
R Stouffs and R Krishnamurti.  Flexibility and dynamism in digital design
representations. EuropIA'8, Delft, Netherlands, April 2001

Flexibility and dynamism in digital design
representations

Rudi STOUFFS*, Ramesh KRISHNAMURTI **

Abstract: There is a strong need for computational representations for design that
are both flexible and dynamic. This requires representational structures that can be
reconfigured in the selection of components and their compositional relationships. It
further implies the adoption of data entities and collections thereof that are
empowered to dynamically alter their values, attributes, and composition based on
higher-level or conceptual changes by the user. At the same time, the user must be
offered new ways of expressing her intent in selecting objects for manipulation. We
present a framework for representational flexibility named sorts in order to provide
such flexibility and dynamism to the user.
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1 Representational flexibility and dynamism
Effective digital design representations have been a topic of research ever since
Sutherland’s Sketchpad (SUT 63) marked the beginning of CAD research. Early
efforts into purely geometric representations led to the establishment of geometric
modeling as a research field, presenting us, amongst others, with polygon-based and
NURBS-based three-dimensional representations that currently form the basis of
most modeling applications. More recently, product modeling research has taken a
much wider view of design representations, considering geometric design as only
one aspect in the product design process and focusing on design as a collaborative
process between a variety of actors and experts from many different design
disciplines. These different disciplines are concerned with different aspects of the
final product and require different representations to work with. Furthermore,
different actors adopt different design techniques and methodologies, demanding
alternative design representations for a same product aspect. Integrating these
different design views into a single product model, or supporting information
exchange between alternative representations, possibly in coordination with a
central product model, is far from straightforward, as current research into product
models, such as ISO STEP (ISO 94), illustrates.
In architectural and building design, this problem is even more prominent, as design
methodologies are varied and diverse, the actors in a collaborative building project
are numerous and from a large body of disciplines, and not least, both the project
and team are potentially unique from project to project. Furthermore, the building
industry is fragmented and characterized by a large number of small- and medium-
sized companies, making it even harder to impose common models or processes for
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information exchange. As a result, information exchange in the building industry has
long been, and still is, dominated by a data exchange format, DXF, that is mostly
concerned with geometric information and which was designed for use with a single
commercial application, AutoCAD™. At the same time, many efforts exist and have
existed to conceive a common product model for building design, for example,
within the STEP developments, by the International Alliance for Interoperability
(BAZ 98), and more recently in XML (AEC 99; TB 00). Despite the many efforts,
little real progress has been made, both in agreeing on common models for various
building design aspects, and in convincing the building industry to adopt such
models on a general level.
Even if successful in the future, it is debatable whether a common product model
will support the variety and flexibility it intends to enable. Conceivably, it may
further restrict creativity and individuality by imposing a common model that caters
only to an a priori defined collection of views. For one, new design and analysis
techniques or methodologies may be conceived and developed requiring new and
different design representations that lie outside of the scope of the product model.
Secondly, diversity in design approaches within the same discipline may not be, as a
whole, supported by the same model. Lastly, even within the same design process, a
single actor may choose to adopt different design representations for different
purposes at various stages of this process. Thus, there is a need to offer both
flexibility in representations that allows a designer to adapt a representation to her
intentions and needs, and representational dynamism that enables representations to
be reconfigured throughout the design process in order to reflect the task at hand.
In order to support such flexibility and dynamism, a framework must be conceived
and developed that provides support for exploring alternative design representations,
for comparing design representations with respect to scope and coverage, and for
mapping design information between representations, even if their scopes are not
identical. Typically, a representation is a complex structure of primitive data entities
and compositional relationships (STO et al 96). Comparing different representations,
therefore, requires a comparison of the primitive components, their mutual
relationships, and the overall compositional structure. On the other hand, the
expressive power of a representational framework is defined by its vocabularies of
primitive data types and compositional relationships. By carefully selecting the
vocabulary of compositional relationships, designers can be given freedom and
flexibility to develop or adopt representations that serve their intentions and needs,
while at the same time these can be formally compared with respect to scope and
coverage in order to support information exchange. Such a comparison will not only
yield a possible mapping, but also uncover potential data loss when moving data
from less-restrictive to more-restrictive representations.
Flexible representations necessitate the ability to reconfigure both the selection of
components and the compositional structure of these representations. Dynamic
representations require data components that are empowered to dynamically alter
their values, attributes, and composition based on higher-level or conceptual
changes by the user (see section 2). Hereto, a behavioral specification of the data is
required that enables a uniform approach for dealing with and manipulating different



