
© 2004 Kluwer Academic Publishers, Dordrecht,
JS Gero (ed), Design Computing and Cognition'04, 219-238

DATA VIEWS, DATA RECOGNITION, DESIGN QUERIES AND
DESIGN RULES

Representational Flexibility for Design

RUDI STOUFFS
Delft University of Technology, The Netherlands

and

RAMESH KRISHNAMURTI
Carnegie Mellon University, USA

Abstract. Sorts present a constructive approach to representational
structures and provide a uniform approach to handling various design
data. In this way, sorts offer support for multiple, alternative data
views and for data exchange between these views. The representation
of sorts extends on a maximal element representation for shapes that
supports shape recognition and shape rules. In the same way, sorts
offer support for data recognition, for querying design information and
for expressing design rules. In this paper, we present an overview of
the use of sorts to support these functionalities. Each of these relies on
the ability to alter representational structures or sorts, and to
manipulate the composition of data forms. In this regard, we briefly
consider the user interaction aspect of utilizing sorts.

1. Introduction

Computational design relies on effective information models for design, for
the creation of design artifacts and for the querying of the characteristics of
such artifacts. Mantyla stated in 1988 that these (geometric) representations
must adequately answer "arbitrary geometric questions algorithmically."
Even without emphasis on the geometric aspects, this remains as important
today. However, current computational design applications tend to focus on
the representation of design artifacts, and on the tools and operations for
their creation and manipulation. Techniques for querying receive less
attention and are often constrained by the data representation system and
methods. Nevertheless, querying a design is as much an intricate aspect of
the design process as is creation and manipulation.

220 R STOUFFS AND R KRISHNAMURTI

Design is also a multi-disciplinary process, involving participants,
knowledge and information from various domains. As such, design
problems require a multiplicity of viewpoints each distinguished by
particular interests and emphases. For instance, an architect is concerned
with aesthetic and configurational aspects of a design, a structural engineer
is engaged by the structural members and their relationships, and a building
performance engineer is interested in the thermal, lighting, or acoustical
performance of the eventual design. Each of these views---derived from an
understanding of current problem solution techniques in these respective
domains-requires a different representation of the same (abstract) entity.
Even within the same task and by the same person, various representations
may serve different purposes defined within the problem context and the
selected approach. Especially in architectural design, the exploratory nature
of the design process invites a variety of approaches and representations.

Each view may rely on domain knowledge in order to provide a
visualization that is particularly appropriate for the type of design object
under investigation. In scientific visualizations, one can make use of the
inherent dimensions of scientific data, connecting to three spatial and one
temporal dimension, requiring only elementary linear algebra to lay out
scientific data on a two-dimensional display (Groth and Robertson 1998). In
architecture, designers commonly rely on a geometric visualization of the
architectural object and its components, in both two and three dimensions,
providing feedback on both aesthetic and configurational aspects of the
design. A structural engineer, on the other hand, is less concerned with the
geometry of the design components. Instead, a diagrammatic visualization of
the design object presenting the structural characteristics of its components
and their relationships is more appropriately used. Similarly, data
visualizations in Geographic Information Systems (GIS) generally make use
of map projections to visualize a variety of geographically related data.

Not all kinds of data structures can rely on specific domain knowledge in
their visualization. For example, when exploring general information
structures or databases, data may be collected from a large variety of
domains and may not fit a single domain-specific visualization. In design, it
can be said that there are as many design methods as there are designers.
Different design methods may consider different data from different design
domains and, therefore, require different visualizations. Furthermore, not all
kinds of views can be envisioned a priori and specific support provided for.
In such cases, the challenge is to achieve an effective mapping from data to
display (Groth and Robertson 1998).

Effective visualizations enable a visual inspection of design data and
information. Design queries, on the other hand, support the analysis of
existing design information in order to derive new information that is not
explicitly available in the information structure. Both effective

DATA VIEWS, DATA RECOGNITION AND DESIGN RULES 221

visualizations, in support of alternative design views, and an expression of
arbitrary design questions require flexible design information models and
representations that can be modified and geared to the kinds of
visualizations and queries. Supporting arbitrary design questions also
requires access to information in a uniform and consistent manner, so that
new queries can be easily constructed and posed based on intent, instead of
on availability.

Sorts (Stouffs and Krishnamurti 2002; 200la) offer a framework for
representational flexibility that provides support for developing alternative
representations of a same entity or design, for comparing representations
with respect to scope and coverage, and for mapping data between
representations, even if their scopes are not original. Sorts support the
specification of the operational behavior of data in a uniform way, based on
a partial order relationship (Stouffs 1994; Stiny 1991). Sorts extend on a
maximal element representation for shapes (Stouffs 1994; Krishnamurti
1992) that supports shape recognition and shape rules. Data views, data
recognition, design queries and design rules all relate to the concept of
emergence, i.e., the recognition of information components and structures
that are not explicitly present in the information and its representation, and
on the restructuring of information. The concept of emergence, in tum,
supports creativity and novelty (Krishnamurti and Stouffs 1997; Stiny
1993).

In a previous paper (Stouffs and Krishnamurti 2002) we explored the
mathematical properties of a constructive approach to sorts through an
abstraction of representational structures to model sorts. We applied this
approach to representational structures defined as compositions of primitive
data types, and explored a comparison of representational structures with
respect to scope and coverage. We considered a behavioral specification for
sorts in order to empower these representational structures to support design
activities effectively, and provided an example of the use of sorts to
represent alternative views to a design problem. In this paper, we consider
the application of sorts in a broader context and present an overview of the
use of sorts to support data recognition, design queries and design rules,
next to multiple data views. Each of these functionalities relies on the ability
to alter representational structures or sorts, and to manipulate the
composition of data forms. In this regard, we briefly consider the user
interaction aspect of utilizing sorts.

