
Computer-Aided Design 110 (2019) 37–49

Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

A uniform characterization of augmented shapes✩

Rudi Stouffs a,∗, Ramesh Krishnamurti b
a National University of Singapore, School of Design and Environment, Department of Architecture, 4 Architecture Drive, Singapore 117566, Singapore
b Carnegie Mellon University, School of Architecture, 5000 Forbes Avenue, College of Fine Arts 201, Pittsburgh, PA 15213, United States

a r t i c l e i n f o

Article history:
Received 14 March 2018
Accepted 19 December 2018

Keywords:
Shape grammars
Shape–attributes
Augmented shapes

a b s t r a c t

Shapes are considered as finite arrangements of spatial elements from among points, line and plane
segments, circles and ellipses, (circular) arcs, quadratic Bezier curves, of limited but non-zero measure, in
2D and 3D. Augmented shapes are defined as shapes augmented with attributes, e.g., labels, weights,
colors, enumerative values, and (parametric) descriptions. Different attribute types specify different
behaviors under operations of sum, product and difference and a part relationship. We review different
shape–attribute propositions from the shape grammar literature and characterize them uniformly. This
uniform characterization of augmented shapes is intended to assist in formalizing new shape–attribute
propositions that may have been visually conceived.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

We consider shapes that are imbuedwith (visual) attributes, for
instance, color, thickness, texture, labels, etc., and examine how
such augmented shapes can be uniformly characterized so as to
lend themselves amenable to computation. Consider for example
a collection of three shape rules to create a spiral of inscribed
squares (Fig. 1) [1]: a first rule creates a square from an initial
marker; a second rule creates a rotated square inscribedwithin the
original square, and within squares produced thereof; and a third
rule removes the marker.

Now, consider a variation on this computation that produces
the same spiral of inscribed squares, however, with an alternating
infill of the squares in black and white (Fig. 2) [2]. The collection
of rules to produce such computation can be derived from the
collection of rules in Fig. 1. However, the specific representation
adopted for the infill values must be taken into account in the pro-
cess and may influence the outcome of this process. We illustrate
this with two alternative representations for the alternating infill,
the first enumerates the values ‘‘black’’ and ‘‘white’’ and considers
a discrete behavior, the second interprets the surface tones as
numeric weights and considers an ordinal behavior [3].

In the case of the attribute algebra enumerating the values
‘‘black’’ and ‘‘white’’, the rule inscribing a rotated squarewithin the
original square will have two versions, one identifying a ‘‘black’’
square and inscribing a ‘‘white’’ square, and one identifying a
‘‘white’’ square and inscribing a ‘‘black’’ square (Fig. 3a). Under
the discrete behavior for enumerative values, matching either rule

✩ This paper has been recommended for acceptance by K. Shea.
∗ Corresponding author.

E-mail address: stouffs@nus.edu.sg (R. Stouffs).

onto a given shape requires the enumerative value specified in
the left-hand-side of the rule to be identical to the enumerative
value for the square with the marker in the given shape. Applying
the matched rule involves replacing the matched left-hand-side
of the rule with the right-hand-side of the rule under the same
transformation.

In the case of using numeric weights under an ordinal behavior,
matching requires the numeric value specified in the left-hand-
side of the rule to be less than or equal to the numeric value for
the square with the marker in the given shape. Assuming higher
numeric values for darker surface tones, the numeric value for
white will be less than or equal to the numeric values of both
white and black, thus, a white square in the left-hand-side of the
rule will match either a white square or a black square in the
given shape. Conversely, if two rules are only distinguished by
the numeric value assigned to the square, corresponding to either
black or white, both rules will match a given shape having a black
square with marker, and an alternating infill will no longer be
guaranteed. This problem may be resolved by also considering a
tone weight for the marker, more specifically, the opposite tone
weight of the respective square (Fig. 3b).

The example above may be considered as an albeit simple
example of generative design.Whilemany authors have attempted
to define generative design (see [4] for a synoptical review), from a
historical point of view, analytical form finding techniques broadly
led to form-finding algorithms and algorithmic design approaches
(e.g., [5]). Even parametric or associative modeling can be consid-
ered as a form of algorithmic design, combining both visual pro-
gramming and dataflow modeling [6]. Bohnacker et al. [7] equate
algorithms to rules or rule sets, in the context of generative design
in the Processing environment. Conceptually this equation makes
sense, rules are a convenient way of expressing design moves or

https://doi.org/10.1016/j.cad.2018.12.004
0010-4485/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.cad.2018.12.004
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cad.2018.12.004&domain=pdf
mailto:stouffs@nus.edu.sg
https://doi.org/10.1016/j.cad.2018.12.004

38 R. Stouffs and R. Krishnamurti / Computer-Aided Design 110 (2019) 37–49

Fig. 1. A shape grammar comprised of three rules, generating recursively inscribed squares.
Source: Redrawn from [1].

Fig. 2. An alternative computation, generating recursively inscribed squares with alternating black and white infill.

actions and their underlying principles in a structured form [8],
especially in the context of design derivation [9]. ‘‘Designers pref-
erentially use past successful moves, their own or others, in future
projects. One of the long promises of grammars is the ability to
explicitly encode such moves’’ [9].

Grammar formalisms for design come in a large variety (e.g.,
[10–14]), requiring different representations of the entities being
generated, and different interpretative mechanisms. Shape gram-
mars also come in a variety of forms, even if less broadly. Most
examples of shape grammars rely on labeled shapes, a combination
of (2D) line segments and labeled points [11]. However, even in the
original conception of shape grammars [15], an iconic shape (made
up of curved lines) serves the role of non-terminal marker rather
than labeled points, and a colored infill of the resulting shapes is
considered part of the generative specification, though not of the
shape grammar.

Next to labels, other non-geometric attributes have been con-
sidered for shapes. Stiny [3] proposes numeric weights as at-
tributes to denote line thicknesses or surface tones. Knight [16,17]
considers an extension to the shape grammar formalism that al-
lows for a variety of qualitative aspects of design, such as color,
to be integrated in the rules of a shape grammar. Though not
specific to colors, the resulting grammar is called a color grammar
and notions of transparency, opacity and ranking are introduced
to regulate the behavior of interacting quality-defined areas or
volumes.

Sortal grammars [2,18] take this one step further. Sortal gram-
mars are a class of formalisms for design grammars, utilizing sortal
structures as representational structures, where these structures
are defined as formal compositions of other, primitive, sortal struc-
tures, termed sorts. Sortal grammars benefit from the fact that
every component sort specifies a partial order relationship on its
individuals and forms, defining both the matching operation and
the arithmetic operations for rule application. In addition, whereas
in all other formalisms the augmented shapes have been derived
from shapes of spatial elements by associating symbols, labels or
other qualitative aspects to the elements, under a shape–attribute

relationship, in sortal grammars, shapesmay be either the object or
the attribute in the relationship, or both (or neither, though such
examples do not constitute spatial grammars as such).

A sortal grammar interpreter, denoted SortalGI, has been devel-
oped in the form of a library and API in the Python programming
language (www.sortal.org). Using sortal structures as the represen-
tational building blocks allows for a modular implementation of
a generalized shape grammar interpreter for different grammar
forms. The SortalGI library supports both parametric and non-
parametric shape grammars, including points, line and plane seg-
ments, circles and ellipses, (circular) arcs, quadratic Bezier curves,
labels, weights, colors, enumerative values, and (parametric) de-
scriptions, in 2D and 3D. Emergence is naturally supported. Note
that the SortalGI library adopts a graph-based representation for
parametric shapes, however, different from other graph-based
implementations [19–21], it does not use any sub-graph matching
algorithm but instead relies on a combinatorial enumeration of
potential matches. In general, graph-based, parametric subshape
recognition is non-polynomial, even with a hypothetical, linear
time subshape detection algorithm [22]. In comparison, a combi-
natorial enumeration, searching for k maximal elements within a
set of n (distinguishable) maximal elements, yields a tight bound
of O (nk). Depending on the size of k, this bound is exponential in
the worst case, while one can use labels to limit the combinatorial
explosion.

While SortalGI offers a modular implementation of a shape
grammar interpreter and can be extended with new sorts, this
requires a uniform characterization of sorts. Previous research
has dealt with extending the maximal element representation
for shapes to (rectilinear) plane and volume segments [23] and
(quadratic Bezier) curves [24,25].