data components. At the same time, representational flexibility necessitates new
ways of expressing one’s intent in selecting objects and their structure for
manipulation (see section 3). We present a framework for representational flexibility
named sorts in order to provide such flexibility and dynamism to the user (see
section 4). It is based on a maximal element representation for shapes and enables
shape and data recognition within a rule-based system.

2 The object-oriented myth
Besides a specification of the compositional relationships, a careful selection must
be made of the primitive data types. Inducing dynamism into representations not
only requires the ability to reconfigure representational structures by modifying the
compositional relationships, but also implies the adoption of data entities and
collections thereof that are empowered to dynamically alter their values, attributes,
and composition based on higher-level or conceptual changes by the user. Most
CAD applications have historically, and still at present, adopted an object-oriented
approach at the conceptual level, providing users with line segments, surfaces, or
solids as objects with attributes that maintain their properties at all times, unless
explicitly altered by the user. It is a common misconception that the adoption of an
object-oriented paradigm is generally beneficial at every level of an application
development. While it is a conceptually attractive approach, because it is completely
predictable and as such very understandable to the user, it is inimical to creative
design. Creative design activities rely on a restructuring of information uncaptured
in the current information structure, as when looking at a design provides new
insights that lead to a new interpretation of the design elements (XXX yy). It can be
proven that continuity of computational change requires an anticipation of the
structures that are to be changed (KS 97). Creativity, on the other hand, is devoid of
anticipation.
Consider for example the combination of two squares of line segments presented in
figure 1. In a classic object-oriented approach, each square may define an object
allowing it almost effortlessly to be resized and moved. As a result, however, a
distinction of the individual line segments and a manipulation of these requires a
conscious and explicit operation to redefine the square as a collection of four line
segments. Visually, on the other hand, the composition in figure 1 contains not two
but three squares. Irrespective of whether the composition has been defined as a
collection of two square objects or as a collection of twice four line segments,
neither representation allows the third square easily to be distinguished and
manipulated, unless it is additionally defined in the composition, possibly by
drawing the shape over. Instead, if line segments can be considered and represented
as dynamic data entities that may be split into any number of smaller line segments
depending on the purpose and task, the resulting composition of line segments
would not only represent each of the three squares, but also an infinite number of
other collections of line segments. Furthermore, representationally, none of these
configurations has any higher importance, unless by choice of the designer. This
provides the designer with the freedom to re-interpret a design in any way and have
this interpretation supported by the system.



Such a representation has been at the heart of shape grammars research since more
than two decades (STI 80). First for line segments in two dimensions, later extended
to three dimensions and to plane segments and volumes (STO 94), as well as to
various attributes or weights (STI 92), such as labels, line thickness, and colors
(KNI 89), this maximal element representation defines any element as a possibly
infinite set of (sub)elements that are each part of the original element. That is, any
part of an element is an element, and users can deal with elements and shapes in
indeterminate ways.

 

Figure 1. A composition of two or three squares.

