection m of g and a reference  
half-plane f indicates the inside of g with respect to k, or (b) if m coincides with the 
carrier of k and the second reference vector indicates the half-space with boundary f that 
contains g 

 

Consider the situation when l intersects the inside of a boundary line segment k of a plane 
segment g of y, also illustrated in Figure 32. Consider the line m of intersection of the 
carrier of g and f. Assume m is not co-linear with either l or the carrier of k. Then, the 
piercing point of l and g is a valid piercing point only if the (direction) vector m of  
the line m indicates the inside of g with respect to k, that is, if inside[k] (ng × dk) × m > 0. 
We have m = ±(nf × ng), where the sign is chosen such that m × r1 > 0, that is, m also 
indicates the inside of f with respect to l. If (ng × dk) × m = 0, then line m coincides with 
the carrier of k. In this case, we use the second reference direction vector r2 to determine 
the validity of the piercing point. That is, the piercing point of l and g is valid only if the 
vector resulting from the projection of r2 onto the carrier of g indicates the inside of g 
with respect to k, i.e., if inside[k] (ng × dk) × r2 > 0. If additionally (ng × dk) × r2 = 0, then, 
l lies on the carrier of g and there exists no piercing point. 

Consider the case when l contains an endpoint p of a boundary line segment of a 
plane segment g of y, as depicted in Figure 33. Then, there exist at least two boundary 
line segments of g with endpoint p. Let ki, i ≤ n denote all boundary line segments of g 
that have p as an endpoint. The scalar product of the direction vectors 

ikd  and m is a 
measure of the cosine of the angle ∠kim between the segments ki and m (about p, in the 
carrier plane of g). If 

ik ×d m  is minimal for i = j (1 ≤ i ≤ n), then, the line segment kj 
makes the smallest angle with m, whether clockwise or counterclockwise. If the carrier of 
kj and m do not coincide, i.e., 0,

jk × ≠d m  then, m indicates the inside of g with  

respect to kj. That is, the point p is a valid piercing point if inside[kj] ( ) 0.
jg k× × >n d m  

Let COMPARE-INSIDE-1 (co[m], kj, co[g]) denote the result of the previous comparison 
(either TRUE or FALSE). If ( ) 0,

jg k× × >n d m  then, kj × m = 0 and m coincides with 

the carrier of kj. Thus, we use r2 to determine the validity of the piercing point, i.e., p is a 
valid piercing point if inside[kj] 2( ) 0.

jg k× × >n d r  Let COMPARE-INSIDE-2(co-r, kj, 

co[g]) denote the result of the previous comparison (either TRUE or FALSE), where the 
co-descriptor co-r represents a plane with normal vector r2. 
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Figure 33 An endpoint of a boundary segment kj of a plane segment g, where kj makes the 
smallest angle with the line of intersection m of g and a reference half-plane f, is a valid 
piercing point: (a) if the direction vector of m indicates the inside of g with respect to kj, 
or (b) if m coincides with the carrier of kj and the second reference vector indicates the 
half-space with boundary f that contains g 

 

We chose the following reference direction vectors: Given a plane segment f with 
boundary segment l, the first reference vector indicates the inside of f with respect to l 
and, therefore, is perpendicular to the direction vector of l. The second reference vector is 
the normal vector of f: 

[ ]1

2

inside ( )
.f l

f

l = ×
 =

r n d
r n

 

Before we can extract the polyhedral boundaries from the set of (plane) segments F, we 
have to ensure that no two plane segments intersect. Procedure SPLIT, when applied to a 
set of plane segments, determines the line segments of intersection for each plane 
segment with respect to all other segments and, subsequently, creates the sub-segments as 
defined by these line segments of intersection (see proof of (7) for procedure SPLIT 
when applied to a set of line segments). In order to construct the simple boundaries of the 
sub-segments of a plane segment f, we use a single copy of the boundary segments of f 
together with two copies of the line segments of intersection of f as input to procedure 
CONSTRUCT (see Figure 30). 

After the plane segments are split and the polyhedral boundaries subsequently 
extracted, the enclosure-tree is constructed for the resulting simple boundaries.  
The sibling and child fields link a vertex with its siblings and children, respectively. The 
tree is initially empty. Each boundary is inserted in the tree in the order of appearance in 
the set of boundaries. We know from the algorithm for EXTRACT-POLYHEDRA 
(Figure 29) that every boundary is discovered before any boundaries it encloses. 