Instead, Stouffs [26] demonstrates how an algebra with carrier
℘(A × ℘(B)) and signature including sum, product, difference,
and reduction can be defined in terms of the (attribute) algebra
with carrier℘(B) and signature including sum, product, difference,
and reduction. Here, the carrier of the algebra denotes the set of
elements of the algebra. A and B denote any two vocabularies, for

http://www.sortal.org

R. Stouffs and R. Krishnamurti / Computer-Aided Design 110 (2019) 37–49 39

Fig. 3. Two shape grammars generating recursively inscribed squares with alternating infill: (a) using enumerative colors as shape attributes (b) using numeric weights as
shape attributes. In both cases, the shape attributes are visualized as black and white infills. A white segment, or point, is indicated by a lightly drawn outline in order to
distinguish it from the background.

instance, the set of all points P and the set of all labels L. In the
case of P and L, ℘(P) and ℘(L) denote the powerset of points and
labels, respectively, and ℘(P ×℘(L)) the powerset of points where
each point may have a set of labels as attribute. The signature of
the algebra denotes the operations of the algebra and includes
a reduction operator, which reduces any set to a set of maximal
elements (see Section 3). The part relation (‘≤’) is not considered
an operation of the algebra but can be expressed in terms of the
operation of product (‘·’): a ≤ b ⇔ a · b = a. Finally, the similarity
transformations can be considered external to the algebra, as part
of the algebra’s signature or as part of the algebra’s carrier [27,28].
This definition is argued to be independent of the specifics of the
(attribute) algebra with carrier ℘(L), while it is dependent on the
behavior of the algebrawith carrier℘(P ×℘(L)), which is similar to
the behavior of the algebra with carrier ℘(P). An algebra of points
has a discrete behavior, that is, the operations of sum, product,
and difference correspond to the normal set operations of union,
intersection, and difference. Under a discrete behavior, any set is
maximal because any duplicates are automatically removed (see
Section 3).

Augmentation of shapes is not limited to labels. Stiny [3] pro-
poses numeric weights as attributes to denote line thicknesses
or surface tones (Fig. 3b). Knight [16,17] considers a variety of
qualitative aspects of design, such as color, as shape attributes
(e.g., Fig. 3a). Stiny [11] also proposes to augment a shape grammar
with a description function in order to enable the construction of
verbal descriptions of designs. Although most authors do not con-
sider descriptions as attributes to shapes, in his thesis, Beirão [29]
specifically considers descriptions as attributes to spatial objects.
Other kinds of attributes, or even variations in the specification
of a kind of attribute, can also be considered. For example, colors

can be specified in different ways, as in a three-dimensional RGB
or HSV (Hue, Saturation, Value) space, or in an enumerative way
as Knight [16,17] considers. Labels may adhere to a strict textual
format that allows for a different part relationship to be distin-
guished, for example, dates that can be chronologically ordered, or
time intervals that may contain one another. Obviously, dates (and
time intervals)may also be considered as numeric attributes, while
visualized textually. For these reasons, a uniform characterization
of augmented shapes becomes important, such that new or differ-
ent augmentations can be considered as part of augmented shape
algebras. In particular, the simple illustrative examples in Fig. 3
suggest a need for a uniform characterization for both enumerative
values andweights allowing their respective behaviors to be easily
compared and the rule sets adapted accordingly.

While we identify this issue from the viewpoint of shape gram-
mars, the argument can easily be extended to design, and computer
aided design, in general, especially for architecture. Eastman [30]
recognizes that any human–machine system to aid the designer
must recognize the designer’s reliance on multiple representa-
tions. Design problems commonly require a multiplicity of views
each distinguished by particular interests and emphases, where
each view – derived from an understanding of current problem
solution techniques in the respective domain – requires a dif-
ferent representation of the same (abstract) entity. Research in
cognitive science and design cognition has shown that expertise
in both problem solving and design often relates to having ac-
cess to more and better representations [31,32]. This is especially
true in architecture, Akin refers to architecture in this respect as
a ‘‘representation saturated problem domain’’ [33]. Importantly,
the outcome of the design process relates to the representation
that is used. Furthermore, architectural design differs from other

40 R. Stouffs and R. Krishnamurti / Computer-Aided Design 110 (2019) 37–49

forms of problem solving in that the problems in architecture are
generally ill-structured; defining the problem space is an intricate
part of the design activity [32]. As the problem shifts during the
design process, so should the representation adapt. Design rep-
resentations may be as much an outcome of as a means to the
design process [34].While there has been continued and concerted
effort in developing integrated product models that span multiple
disciplines, multiple methodologies and support different views
(e.g., [35]), these do not support the idiosyncrasies of individual
designers or projects. On the other hand, modeling schemes for
defining product models and ontologies exist (e.g., [36,37]) that
allow for the development of representations, but these are not
supported by current computer aided design tools. A uniform
characterization of shape attributes may allow for a more flexible
adaptation of computer aided design tools to specific needs of
individual designers or projects with respect to shape attributes.

Below, we review different shape–attribute propositions and
characterize them uniformly. We start with an algebraic intro-
duction of shapes and attributes (Section 2), followed by an ex-
ploration of the partial order relation underlying the algebraic
representation of shapes and a questioning of its applicability to
shape attributes (Section 3).We then express themaximal element
representation for shapes as a behavioral specification under the
operations of sum, product and difference and the subshape rela-
tionship, depending on the dimensionality of the shape’s spatial
element, and, similarly, suggest behavioral specifications for aug-
mented shapes considering different attribute types (Section 4.1).
From this, we extract a uniform characterization of attribute be-
haviors that enables a unique behavioral expression for augmented
shapes in terms of this uniform characterization and the behavioral
specification for shapes earlier defined (Section 4.2). Finally, we
explore the limitations of this uniform characterization from an
implementation point of view and from the similarity with an
algebraic abstraction of augmented shapes [26] (Section 5).

2. Shapes and attributes

For our purpose, a shape is defined as a finite arrangement
of spatial elements from among points, line segments, rectilinear
plane and volume segments, circles, ellipses, (circular) arcs and
quadratic Bezier curves, of limited but non-zeromeasure. This def-
inition can be extended to include other kinds of curves, surfaces
and solids.

A shape is considered an element of an algebra U that is (par-
tially) ordered by a part relation and closed under the operations
of sum, product, and difference, and the similarity transforma-
tions. Limiting shapes to compositions of rectilinear hyperplane
segments [3], Uij denotes the set of all finite arrangements of i-
dimensional hyperplane segments of limited but non-zero mea-
sure in a j-dimensional space, j ≥ i. If j is unambiguously under-
stood, it may be dropped and Uij can be referred to as Ui. Thus, U0
refers to an algebra of shapes made up of points, U1 an algebra of
shapes made up of line segments, U2 an algebra of shapes made
up of plane segments, U3 an algebra of shapes made up of volume
segments, and so on. Extending on the concept of Uij, or Ui, wemay
consider Ua (or Uaj) an algebra of shapes made up of (circular) arcs,
Ub an algebra of shapes made up of quadratic Bezier curves, Uc an
algebra of shapes made up of circles, and Ue an algebra of shapes
made up of ellipses. Note that while circles can be considered a
particular subset of arcs, or ellipses, distinguishing Uc may still
be useful in order to limit the elements in the grammar, or part
thereof, to circles. A shape may consist of more than one type of
spatial element, inwhich case it belongs to the algebra given by the
Cartesian product of the algebras of its spatial element types [1].
For example, shapes made up of points and line segments belong
to the algebra U0 × U1.