2.1 A behavioral approach
In order to facilitate the comparison and recognition of elements under the part
relationship, the maximal element representation is defined as a canonical
representation, that is, identical elements must have an identical representation. Such
a representation can easily be imposed on all types of data, including geometric and
attribute entities, with an appropriate specification of their behavior as governed by
a part relationship. Such a behavioral specification is also a prerequisite to allow an
effective exchange of data between different representations and a uniform handling
of different and a priori unknown data structures. As an example, consider the
association of building performance data to design geometries. The behavior of
these data as a result of alterations to the geometries can be expressed through a
number of operations chosen to match the expected behavior. When the data is
offered to an application, the behavioral specification is provided as well, allowing
the application to properly interpret, manipulate, and represent this information
without unexpected data loss.
Depending on the specification of this behavior, a primitive data type can be as
simple as a single rational or real number, or as complex as a polygon- or NURBS-
based surface model of a solid object. The simplest behavior that meets the
requirements is a discrete behavior, corresponding to a mathematical set, where the
part relation reduces to the subset relation. However, even a purely object-oriented
behavior can be simulated, simply by combining the data type with a type of
(unique) identifiers under an attribute relationship. The resulting data form is akin to
a database of entities, where each entity has a unique key assigned. Under the
discrete behavior, a conscientious decision is still required from the user on any
change to the data entity. In order to take full advantage of the maximal element
representation for line segments, an interval behavior may be specified: a line



segment defines an interval on an infinite line carrier; a collection of line segments
is termed maximal if no two intervals on the same carrier are adjacent or intersect,
i.e., these must be disjoint. Then, a line segment is part of another line segment if it
is embedded in the other segment on the same carrier. Similar behaviors can be
specified for plane segments and volumes.
Stiny (STI 92) explores the application of the maximal element representation to
geometries with weights as attributes. Weights may be considered to denote
thickness for points and lines, or tones for planes and volumes. A behavior for
weights becomes apparent from drawings: a single line drawn multiple times, every
time with different thickness, appears as it was drawn once with the largest
thickness, even though it assumes the same line with other thickness. Thus, unlike
behaviors described above, a collection of weights always combines into a single
weight. This (maximal) weight has as value the least upper bound of all the
individual weight values, i.e., their maximum value. This behavior can be termed
ordinal; using numbers to represent weights, the part relation on weights
corresponds to the less-than-or-equal relation on numbers.
The specification of a data type’s behavior is commonly achieved through the
description of a number of operations and their result on instances of the data type,
including the creation and deletion of a data entity, and the merging of entities under
some formal operations. If the selection of operations is chosen to be the same for
every type, a uniform handling of all data types is enabled, with the specific
differences hidden in the description of the type and its behavior under these
common operations. If the selection of compositional relationships enables
composite data representations to receive their behavior under the same operations
from their primitive components and the relationships governing this composition,
then, the uniform handling of data entities can be maintained even for complex data
structures. For example, consider a co-ordinate composition of different data types
into a single structure. Then, the behavior of the resulting representation is that of
the component type for each component. On the other hand, consider a subordinate
composition of different data types where each component, except the first, defines
an attribute to the previous component. In this case, the behavior of the
representation is defined by the behavior of its first component type. For example, a
collection of line segments, each with attributes, is maximal if no two segments on
the same carrier overlap and any two segments that touch have distinct attributes.

3 Of rules and grammars
The flexibility that a dynamic representation provides necessitates new ways of
expressing one’s intent in selecting objects for manipulation. As an infinite variety
of possible interpretations of an object may exist and any collection of parts can be
conceived as the subject of manipulation, computational methods for specifying a
selection of parts are indispensable. For example, if a designer wishes to select any
of the three squares in figure 1, she cannot be required to specify exactly which parts
of line segments make up the boundary of this square. Instead, the system must be
able to recognize all square shapes and offer these to the designer for selection.
Computationally recognizing emergent shapes requires determining a transformation