Procedure ENCLOSURE compares two simple boundaries F and G and returns 
TRUE if G encloses F and FALSE, otherwise. Procedure VALID-ENDPOINT checks 
the validity of a piercing point that coincides with an endpoint of a boundary segment. 
Similarly, procedure VALID-INTERSECTION checks the validity of a piercing point 
that coincides with an endpoint of a boundary segment. Procedure PIERCING-POINT 
determines the point of intersection of a line l and plane segment g, in all but the above 
two cases. We use the fact that the points of intersection of the boundary of a coequal 
shape and an infinite line within the carrier of the shape defines an alternating sequence 
(if sorted) of inner and outer segments to determine the validity of the piercing point, 
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given the number of intersection points of an arbitrary line through the proposed piercing 
point and within the carrier of g (e.g., the line of intersection of this carrier and a normal 
plane through the line l), with the boundary segments of g. Finally, the tree is traversed 
and the boundaries extracted and grouped as they define the maximal segments of the 
resulting shape (EXTRACT-SEGMENTS). 

Let n denote the size of (the boundary of) F. Consider procedure SPLIT. Determining 
the line segments of intersection between the classes of plane segments of F and G takes 
O(kn log n) time where k is the total number of classes of F and G (steps 4–8). 
Constructing the plane segments from the set of boundary segments and line segments of 
intersection (two copies) of a class of segments takes O((m + n) log n) = O(kn log n) 
time, where m is the number of line segments of intersection, i.e., m = O(kn) (steps 9–14). 
This bound is also the overall complexity for the procedure SPLIT. The resulting size of 
F is O(m + n). 

Extracting the simple boundaries (EXTRACT-POLYHEDRA) from F takes 
O((m + n) (log n + K)) time, where K denotes the number of resulting simple boundaries, 
and results in a set R of O(m + n) size. Consider the procedure ENCLOSURE. 
Determining the point(s) of intersection of a line segment with the boundary of a plane 
segment takes linear time in the size of this boundary (steps 6–10). This time complexity 
holds also for the procedure PIERCING-POINT, as well as VALID-ENDPOINT and 
VALID-INTERSECTION (constant time, actually). Since, we repeat this computation for 
each segment of G, procedure ENCLOSURE takes O(α) time, where α denotes the sum 
of the sizes of both simple boundaries. Upon insertion of a boundary into the tree T 
(CONSTRUCT: step 5), each boundary already in the tree may need to be examined for 
possible enclosure, in the worst case. Therefore, building the tree takes O(K(m + n)) time 
for K simple boundaries. Extracting the segments (EXTRACT-SEGMENTS) from T 
takes O(K log K + m + n) time. The resulting time complexity of procedure 
CONSTRUCT is thus O(kn log n + Km). Hence: 

(12) For a (sorted) set F of non-overlapping plane segments that defines the boundary  
of a volume shape S, constructing the volume segments that make up S takes 
O(Km + kn log n) time and Θ(m + n) space, where n = |F|, k = |classes[F]|,  
m is the number of (non-boundary) line segments of intersection between segments  
of F and K is the number of simple boundaries of S. 

This algorithm may be improved by considering the simple boundaries that result from 
EXTRACT-POLYHEDRA, grouped as they are returned from separate calls to the 
procedure SHELLS (see Figure 29). This procedure returns a set of one or more simple 
boundaries of which all but the first are, relatively, inner boundaries with respect to the 
first one. As such, these ‘inner’ boundaries no longer need to be classified. However, in 
the worst case, each call to the procedure SHELL returns a single boundary and the time 
complexity of the procedure CONSTRUCT remains the same. 

We can use the previous result when determining the maximal shape corresponding to 
a set of volume segments that may share boundary, neither overlap nor one contains 
another. The time complexity of procedure MAXIMAL (Figure 34) is necessarily  
the same as for CONSTRUCT, i.e., O(Km + kn log n) = O(kn (log n + K)), where 
n = |boundary[S]|, k = |classes[boundary[S]]|, m is the number of line segments of 
intersection between segments of boundary[S] and K is the number of simple boundaries 
of S. 
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Figure 34 MAXIMAL: maximal shape corresponding to a set of volume segments that may share 
boundary 

 

5 Concluding remarks 

We have presented algorithms for the classification and subsequent construction of the 
boundary of a shape. These algorithms form the core of a three-dimensional shape 
grammar system under implementation. We have also considered, though not reported 
here, the computational complexity for shape operations and shape relations, when 
applied to a pair of coequal segments, and found these are bounded by some polynomial 
function f of the size of the boundaries of the segments. The particular polynomial f 
depends on the shape algebra, Ui, i ≥ 0, under consideration (see Stiny, 1991, for a 
description of the different shape algebras). The running times of arithmetic operations 
and relations on shapes are then asymptotically bound by some function of f.  
The examination of this computational complexity of arithmetic in shape algebras Ut, 
0 ≤ t ≤ 3, along with a comparison to results found in literature for similar algorithms is 
the topic of a forthcoming paper. Algorithms for other geometrical realisations of shape 
algebras for shape grammar applications remain open, in particular, the treatment of 
curved shapes although some progress has been reported by Jowers et al. (2004). 
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