A shape can be augmented by distinguishing certain parts of
the shape, which introduce additional spatial relations. The most
common definition of a shape grammar [10] uses labeled points
as non-terminals. In this approach, points are distinguished by
labels and these are used to constrain rule application. Stiny [3]
introduces an algebra Vij denoting the set of all finite arrange-
ments of i-dimensional hyperplane segments of limited but non-
zero measure in a j-dimensional space, with associated labels. The
algebra Vij has (about) the same property as Uij; it is ordered by
a part relation and closed under the operations of sum, product,
and difference, and the similarity transformations. Omitting the
dimension of the space, V0 refers to an algebra of shapes made
up of labeled points, V1 an algebra of shapes made up of labeled
line segments, and so on; again, we can extend on this with Va an
algebra of shapes made up of labeled arcs, and so on. We could be
tempted to consider the Cartesian product of algebras to also apply
when conceiving the algebra of augmented shapes, e.g., given a set
L of labels, Vij = Uij × ℘(L). However, the relationship between
spatial elements of different algebras, e.g., in U0 × U1, on the one
hand, and between spatial elements and associated (non-spatial)
elements, e.g., in V0, on the other hand, is quite different. The
former is a relationship of coordination anddisjunction; any spatial
element in a shape of points and line segments is either a point or a
line segment. The latter, instead, is a relationship of subordination
and (partial) conjunction; a labeled point consists of a point and
an associated set of labels. The set of labels may be empty, but the
point cannot.

3. A partial order relation

Algebraically, shapes have the structure of a Boolean ring [38].
For a shape algebraΣ ,Σ ≡ (Σ , 0,≤, (+, ·,−,⊗)), the least element
0 is the empty shape,≤ is the part relation and +, ·,− and⊗ are the
following operations: for any shapes x and y, sum x + y is their least
upper bound, product x · y is their greatest lower bound, difference
x− y is the least shape z that solves the equation x− z = x · y , and
symmetric difference x ⊗ y is the shape given by (x − y) + (y − x
) = x + y − x · y. It follows that x − y ≤ x ≤ x + y, y − x ≤ y ≤ x + y,
x · y ≤ x and x · y ≤ y, additionally, x − y ≤ x ⊗ y ≤ x + y and y −

x ≤ x ⊗ y ≤ x + y, and the part relation is a partial order relation,
that is, it is reflexive, anti-symmetric and transitive.

It is tempting to consider attribute algebras to necessarily ad-
here to the same structure. However, most authors conceive at-
tributes’ behavior visually, rather than structurally, and such vi-
sual reconstruction may or may not fit the exact structure of
a Boolean ring. For example, Stiny [3] conceives a behavior for
weights (e.g., line thicknesses or surface tones) as is apparent from
drawings on paper – a single line drawn multiple times, each time
with a different thickness, appears as if it were drawn once with
the largest thickness, even though it assumes the same line with
other thicknesses.

It obviously follows that for two weights u and v, u + v =

max(u, v) and u · v = min(u, v). It is less obvious to define u −

v. If we consider the equation above, u − (u − v) = u · v, we must
distinguish the cases u≤ v and u> v. For u≤ v, u · v = u and, thus,
the least shape u − v for which the equation holds is 0 (Fig. 4 left).
For u>v, u · v = v < u and, thus, the least shape u−v forwhich the
equation holds is the arithmetic difference of u and v [3,39] (Fig. 4
middle). On the other hand, Stouffs [34] defines the difference
operator in opposition to the sum operator – where adding a
smaller value leaves the existing value unchanged, subtracting a
smaller value similarly leaves the existing value unchanged –, u –+

v = u if u > v, and 0 otherwise (Fig. 4 right). However, this can be
proven to contradict the structure of a Boolean ring.

We can interpret the difference between the two approaches
visually. Given a line segment with thickness a, let us subtract the

R. Stouffs and R. Krishnamurti / Computer-Aided Design 110 (2019) 37–49 41

Fig. 4. Subtracting two line segments with different thicknesses: (left) subtracting an equal or larger thickness results in a line with 0 thickness, thus, no line; (middle)
subtracting a smaller thickness adhering to arithmetic difference; (right) subtracting a smaller thickness leaves the existing thickness unchanged.

Fig. 5. Repeatedly subtracting and adding a line segmentwith thickness b fromanother line segmentwith original thickness a, where a> b : (left) using arithmetic difference;
(right) subtracting a smaller thickness leaves the existing thickness unchanged.

same line segment with thickness b, with b < a (Fig. 4). Next,
we add the same line segment with thickness b back to the result
(Fig. 5). Under arithmetic difference, subtracting thickness b from
thickness a always yields a smaller value, a − b, while adding
thickness b back to the result will produce the maximum value
of a − b and b. If a − b > b, we can repeat the same operations
resulting in the maximum value of a− b− b and b. Eventually, the
result will become equal to b, subtracting thickness b will return
0 and adding thickness b will give us b again (Fig. 5 left). Instead,
considering Stouffs’ [34] definition, subtracting thickness b from
thickness a has no impact, neither has adding thickness b back to
the result (Fig. 5 right). The line segment retains the thickness a
throughout these operations, whether repeated or not. Which is
more attractive, visually, may depend on the designer’s expecta-
tions and intent. On the one hand, considering that (a−b)+b = b if
a ≤ b – this holds for both approaches – then itmay be quite logical
to assume (a − b) + bwill eventually yield b, even if a > b. On the
other hand, considering that (a − b) + b = a if b = 0, it may seem
odd that an infinitesimally small b, though different from 0, will
at first yield a result infinitesimally close to a; yet, after repeated
applications of the two operations will eventually result in a value
far different from a, specifically the infinitesimally small value
b. Either approach might be equally valid, in differing situations.
Considering that weights can be interpreted as line thicknesses,
but also surface tones, wemight even consider one solution for line
thicknesses, and another one for surface tones, or other application
of weights.

This need for flexibility becomes even more apparent when
we consider the behaviors Knight [16,17] conceives for colors and
materials. Knight applies colors to plane segments (also denoted
regions [17] or fields [16]) and overlapping colored plane segments
are handled formally with rankings [17]; for example, an ‘‘opaque’’
ranking implies that any colored plane segment that is added in
a rule application covers any part of a colored plane segment
already in the design (Fig. 6). That is, under an opaque ranking,
the operation of sum is not considered commutative, x+ ymay be
different from y+x.More importantly, an opaque rankingno longer
supports a partial order relation. Under a partial order relation, if,
for two colors c and d, we write c + d = d, then it necessarily
follows that c ≤ d. However, under an opaque ranking, we also
write d+ c = c , as the color d covers the color c where it is applied.

From this, we should conclude that c ≥ d, or c = d. Obviously, that
is not always the case. Note that ifwe consider the fact that any part
of a plane segment can have only one color assigned, the partial
order relation would become a total order relation, however, this
does not alter the findings.

This visual interpretation yields an interesting difference on
how we may deal with different kinds of attributes. In the case
of line thicknesses, we have assumed that a line with 0 thickness
is equivalent to no line. Both are equally invisible. However, if,
instead, we consider labels as attributes, an empty set of labels
may not necessarily require the shape to be considered empty as
well. Visually, a point without labels is still visibly a point. That
is, if we consider the labels as visual tags. Instead, if we consider
labels as expressing layers in analogy to Photoshop layering, then,
an empty set of labels would require the shape to be considered
empty as well, as a shape may not exist outside of any layer. While
this may seem inconsistent computationally, we must exactly em-
brace such incongruities in order to increase the applicability of
shapes to different design contexts and scenarios. With respect
to augmented shape algebras, this is exactly the objective of this
paper, exploring a uniform characterization of augmented shapes
in defiance of variety or idiosyncrasy.

For the interested reader, the difference between the algebras
Uij and Vij is the fact that under the former, the operations of
product and difference define a partitioning. Given two shapes x
and y of Uij, the product x · y and the differences x − y and y − x
form a partitioning of the sum x+ y, that is (x ·y)+ (x−y)+ (y−x)
= x + y, while (x · y) · (x − y) = 0 (or empty), (x · y) · (y − x) = 0
and (x − y) · (y − x) = 0 (Table 1). We can simplify this using the
symmetric difference operation, x ⊕ y = (x − y) + (y − x), such
that (x · y) + (x ⊕ y) = x + y, while (x · y) · (x ⊕ y) = 0. This not
necessarily the case for Vij. Consider the case of V02, labeled points
in two dimensions (Table 1). If the labeled shapes x and y contain
the same point with a different label, wemay consider the product
of x and y to contain that point without any label(s). After all, the
point is common, even if there is not a common label. However, if
we do so, the shapes x · y, x − y and y − x no longer partition the
shape x + y.