under which a specified similar shape is a part of the original shape (XXX yy).
Clearly, this matching problem depends on the representational structure. The
maximal element representation is particularly appropriate as each element type
specifies its own part or match relationship (KE 92; KS 97). Furthermore, if
composite representational structures derive their behavior and part relationship
from their component structures, the technical difficulties of implementing the
matching problem only apply once for each primitive data type. As the part
relationship can be applied to all kinds of data types, recognition algorithms can
easily be extended to deal with arbitrary data structures, though a proper definition
of what constitutes a transformation is still necessary. For example, search-and-
replace functionalities in text editors generally consider case transformations of the
constituent letters.
A specification of shape recognition, in combination with a subsequent manipulation
of the recognized shape, can also be expressed in a shape rule. In general, a rule has
the form lhs → rhs; lhs (left-hand-side) specifies the similar shape or structure to be
recognized, rhs (right-hand-side) specifies the manipulation leading to the resulting
shape or structure. An application of a rule, then, consists of replacing the part
matching lhs, under some allowable transformation, by rhs, under the same
transformation. Rules can further be grouped into grammars. A grammar is a formal
device for the specification of a language; it defines a language as the set of all
structures or objects generated by the grammar, where each generation starts with an
initial object and uses rules to achieve an object that contains only elements from a
terminal vocabulary. The specification of shape rules and grammars leads naturally
to the generation and exploration of possible designs; shapes emerging under a part
relation is highly enticing to design search (MIT 93; STI 93). However, the concept
of search is more fundamental to design than its generational form alone might
imply. In fact, any mutation of an object into another one, or parts thereof, can
constitute an action of search. As such, a rule can be considered to specify a
particular compound operation or mutation, that is, a composition of operations
and/or transformations that is recognized as a new, single, operation and applied as
such. Similarly, the creation of a grammar is merely a tool that allows a structuring
of a collection of rules or operations that has proven its applicability to the creation
of a certain set (or language) of designs. Thus, rules and grammars are a means to
contain and facilitate the flexibility and dynamism the maximal element
representation provides us with.

4 A theory of sorts
An extension of the maximal element representation to a variety of data types has
resulted in a concept for representational flexibility, termed, sorts. Conceptually, a
sort specifies a set of similar models; sorts combine algebraically to form new sorts
(SK 98). Consider a sort as a set of models that are described in terms of a single set
of equations. Then, each individual of the sort corresponds to a distinct assignment
of values to the parameters in the set of equations. For example, a point is specified
by its tuple of coordinates. Furthermore, sorts can be related by comparing their
systems of equations, in a mathematical manner. For instance, since each equation



constraints the values its parameters may adopt, a sort subsumes another sort if its
equations form a subsystem of the other sort’s equations.
In practice, elementary data types define primitive sorts, which combine to
composite sorts under formal compositional operations defined over sorts (SK 97).
In shape grammars, a distinction is made between co-ordinate and subordinate
compositions of elements from different types. Elements from various graphical
types existing alongside one another in a same shape adhere to a co-ordinate
relationship; on the other hand, the attribute relationship specifies a subordinate
composition of a shape with any label or weight. With respect to sorts, an operation
of sum allows for disjunctively co-ordinate compositions of sorts, under many-to-
one and many-to-many instantiations, where each sort may − though not necessarily
− be represented in the data form. As an example, a rule has both a lhs and rhs
component, either of which can be omitted. An attribute relationship provides for
(recursively) subordinate compositions of sorts in both one-to-many and one-to-one
instantiations. For example, the sort of labeled points is specified as a sort of points,
with one or more labels assigned as attribute to each point in the data form. Other
compositional operations can also be considered, such as an array- or grid-like
composition of sorts. Assigning names to sorts provides for a semantic-like
differentiation of sorts that may otherwise be syntactically identical, e.g., lhs and rhs
denote equivalent − not identical − sorts.
The definition of a sort also includes a specification of the operational behavior of
its members and collections, denoted as forms, thereof. This behavioral specification
enables a uniform handling of forms of different sorts, on the proviso that the
universe of all forms of a sort is closed under the respective operations. These are
the common arithmetic operations of sum, difference and product (intersection).
Primitive sorts have their behaviors assigned in order to achieve a desired effect,
e.g., discrete behaviors for points and labels, an interval behavior for line segments,
and an ordinal behavior for weights such as thickness or tones. On the other hand, a
composite sort receives its behavior from its component sorts, based on its
compositional relationships (SK 97). The formal relationships between sorts enable
the comparison and mapping of sorts as representational structures; the behavioral
specification of sorts supports the mapping of information structures onto different
sorts, such that the resulting information structures are conform to the definition of
the respective sorts or representations.