Note that this is not simply a result of the fact that we consider
the product of labeled points to behave differently from the behav-
ior of weighted line segments. Consider the algebra Wij to denote

42 R. Stouffs and R. Krishnamurti / Computer-Aided Design 110 (2019) 37–49

Fig. 6. Repeatedly adding a translated square with alternating color under an ‘‘opaque’’ ranking. t is the translation, ◦ the symbol for a composition of transformations.

Table 1
The operations of sum, product and difference for points (U02) and labeled points (V02), and for line segments (U11) and
weighted line segments (W11).

the set of all finite arrangements of i-dimensional hyperplane seg-
ments of limited but non-zero measure in a j-dimensional space,
with associated weights [3]. Given two shapes x and y of Wij, the
product x · y and the differences x− y and y− x do not always form
a partitioning of the sum x + y. Given two shapes of weighted line
segments in one dimension, with each shape consisting of a single
line segment and both line segments overlapping, while both line
segments have different weights (line thicknesses). The product of
x and y contains the line segment that is common to both shapes
with the minimum of both weights. This same line segment also
belongs to the difference of both line segments, when subtracting
the line segment with the smaller weight from the one with the
larger weight (Table 1).

4. A maximal element representation

Stiny [10] introduced the concept of maximal lines or line
segments. Krishnamurti [40] defined the maximal representation
of a shape as a set of disjoint spatial elements, each represented
by its co-descriptor and boundary. The co-descriptor of a spatial
element is its carrier – not to be mistaken with the carrier of an
algebra – for example, the carrier of a point is the same point,
the carrier of a line segment is the infinite line on which the line
segment lies, and likewise for plane and volume segments. Not
every carrier is necessarily an infinite spatial element, the carrier
of a circular arc is the circle onwhich the arc lies. The co-descriptor
of a spatial element is an important characteristic of the spatial
element (or shape) under the shape operations of sum, product and
difference: the co-descriptor is invariant under these operations,
and two spatial elements interact under sum, product or difference
only if they share the same co-descriptor, that is they are co-equal.
More specifically, two points interact only if they are co-incident,
two line segments if they are co-linear and two plane segments if
they are co-planar [40].

Thus, amaximal shape is represented as a set of spatial elements
such that any two elements in the set are either not co-equal
or, otherwise, disjoint, that is, they neither overlap, nor share
boundary. For example, in the case of a shape of line segments,
any two line segments l and l′ that are part of the shape combine
into a single line segment if l and l′ are co-equal and, moreover,
l and l′ overlap or share boundary. If no two line segments in
the representation of the shape can combine in this way, then
the shape is maximal. Note that points are co-equal only if they
are identical and, otherwise, are disjoint. It follows that any set
of points necessarily represents a maximal shape of points. We
express the behavior of shapes of points as follows, where x : X
specifies the set X as a representation of the shape x:

(x : X), (y : Y) ∈ U0 ⇒

x + y : X ∪ Y
x − y : X\Y
x · y : X ∩ Y
x ≤ y ⇔ X ⊆ Y

(1)

The behavior of shapes of other spatial elements can be expressed
in terms of their co-descriptors and boundaries. In order to simplify
the expression, we limit the behavioral expression to co-equal
shapes, thereby expressing shapes solely by their boundaries. We
refer to Stouffs [26] for an algebraic formulation that distinguishes
all three abstraction levels, general shapes, co-equal shapes and
spatial elements. Let B [x] denote the boundary (or boundaries) of
a (co-equal) shape x. The boundary of a shape of i-dimensional hy-
perplane segments is necessarily composed of (i− 1)-dimensional
hyperplane segments; the boundary of a shape of line segments is
composed of points, the boundary of a shape of plane segments is
composed of line segments, etc. Thus, the boundary of a shape in
the algebra Uij can be considered as a shape in the algebra U(i−1)j.
Given two (co-equal) shapes x and y, let Ix denote the boundary
subshape of x that lies within y, Ox the boundary subshape of x that

R. Stouffs and R. Krishnamurti / Computer-Aided Design 110 (2019) 37–49 43

Fig. 7. Specification of the boundary subshapes Ix , Ox , Iy , Oy , M and N , given two
(co-equal) shapes of line segments x and y, and their contribution to x+y, x ·y, x−y
and y − y.

lies outside of y, M the boundary subshape of both x and y where
the insides of x and y lie on the same side of the boundary, and N
the boundary subshape of both x and ywhere the insides of x and y
lie on opposite sides of the boundary (Fig. 7 and Table 2) [41]. Note
that the shapes Ix, Iy, Ox, Oy, M and N are necessarily disjoint. The
behavioral expression then becomes:

(x : B[x]), (y : B[y]) ∈ Ui̸=0 ⇒

x + y : B[x + y] = Ox + Oy + M
x − y : B[x − y] = Ox + Iy + N
x · y : B[x · y] = Ix + Iy + M

x ≤ y ⇔ Ix = 0 ∧ Oy = 0 ∧ N = 0 (2)

4.1. Behaviors for augmented shapes

Next, we consider themaximal behavior for augmented shapes.
Starting with the algebra Vij of labeled shapes (Table 1), let us
represent a (maximal) shape s with label set L by the pair (s,
L), which we denote a shape–attribute pair. This representation
assumes that every spatial element in s shares the same set of labels
L, that is, every label in L is an attribute to every spatial element
in s. A general labeled shape can then be represented as a set of
shape–attribute pairs {(s1, L1), . . . (sn, Ln)} with the shapes s1, . . . , sn
not overlapping, though they may share boundary. For the labeled
shape to be maximal, additionally, the label sets L1, . . . , Ln must be
distinct, otherwise, two pairs (si, Li) and (sj, Lj) with Li = Lj can
easily be replacedwith a single pair (si + sj, Li).We can then express
the behavior of labeled shapes in terms of the behavior of shapes.
We observe that while any labeled shape may have an empty set
of labels, no set of labels can be associated with the empty shape.
Therefore,we consider a function ‘el’ to reduce any shape–attribute
pair with zero shape (an ‘empty’ shape) to zero as follows:

el(s, L) = 0 if s = 0

(s, L) otherwise (3)

In addition, we consider a function ‘m’ to add a single shape–
attribute pair (s, L) to amaximal, labeled shape sL, where s is known
not to overlap with the labeled shape, though Lmay not be distinct
from the label sets in the labeled shape. As any contribution to sL,
and ‘m’, may be 0, e.g., following the application of the function ‘el’,
we take the opportunity to remove any occurrence of 0 in sL.

m((s, L), sL) = sL\{0, (s′, L)} ∪ {(s + s′, L)} if ∃(s′, L) ∈ sL
sL\{0} ∪ {(s, L)} otherwise

m(0, sL) = sL\{0} (4)

In order to simplify the behavioral expression for labeled shapes,
we will assume that each of the input shapes can be expressed as
a single shape–attribute pair:

(x : (s, L)), (y : (s′, L′)) ∈ Vij ⇒

x + y : m(el(s − s′, L),
m(el(s · s′, L ∪ L′), {el(s′ − s, L′)}))
x − y : m(el(s − s′, L), {el(s · s′, L\L′)})
x · y : el(s · s′, L ∩ L′)

x ≤ y ⇔ s ≤ s′ ∧ L ⊆ L′ (5)

Note that while we assume that each of the labeled input shapes
can be expressed as a single shape–attribute pair, there is no such
assumption about the result of the operations of sum, product and
difference on two single-pair labeled shapes. In fact, the operation
of sum may result in up to three shape–attribute pairs, that is, if
neither L is a subset of L′, nor L′ is a subset of L, then the shapes
s − s′, s · s′ and s′ − s will each have a different associated label
set and each of these three shapes may be non-empty. In the case
of the operation of difference (of (s, L) − (s′, L′)), this reduces to
up to two shape–attribute pairs as the shape s′ − s does not play
part in the result. In the case of the operation of product, only the
shape s · s′ contributes to the result. Finally, a shape–attribute pair
is part of another shape–attribute pair, in the context of labeled
shapes, only if the subshape relationship holds for the respective
shapes and the subset relationship for the respective label sets.We
note that this behavioral expression can be extended to general
labeled shapes, composed of multiple shape–attribute pairs, by
comparing respective shape–attribute pairs and accumulating the
results dependent on the operation under consideration. We leave
this exercise to the reader.

When adopting labels in the case of layering shapes, e.g., in
analogy to Photoshop layering, or filtering shapes in the case of
say, medical tomography, we must consider a different function
‘ew’ to reduce a shape–attribute pair with either zero shape or zero
attribute to 0.We denote the attributew in anticipation of weights
as attributes but note that this function can equally be written
using L instead of w.

ew(s,w) = 0 if s = 0 or w = 0

(s,w) otherwise (6)

We consider layered shapes as members of the algebra Uij
∧ L,

with L an algebra for layer labels and ‘∧’ denoting an operation of
attribution between algebras [26].

(x : (s, L)), (y : (s′, L′)) ∈ (Uij
∧L) ⇒

x + y : m(ew(s − s′, L),
m(ew(s · s′, L ∪ L′), {ew(s′ − s, L′)}))
x − y : m(ew(s − s′, L), {ew(s · s′, L\L′)})
x · y : ew(s · s′, L ∩ L′)

x ≤ y ⇔ s ≤ s′ ∧ L ⊆ L′ (7)

Next, consider the algebraWij ofweighted shapes (Table 1), sim-
ilarly representing a shape swith weight w by the pair (s, w). Note
that weights assigned to the same shape always interact, any two
weights always combine into a single weight that is the maximum
of both weights. As a consequence, a weight attribute is always
represented as a single (numeric) value. Also remember that, in
contrast to labeled shapes, weighted shapes may neither have a
zero weight, nor can any weight (other than zero) be associated
with the empty shape. Therefore, we adopt the function ‘ew’ to
reduce a shape–attribute pairwith either zero shape or zeroweight
to 0, but retain the function ‘m’ to adding a single shape–attribute
pair (s, w) to a maximal weighted shape sw (replacing Lwith w).

(x : (s,w)), (y : (s′,w′)) ∈ Wij ⇒

x + y : m(ew(s − s′,w),

44 R. Stouffs and R. Krishnamurti / Computer-Aided Design 110 (2019) 37–49

Table 2
Specification of the boundary subshapes Ix , Ox , Iy , Oy , M and N, given two (co-equal) shapes of plane
segments (U2) or volume segments (U3), and the boundary subshapes’ respective contribution to the
sum, product and difference of both shapes.

m(ew(s · s′,max(w,w′)), {ew(s′ − s,w′)}))
x − y : m(ew(s − s′,w), {ew(s · s′,max(w − w′, 0))})
x · y : ew(s · s′,min(w,w′))

x ≤ y ⇔ s ≤ s′ ∧ w ≤ w′ (8)

If, instead, we consider Stouffs’ [34] definition for subtracting
weighted shapes, then, we adopt a ternary conditional operator
(‘?:’) to specify the interaction of two weights in the context of the
operator of difference. Recall that, in this case, for two weights u
and v, u –+ v = u if u > v, and 0 otherwise.

(x : (s,w)), (y : (s′,w′)) ∈ Wij ⇒

x + y : m(ew(s − s′,w),
m(ew(s · s′,max(w,w′)), {ew(s′ − s,w′)}))
x − y : m(ew(s − s′,w), {ew(s · s′, (w>w′?w : 0))})
x · y : ew(s · s′,min(w,w′))

x ≤ y ⇔ s ≤ s′ ∧ w ≤ w′ (9)

Having expressed themaximal behaviors for labels andweights, let
us explore additional behaviors drawing from, e.g., Knight’s [17]
color grammars. Note that with respect to the maximal behavior
here identified, that is, the operations of sum, product and dif-
ference, and the subshape relationship, Stiny’s [11] descriptions
behave exactly the way as labels when used as shape attributes.

R. Stouffs and R. Krishnamurti / Computer-Aided Design 110 (2019) 37–49 45

Table 3
The operations of sum, product and difference for plane segments (U22) and colored plane segments (U22

∧ C), and for
volume segments (U33) and colored volume segments (U33

∧ C), with different colors under an ‘‘opaque’’ behavior.

Therefore, descriptions will not be explored any further. Returning
to Knight’s [17] color attributes, let us first consider an ‘‘opaque’’
behavior for colors, where any colored shape that is being added
‘‘covers’’ any existing colored shape it overlaps, such that the new
color replaces the existing color for this overlapping subshape
(Fig. 6). Knight [16,17] only specifies what happens in the case
of adding a colored shape, she does not explicate any behavior
under product or difference, though she does present examples
of rules and derivations from which it can be concluded that an
exact color match is required for subshape detection. Similarly, for
the operations of product and difference, a colored shape shares a
part with another colored shape only if both shapes share the same
color for this part (Table 3).

We consider a shape–attribute pair (s, c) for colored shapes but
do not specify any specific representation for the color other than
that is always a single color value. This ‘single’ value could be a
number expressing a gray scale, a triple of numbers specifying a
color in an RGB or HSV color space, or a label specifying a color
name. We consider colored shapes as members of the algebra Uij

∧

C , with C an algebra for colors, and adopt the ternary conditional
operator (‘?:’) to specify the interaction of two colors in the context
of the operators of product and difference. The ‘‘opaque’’ behavior
for colored shapes can be expressed as follows (Table 3):

(x : (s, c)), (y : (s′, c ′)) ∈ (Uij
∧C) ⇒

x + y : m(ew(s − s′, c), {ew(s′, c ′)})

x − y : m(ew(s − s′, c), {ew(s · s′, (c == c ′? 0 : c))})

x · y : ew(s · s′, (c == c ′? c : 0))

x ≤ y ⇔ s ≤ s′ ∧ c = c ′ (10)

Knight [17] generalizes the opaque behavior described above
through rankings. When two overlapping shapes, each with a
different color, combine, the colors interact in accordance to their
ranking. Either one color is ranked higher and covers the other
color, or both colors rank equally and thesemay be replaced by any
other color. Note that the ranking of two colors can be specified
to be dependent on the ordering of the colors. This is the case
for an ‘‘opaque’’ behavior where any color ranks higher than any
other color, in that order if the first color is being added to the
second color. If two overlapping shapes share the same color, this
color can be replaced by another one, by virtue of the fact that
both colors – being the same – rank equally. Knight [17] refers to
the replacement of two colors by another one as the ‘‘blending’’
of the colors and offers an example with colors interpreted as
materials, e.g., aluminum and wood. In line with this naming of
colors – or materials –, here, we consider colors as an enumeration
accompanied by amatrix that specifies for each pair of enumerated
values their ranking, or rather the value resulting froma combining
of both values. For example, Table 4 illustrates the ranking matrix
for the opaque ranking considered above for two enumerated
colors, ‘‘black’’ and ‘‘white’’ (see also, [2]); Table 5 illustrates the

46 R. Stouffs and R. Krishnamurti / Computer-Aided Design 110 (2019) 37–49

Table 4
Ranking matrix for the opaque ranking of ‘‘black’’ and ‘‘white’’.
x y

Black White

Black Black White
White Black White

Table 5
Ranking matrix example for material ranking [8].
x y

Aluminum Wood

Aluminum Wood Wood
Wood Aluminum Aluminum

Table 6
Ranking matrix example for wall material ranking.
x y

Load-bearing Insulation Finish

Load-bearing Load-bearing Load-bearing Load-bearing
Insulation Load-bearing Insulation Insulation
Finish Load-bearing Insulation Finish

rankingmatrix for one of thematerial ranking examples presented
by Knight [17]. Note that Knight [17] only identifies the ranking
in the case of equal materials, as other cases do not arise in her
derivations. The matrix in Table 4 has been completed for unequal
materials.

Ranking materials is not much different from the way BIM
software (e.g., ArchiCAD) resolves intersecting building elements.
Element layers with different material properties are prioritized
according to the material. For instance, assume a wall is composed
of three layers, a load-bearing layer, an insulation layer and a finish
layer. When two walls intersect, the load-bearing layer should
prioritize over the insulation layer, which in turn should prioritize
over the finish layer (Fig. 8). The resulting ranking matrix is shown
in Table 6.