4.1 Representations for CAD
The concept of sorts only specifies a common syntax, allowing for different
vocabularies and languages to be created, and providing the means to develop
translation facilities between these. For example, a point may be specified with any
number of coordinates depending on its dimensionality, its coordinates may
constitute integers, reals or rationals, these may be bounded in space, etc. Sorts can
be defined accordingly, compared and related, and translation support provided for.
Alternative design representations can be defined as variations on a given sort, by
altering the components or the composition. As an example, consider a
representation for a collection of drawings given a sort that defines a single drawing.



By specifying an attribute composition with a sort of labels, a named collection of
drawings is enabled similar to a set of layers in a CAD application (SK 96).
Alternatively, by specifying an attribute composition with a sort of points or
rectangles, a layout can be represented for these drawings. One step further, this sort
can be modified to enable drawings to relate to parts within other drawings,
allowing for detailing relationships to be specified in this layout.
The architecture of sorts also serves basic CAD functionality. Consider the most
common operations of creation and deletion, and of selection and deselection of
objects; consider two spaces, one representing the design, the other the selection.
Selecting an object removes it from the design space and inserts it into the selection
space, deselecting an object has the opposite effect. In both cases, an object removal
is followed by an insertion of the same object. Using two sorts, one for the design
and another for the selection, the operations of selection and deselection result in a
difference in one sort followed by a sum in the other. The operations of creation and
deletion behave similarly, except that one of the sorts is the empty sort.
Under the part relation, every element of a sort specifies an indefinite set of
elements that are each part of the original element. Thus, any part of an object is an
object and users can deal with objects in indeterminate ways. This is quite distinct
from the selection process in conventional CAD approaches where the only objects
that are selectable correspond to those prescribed minimal entities that have been
predefined in the data-structures. As a result, the selection of an object can be
commonly achieved by a straightforward search in the database, following a lead by
the user, e.g., the position of the cursor at the moment of the activation of the search.
Under sorts, since we consider an object as a definite description of indefinitely
many parts, the action of selecting a part may include more powerful means of
describing what is to be selected. Since any part can be selected, in the extreme this
may require the user to create the selection as an object that is a part of the design.
Thus, the operations of creation and selection may invoke the same action sequence
in terms of describing the resulting object, whether it is a newly created object or a
selected existing part. Therefore, these operations may be presented to the user in a
similar way as to emphasize the common dialogue in achieving these results, even if
the results themselves are conceptually quite different.

4.2 Representations for data exchange
There is no imposition of concepts beyond the purely syntactical, and the alphabet
of building blocks can be readily extended at all times. No language thus created
ever needs to be static. Firstly, a vocabulary may be extended from the existing
alphabet or using newly developed building blocks. Secondly, representations may
be updated by reconfiguring the existing composition of sorts or by extending it
using additional component sorts. Far from having to redevelop the data structure
and the applicative operations, the concept of sorts aims to provide almost
continuous support to evolving representations, providing for an environment that
supports exploration and trial, even with respect to the representation.
Representational structures can be compared and mapped, data can be readily
converted to new and extended (or condensed) representations, and procedural



operations remain applicative if such flexibility has been considered. The ICCS
project (LOT et al 00) offers an example of the use of sorts for exchanging data
between different representations in the context of a building project (STO et al 98).

5 Conclusion
There is a strong need for computational representations for design that are both
flexible and dynamic. Flexible representations can offer multiple design views of a
same building or product, in support of a variety of partners and disciplines.
Dynamic representations can adapt themselves to suit different tasks or phases in the
design process, even for a same designer. Hereto, a framework for representational
flexibility is needed that supports an exploration of alternative design
representations, a comparison of design representations with respect to scope and
coverage, and a mapping of design information between representations. We
propose a theory of sorts, offering a description of representational structures using
formal compositional relationships over primitive data types. This formalism
additionally allows for dynamic information entities, enabling creative design by
supporting re-interpretations of existing design descriptions through emergent
forms, and considers a methodology for dealing with such creative dynamism within
a design application. Together, these will offer strong support for creative design by
liberating the designer from a representational straitjacket.
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