Denoting the ranking matrix as ‘xy[]’, we can specify a gen-
eralized behavior for colors specified as enumerated values with
ranking behavior as follows, retaining C to denote the algebra of
colors:

(x : (s, c)), (y : (s′, c ′)) ∈ (Uij
∧C) ⇒

x + y : m(ew(s − s′, c),
m(ew(s · s′, xy[c, c ′

]), {ew(s′ − s, c ′)}))
x − y : m(ew(s − s′, c), {ew(s · s′, (c == c ′? 0 : c))})
x · y : ew(s · s′, (c == c ′? c : 0))

x ≤ y ⇔ s ≤ s′ ∧ c = c ′ (11)

4.2. A uniform characterization

The similarities between the different behavioral specifications
for augmented shapes, corresponding to different attribute types,
are obvious, yet, so far, every new attribute type has required us to
specify a behavioral expression for augmented shapes, or shape–
attribute pairs, rather than only for the attributes in the context
of augmented shapes. Here, we explore a uniform characterization
of attribute behaviors within a fixed expression for augmented
shapes. Let us first address the uniform behavioral expression for
augmented shapes, independent of the behavior of the attribute
type.

We consider general shape–attribute pairs (s, a) composed of a
shape s and an attribute forma, with the attribute formamember of

the attribute algebra A. We consider the function ‘m’ to add a single
shape–attribute pair (s, a) to amaximal, augmented shape S, where
s is known not to overlapwith the augmented shape, though amay
not be distinct from the attribute forms in the augmented shape.
This is not any different from the function ‘m’ as defined before
(4):

m((s, a), S) = S\{(s′, a), 0} ∪ {(s + s′, a)} if ∃(s′, a) ∈ S
S\{0} ∪ {(s, a)} otherwise

m(0, S) = S\{0}

(12)

The same does not apply to the function ‘e’ that reduces any
shape–attribute pair with zero shape and/or zero attribute form
to zero, as there were two versions of ‘e’ defined. A first ‘el’ that
applied to labels (and descriptions) and allowed a zero attribute
form, though not a zero shape (3), and a second ‘ew’ that applied
to weights and colors and allowed neither a zero shape, nor a
zero attribute form (6). In order to combine both versions into one
function ‘e’, we assume an additional value ‘nil’, that is similar to
zero, i.e., no or an empty value, but distinguishes itself from zero
in that a ‘nil’ value is never allowed to persist as an attribute value,
while a zero value may.

e(s, a) = 0 if s = 0 or a = nil
(s, a) otherwise (13)

Then, a uniform behavioral expression for augmented shapes
can be expressed as follows, considering operations of sum, prod-
uct and difference, and a part relationship on attribute forms that
will be differentiated according to attribute type:

(x : (s, a)), (y : (s′, a′)) ∈ (Uij
∧A) ⇒

x + y : m(e(s − s′, a),
m(e(s · s′, a + a′), {e(s′ − s, a′)}))
x − y : m(e(s − s′, a), {e(s · s′, a − a′)})
x · y : e(s · s′, a · a′)

x ≤ y ⇔ s ≤ s′ ∧ a ≤ a′ (14)

The attribute form is maximal if the individual attribute ele-
ments are disjoint, where disjoint is defined in terms of the be-
havior of the attribute type. For example, labels are disjoint of they
are distinct. Similar to points, a set of labels necessarily represent
a maximal form of labels. As a result, a behavioral expression for
forms of labels is similar to (1), where x and y denote forms of
labels, and X and Y the sets representing them, that is, (x : X), (y
: Y) ∈ ℘(L). The empty set equates to the zero form.

(x : X), (y : Y) ∈℘(L) ⇒

x + y : X ∪ Y
x − y : X\Y
x · y : X ∩ Y

x ≤ y ⇔ X ⊆ Y (15)

On the other hand, weights are never disjoint, any two weights
always combine into a single weight that is the maximum of both
weights. As a consequence, a maximal form of weights is always
represented as a singleton set. The behavioral expression for forms
of weights can be written as follows. Note the use of ‘nil’ instead
of zero resulting from the subtraction of a bigger weight from
a smaller weight, in order to ensure that the resulting shape–
attribute pair will be reduced to zero by the application of the
function ‘e’.

(x : {w}), (y : {w′
}) ∈ ℘1(ℜ+) ⇒

R. Stouffs and R. Krishnamurti / Computer-Aided Design 110 (2019) 37–49 47

Fig. 8. (left) Two walls to intersect, each wall is composed of three layers (load-bearing concrete, insulation, finish); (right) The result following the material ranking in
Table 6.

x + y : {max(w,w′)}
x − y : (w>w′? {w − w′

} : nil)
x · y : {min(w,w′)}

x ≤ y ⇔ w ≤ w′ (16)

As explained above, colors expressed via rankings take on a
special behavior. With respect to the operation of sum, colors are
never disjoint and any two colors always combine into a single
color, as specified by the rankingmatrix. Therefore, amaximal form
of colors is also always represented as a singleton set. However,
with respect to the operations of product and difference, and the
part relationship, colors are always disjoint unless they are equal.
The behavioral expression for colors with ranking matrix can be
written as follows:

(x : {c}), (y : {c ′
}) ∈ ℘1(C) ⇒

x + y : {xy[c, c ′
]}

x − y : (c == c ′? nil : {c})
x · y : (c == c ′? {c} : nil)

x ≤ y ⇔ c = c ′ (17)

5. Discussion

We have expressed a uniform characterization of augmented
shapes in terms of shape–attribute pairs (s, a), where s is a co-equal
shape and a an attribute form, and every spatial element in s shares
the same attribute form a. Then, an augmented shape is generally
represented by a set of shape–attribute pairs {(s1, a1), . . . (sn, an)}
with the following conditions. Firstly, no two shapes from among
s1, . . . , sn may overlap, though theymay share boundary. Obviously,
there is no requirement for them to be co-equal and note that only
co-equal shapes can possibly overlap. Secondly, the attribute forms
a1, . . . , an must be disjoint with respect to the operation of sum on
these attribute forms. Note that sets of labels are disjoint if these
do not share any label, weights are never disjoint and any attribute
form of weights specifies only a single weight, and colors under
ranking are never disjoint under the operation of sum, though
they may be disjoint with respect to the operations of product and
difference, and the part relationship.

We have left to the reader the exercise of expressing a behavior
of augmented shapes in terms of the behavior of shape–attribute
pairs. Actually, from an implementation point of view, we may
opt instead to represent augmented shapes in terms of spatial
element–attribute pairs, rather than collecting spatial elements
that share the same attribute form together. An augmented shape
can then be said to be maximal if no spatial elements overlap,
if spatial elements that share boundary have distinct attribute
forms, and all attribute forms are maximal. Expressing the uni-
form characterization in terms of spatial element–attribute pairs
would be more complicated as the product or difference of two

spatial elements is not necessarily a single spatial element. Froman
implementation point of view, this may not matter though as the
complexity of dealingwith collections of spatial elements resulting
from operations of product and difference on spatial elements will
likely outweigh the complexity of considering an additional level
of aggregation of subshapes of spatial elements that share the same
attribute form.

Representing shapes as collections of spatial elements allows
the imposition of an ordering relationship on the spatial elements
that can assist in identifying elements that may interact. For ex-
ample, any total ordering on points can simplify the process of
determining coincident points in two shapes of points that serve as
arguments to any of the operations of sum, product or difference,
or the subshape relationship. The same holds for line segments
that can be ordered by their co-descriptor and their position along
the infinite line that is expressed by this co-descriptor. Since line
segments only interact if they are co-equal, that is, share the same
co-descriptor, and overlap or share boundary, they must be either
adjacent in an ordered collection of line segments, or be separated
by one or more line segments that would also overlap (see, [42]).
A similar ordering cannot be found for plane segments or vol-
ume segments where, instead, a classification and construction
approach along the line of (2) is more appropriate (see, [41]).

Finally, while we have provided a function ‘m’ to add a single
shape–attribute pair (s, a) to amaximal, augmented shape S, where
s is known not to overlap with any part of S, we have omitted a
general function or operator that takes any collection of spatial
elements, any collection of attribute elements, or any collection of
shape–attribute pairs, and turns it into a maximal shape, attribute
form, or augmented shape, respectively. Note that the operation of
sumcanbe considered a simplified version of such general function
or operator as it takes as arguments two elements that may not
be maximal with respect to each other, though each would have
to be maximal on its own, and returns a maximal shape or form
combining both arguments. Therefore, a maximal operator can be
conceived, at the minimum, by iteratively applying the operation
of sum on partial shapes or forms. We leave the exercise to the
reader.

5.1. An algebraic abstraction

Stouffs [26] demonstrates how an algebra with carrier ℘(A
× ℘(B)) and signature including sum, product, difference, and
reduction can be defined in terms of a two-sorted partial algebra
with carrier { A, ℘(A)} and an attribute algebra with carrier ℘(B).
The partial algebra has a signature including operations of com-
bine, common and complement; these correspond to the shape
operations of sum, product and difference but, instead, defined
on two spatial elements. The attribute algebra simply has a signa-
ture including sum, product, difference, and reduction. As such, it
provides an algebraic characterization of spatial elements, on the
one hand, and attribute forms, on the other hand, and derives an

48 R. Stouffs and R. Krishnamurti / Computer-Aided Design 110 (2019) 37–49

algebraic characterization of augmented shapes from these. We
will not revisit this algebraic formulation here, instead, we will
draw from this algebraic abstraction in order to explore the impact
of our uniform characterization of augmented shapes.

Stouffs [26] notes that the algebraic derivation of augmented
shape algebras distinguishes between shape algebras, expressing
the object of the attribute relationship, and attribute algebras,
expressing the non-spatial attribute in the relationship, as we
have done here. However, it is also noted that shape and attribute
algebrasmay share the same behavior and no conditions have been
imposed on the behavior of either the shape algebra component or
the attribute algebra component of the augmented shape algebra.
As such, the algebraic derivation equally applies to augmented
(shape) algebras where the base component is a two-sorted par-
tial algebra for, e.g., labels, and the attribute algebra is a shape
algebra. This, generally, allows for combinations of shapes and
non-geometric attributes, non-geometric elements and shape at-
tributes, shapes and shape attributes, and non-geometric elements
and non-geometric attributes [26]. Stouffs et al. [43] provide an
example from sensor planning for buildings, where the primary
information target of a planner of embedded sensors is the building
slab for the sensor to be embedded, e.g., represented as a label
identifying the slab, while the shape of the slab is also required,
but only as an attribute to the label.

Upon inspection of our own characterization, we can conclude
that the same conclusion holds. Not only have we used a similar
formulation for the behavioral expressions for shapes and attribute
forms of different kinds, we have even identified the same expres-
sion for points (1) and labels (15). Except for the explication of Uij
in the uniform behavioral expression for augmented shapes, this
expression applies equally to other combinations of base element
types and attribute element types. The same applies to the function
‘m’; only the function ‘e’ would need to be altered slightly, because
when considering non-spatial element types for the first entity in
the argument pair, the value may potentially be ‘nil’ and this case
should be caught.

5.2. An implementation

In this paper we have omitted any algorithmic elaboration of
the uniform characterization we have presented. We have already
argued that from an implementation point of view, representing
augmented shapes directly in terms of spatial element–attribute
pairs is preferable over collecting spatial elements that share the
same attribute form together in an in-between representation.
This is further corroborated by the algebraic derivation of com-
binations of basic shape algebras with attribute algebras [26].
In fact, this algebraic abstraction at the same time serves as a
procedural abstraction, offering insights into the modular imple-
mentation of a general shape grammar interpreter for different
grammar forms. The SortalGI shape grammar interpreter exactly
adopts this modular implementation by distinguishing different
classes of (characteristic) individuals and (behavioral) forms. Each
characteristic individual class specifies at a minimum the result
of operations of combine, common and complement on a pair
of instances of the class. Each behavioral form class specifies the
result of operations of sum, product and difference (and maxi-
malize) on a pair of forms of individuals, thereby relying on the
implementation of the characteristic individual class when dealing
with individuals from both forms. The representation of any data
type (or sort) then relies on the combination of a characteristic
individual class and behavioral form class. As the latter can be
easily reused, e.g., a discrete behavior applies not only to points
but also to labels, adding a new data type mostly only requires a
new characteristic individual class implementing the operations of
combine, common and complement (among others). While these

have been developed for many geometrical data types, including
circular arcs and quadratic Bezier curves, fewer attribute types
are pre-defined and it is exactly with respect to attribute data
types that idiosyncratic types can be more common. While some
coding is still necessary, we hope that the uniform characteri-
zation of the behavior of different attribute types under oper-
ations of sum, product and difference, and a part relationship,
can serve designers and researchers to formalize their potentially
idiosyncratic attribute data types and extend the SortalGI shape
grammar interpreter to support their grammatical approach to
design.

6. Conclusion

We have presented a uniform characterization of the behavior
of different attribute types under operations of sum, product and
difference, and a part relationship. Togetherwith a uniformcharac-
terization of the behavior of spatial element types under the same
operations and relationship, and a unique behavioral expression
for augmented shapes in terms of these characterizations, we have
been able to uniformly describe the behavior of augmented shapes.
In fact, the characterizations of attribute types and spatial element
types are almost uniform, providing for the ability to combine
spatial and non-spatial element types in other combinations of
augmented forms.

Acknowledgment

Thiswork received some funding support fromSingaporeMOE’s
AcRF start-up grant, WBS R-295-000-129-133.

References

[1] Stiny G. Computing with form and meaning in architecture. J Archit Educ
1985;39(1):7–19. http://dx.doi.org/10.1080/10464883.1985.10758382.

[2] Stouffs R. On shape grammars, color grammars and sortal grammars. In:
AchtenH, Pavlicek J, Hulin J,MatejovskaD, editors. Digital physicality, volume
1. Brussels: eCAADe; 2012, p. 479–87.

[3] Stiny G. Weights. Environ Plann B Plann Des 1992;19:413–30. http://dx.doi.
org/10.1068/b190413.

[4] Agkathidis A. Generative design methods - implementing computational
techniques in undergraduate architectural education. In: Martens B,
Wurzer G, Grasl T, Lorenz WE, Schaffranek R, editors. Real time, volume
2. Brussels: eCAADe; 2015, p. 47–55.

[5] Terzidis K. Algorithmic architecture. Architectural 2006.
[6] Janssen P, Stouffs R. Types of parametric modelling. In: Ikeda Y, Herr CM,

Holzer D, Kajima S, Kim MJ, Schnabel MA, editors. Emerging experienced in
the past, present and future of digital architecture. Hong Kong: CAADRIA;
2015, p. 157–66.

[7] Bohnacker H, Grossa B, Laub J. Generative design: visualize, program, and
create with processing. Princeton Architectural; 2012.

[8] Flemming U. The role of shape grammars in the analysis and creation of
designs. In: Kalay YE, editor. Computability of design. Wiley-Interscience;
1987, p. 245–72.

[9] Woodbury R, Burrow A. Whither design space? AI-EDAM 2006;20:63–82.
http://dx.doi.org/10.1017/S0890060406060057.

[10] Stiny G. Introduction to shape and shape grammars. Environ Plann B Plann
Des 1980;7:343–51. http://dx.doi.org/10.1068/b070343.

[11] Stiny G. A note on the description of designs. Environ Plann B Plann Des
1981;8:257–67. http://dx.doi.org/10.1068/b080257.

[12] Carlson C, McKelvey R, Woodbury RF. An introduction to structure and struc-
ture grammars. Environ Plann B Plann Des 1991;18(4):417–26. http://dx.doi.
org/10.1068/b180417.

[13] Heisserman J, Woodbury R. Geometric design with boundary solid gram-
mars. In: Formal design methods for CAD. Amsterdam: North-Holland; 1994,
p. 85–105.

[14] Duarte JP, Correia R. Implementing a description grammar: generating hous-
ing programs online. Constr Innov 2006;6(4):203–16. http://dx.doi.org/10.
1108/14714170610713890.

[15] Stiny G, Gips J. Shape grammars and the generative specification of painting
and sculpture. In: Information processing71. Amsterdam: North-Holland;
1972, p. 1460–5.

http://dx.doi.org/10.1080/10464883.1985.10758382
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb2
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb2
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb2
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb2
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb2
http://dx.doi.org/10.1068/b190413
http://dx.doi.org/10.1068/b190413
http://dx.doi.org/10.1068/b190413
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb4
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb4
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb4
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb4
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb4
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb4
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb4
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb5
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb6
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb6
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb6
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb6
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb6
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb6
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb6
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb7
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb7
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb7
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb8
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb8
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb8
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb8
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb8
http://dx.doi.org/10.1017/S0890060406060057
http://dx.doi.org/10.1068/b070343
http://dx.doi.org/10.1068/b080257
http://dx.doi.org/10.1068/b180417
http://dx.doi.org/10.1068/b180417
http://dx.doi.org/10.1068/b180417
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb13
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb13
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb13
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb13
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb13
http://dx.doi.org/10.1108/14714170610713890
http://dx.doi.org/10.1108/14714170610713890
http://dx.doi.org/10.1108/14714170610713890
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb15
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb15
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb15
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb15
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb15

R. Stouffs and R. Krishnamurti / Computer-Aided Design 110 (2019) 37–49 49

[16] Knight TW. Color grammars: designing with lines and colors. Environ Plann B
Plann Des 1989;16:417–49. http://dx.doi.org/10.1068/b160417.

[17] Knight TW. Color grammars: the representation of form and color in design.
Leonardo 1993;26:117–24.

[18] Stouffs R, Krishnamurti R. Sortal grammars as a framework for exploring
grammar formalisms. In: Burry M, Datta S, Dawson A, Rollo J, editors. Math-
ematics and design 2001. Geelong, Australia: The School of Architecture &
Building, Deakin University; 2001, p. 261–9.

[19] Grasl T, Economou A. From topologies to shapes: parametric shape grammars
implemented by graphs. Environ Plann B Plann Des 2013;40(5):905–22. http:
//dx.doi.org/10.1068/b38156.

[20] Wortmann T. Representing shapes as graphs (Master’s thesis), Cambridge,
MA: MIT; 2013.

[21] Strobbe T, Pauwels P, Verstraeten R, De Meyer R, Van Campenhout J. To-
ward a visual approach in the exploration of shape grammars. AI-EDAM
2015;29(4):503–21. http://dx.doi.org/10.1017/S0890060415000475.

[22] Wortmann T, Stouffs R. Algorithmic complexity of shape grammar
implementation. AI-EDAM 2018;32(2):138–46. http://dx.doi.org/10.1017/
S0890060417000440.

[23] Stouffs R, Krishnamurti R. Algorithms for classifying and constructing the
boundary of a shape. J Des Res 2006;5(1):54–95. http://dx.doi.org/10.1504/
JDR.2006.010796.

[24] Jowers Y, Earl C. The construction of curved shapes. Environ Plann B PlannDes
2010;37:42–58. http://dx.doi.org/10.1068/b35093.

[25] Jowers Y, Earl C. Implementation of curved shape grammars. Environ Plann B
Plann Des 2011;38:616–35. http://dx.doi.org/10.1068/b36162.

[26] Stouffs R. Implementation issues of parallel shape grammars. AI-EDAM
2018;32:162–76. http://dx.doi.org/10.1017/S0890060417000270.

[27] Krstic D. Constructing algebras of design. Environ Plann B Plann Des
1999;26:45–57. http://dx.doi.org/10.1068/b260045.

[28] Krstic D. Algebras of shapes revisited. In: Gero JS, editor. Design computing
and cognition ’12. Dordrecht: Springer; 2012, p. 361–76.

[29] Beirao JN. CItyMaker: Designing grammars for urban design (Ph.D. thesis),
Delft, the Netherlands: TU Delft; 2012.

[30] Eastman CM. Eastman cm on the analysis of intuitive design processes. In:
Moore GT, editor. Emerging methods in environmental design and planning.
Cambridge, MA: MIT; 1970, p. 21–37.

[31] Latour B. Drawing things together. In: LynchM,Woolgar S, editors. Represen-
tation in scientific practice. Cambridge, MA: MIT; 1990, p. 19–68.

[32] Eastman C. New directions in design cognition: studies of representation and
recall. In: Eastman C, McCracken M, Newstetter W, editors. Design knowing
and learning: cognition in design education. Amsterdam: Elsevier; 2001,
p. 147–98.

[33] Akin Ö. Simon says: design is representation. Arredamento 2001;July. http:
//www.andrew.cmu.edu/user/oa04/Papers/AradSimon.pdf.

[34] Stouffs R. Constructing design representations using a sortal approach. Adv
Eng Inform 2008;22:71–89. http://dx.doi.org/10.1016/j.aei.2007.08.007.

[35] Kiviniemi A. Ten years of ifc development - why are we not yet there? In:
Keynote lecture at the joint international conference on computing and
decision making in civil and building engineering, montreal. 2006, p. 14–6.

[36] AIA Model Support Group. IFC2x Edition 3. International Alliance for
Interoperability; 2006. http://www.iai-international.org/Model/R2x3_final/
index.htm.

[37] Manola F, Miller E editors, RDF Primer. W3C world wide web consortium.
2004, http://www.w3org/TR/rdf-primer/.

[38] Arnold BH. Logic and boolean algebra. Englewood Cliffs, NJ: Prentice-Hall;
1962.

[39] Stiny G. Shape: Talking about seeing and doing. Cambridge, MA: MIT:
2006.

[40] Krishnamurti R. Themaximal representation of a shape. Environ PlannBPlann
Des 1992;19:267–88. http://dx.doi.org/10.1068/b190267.

[41] Krishnamurti R, Stouffs R. The boundary of a shape and its classification. J Des
Res 2004;4(1):75–101. http://dx.doi.org/10.1504/JDR.2004.009843.

[42] Krishnamurti R. The arithmetic of shapes. Environ Plann B Plann Des
1980;7:463–84. http://dx.doi.org/10.1068/b070463.

[43] Stouffs R, Krishnamurti R, Park, K. Sortal structures: supporting representa-
tional flexibility for building domain processes. Comput Aided Civ Infrastruct
Eng 2007;22:98–116. http://dx.doi.org/10.1111/j.1467-8667.2006.00473.x.

http://dx.doi.org/10.1068/b160417
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb17
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb17
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb17
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb18
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb18
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb18
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb18
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb18
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb18
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb18
http://dx.doi.org/10.1068/b38156
http://dx.doi.org/10.1068/b38156
http://dx.doi.org/10.1068/b38156
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb20
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb20
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb20
http://dx.doi.org/10.1017/S0890060415000475
http://dx.doi.org/10.1017/S0890060417000440
http://dx.doi.org/10.1017/S0890060417000440
http://dx.doi.org/10.1017/S0890060417000440
http://dx.doi.org/10.1504/JDR.2006.010796
http://dx.doi.org/10.1504/JDR.2006.010796
http://dx.doi.org/10.1504/JDR.2006.010796
http://dx.doi.org/10.1068/b35093
http://dx.doi.org/10.1068/b36162
http://dx.doi.org/10.1017/S0890060417000270
http://dx.doi.org/10.1068/b260045
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb28
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb28
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb28
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb29
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb29
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb29
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb30
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb30
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb30
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb30
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb30
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb31
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb31
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb31
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb32
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb32
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb32
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb32
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb32
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb32
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb32
http://www.andrew.cmu.edu/user/oa04/Papers/AradSimon.pdf
http://www.andrew.cmu.edu/user/oa04/Papers/AradSimon.pdf
http://www.andrew.cmu.edu/user/oa04/Papers/AradSimon.pdf
http://dx.doi.org/10.1016/j.aei.2007.08.007
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb35
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb35
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb35
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb35
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb35
http://www.iai-international.org/Model/R2x3_final/index.htm
http://www.iai-international.org/Model/R2x3_final/index.htm
http://www.iai-international.org/Model/R2x3_final/index.htm
http://www.w3org/TR/rdf-primer/
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb38
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb38
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb38
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb39
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb39
http://refhub.elsevier.com/S0010-4485(18)30113-1/sb39
http://dx.doi.org/10.1068/b190267
http://dx.doi.org/10.1504/JDR.2004.009843
http://dx.doi.org/10.1068/b070463
http://dx.doi.org/10.1111/j.1467-8667.2006.00473.x

	A uniform characterization of augmented shapes
	Introduction
	Shapes and attributes
	A partial order relation
	A maximal element representation
	Behaviors for augmented shapes
	A uniform characterization

	Discussion
	An algebraic abstraction
	An implementation

	Conclusion
	Acknowledgment
	References