2. Alternative Data Views

Integrated data models are under development that span multiple disciplines
and support different views. Such models allow for various representations
in support of different disciplines or methodologies and enable information

222 R STOUFFS AND R KRISHNAMURTI

exchange between representations and collaboration across disciplines.
Examples are, among others, the ISO STEP standard for the definition of
product models (ISO 1994) and the Industry Foundation Classes (IFCs) of
the International Alliance for Interoperability (IAI), an object-oriented data
model for product information sharing (Bazjanac 1998). These efforts
characterize an a priori and top-down approach: an attempt is made at
establishing an agreement on the concepts and relationships which offer a
complete and uniform description of the project data, independent of any
project specifics (Stouffs and Krishnamurti 200la).

Alternative modeling techniques that consider a bottom-up, constructive
approach are also under investigation. These provide a more extensive
degree of flexibility that allows for the development of information models
that are context, and thus project, specific. We consider a few examples
related to architectural design. Concept modeling (van Leeuwen and
Fridqvist 2003; van Leeuwen 1999) allows for the extensibility of
conceptual schemas and for flexibility in modeling information structures
that differ from the conceptual schemas these derive from. The SPROUT
modeling language (Snyder and Flemming 1999; Snyder 1998) allows for
the specification of schematic descriptions that can be used to generate
computer programs that provably map data between different applications.
Woodbury et al. (1999) adopt typed feature structures in order to represent
partial information models and use unification-based algorithms to support
an incremental modeling approach.

Sorts (Stouffs and Krishnamurti 2002) offer a constructive approach to
defining representational structures that enables these to be compared with
respect to scope and coverage and that presents a uniform approach to
dealing with and manipulating data constructs. Briefly, a sort is defined as a
complex structure of elementary data types and compositional operators,
and is typically a composition of other sorts. Comparing different sorts,
therefore, requires a comparison of the respective data types, their mutual
relationships, and the overall construction.

2.1. EXAMPLE A: A HIERARCHICAL STRUCTURE OF KEYWORDS

Figure 1 presents a simple example of a sort that represents a hierarchical
structure of architectural concepts or keywords. The representation is
conceived as a tree structure in which each keyword can have zero, one or
more subordinate keywords. The sort concepts, a sort of labels, represents
the individual keywords:

concepts : [Label] (1)

The subordinate relationship between keywords is expressed by the attribute

DATA VIEWS, DATA RECOGNITION AND DESIGN RULES 223

operator on sorts ('"'). The resulting sort, named conceptstree, is defined
recursively:

conceptstree : concepts + concepts A conceptstree (2)

The attribute operator relates to each individual keyword (concepts) a non­
empty data form of subordinate keywords (conceptstree). The disjunctive
composition operator ('+') allows the combination of keywords with
(concepts A conceptstree) and without (concepts) attribute keywords. Thus,
individual keywords are assigned either to the sort concepts, or with an
attribute data form to the sort concepts 1\ concepts tree.

sort concepts : [Label];
sort conceptstree : concepts + concepts 11 conceptstree;

form $concepts = conceptstree:
{(concepts 11 conceptstree):

{"theater"
{concepts:

{ "infrastructure" },
(concepts 11 conceptstree):

{"construction"
{concepts:

{"load bearing structure",
"material"},

(concepts 11 conceptstree):
{ "enclosure"

{concepts:
{"roof',

"facades" } } } },
"format"

{concepts:
{"photo",

"scale model",
"text"},

(concepts 11 conceptstree):
{"view"

{concepts:

... } } } };

{ "elevation",
"axonometric view",
"diagram",
"section",
"perspective",
"plan",
"site plan" } } } },

concepts conceptstree

Figure 1. Textual and graphical definition of a recursive sort representing a
hierarchical structure of architectural concepts, and the (partial) description of an

exemplar data form (Sorts Description Language). In the definition of a sort, '+' and
'"' denote the operations of disjunctive composition and attribute, respectively; ':'

denotes the naming of a sort; '[Label]' is a primitive sort of labels.

224 R STOUFFS AND R KRISHNAMURTI

2.2. EXAMPLE B: A NETWORK STRUCTURE OF KEYWORDS

An alternative view of a semantic structure (or an architectural typology) is
in the form of a network or (semantic) map. A network structure
distinguishes itself from a simple hierarchical structure in that a subordinate
keyword may be shared by more than one keyword. Such a structure can be
extended from the structure in Figure 1 by allowing references to be
specified to keywords that are already defined elsewhere in the structure.
Such references can be represented using a property relationship sort that is
defined over the sort concepts and an equivalent sort conceptrefs:

conceptrefs : concepts (3)

The property relationship sort distinguishes two named aspects, hasrefs and
isrefs, respectively corresponding to the relationship from concepts to
conceptrefs and vice versa:

(has refs, is refs) : [Property] (concepts, conceptrefs) (4)

These two aspects can be considered as two different views of the same
sort. Each aspect, however, is considered a distinct sort if used in the
definition of other sorts. In order to maintain consistency, each aspect must
be specified as an attribute to its respective sort of origin under the property
relationship, e.g., concepts 1\ hasrefs and conceptrefs 1\ isrefs. The first
attribute sort, concepts 1\ hasrefs, allows for the specification of keywords
with one or more references to (subordinate) keywords that are elsewhere
defined. The second attribute sort, conceptrefs 1\ isrefs, allows for the
retrieval of all keywords this subordinate keyword is referenced from. Both
attribute sorts, together with the sorts concepts and concepts 1\ conceptsmap,
recursively define the sort conceptsmap under the disjunctive composition
operator, Figure 2:

conceptsmap : concepts + concepts 1\ conceptsmap + concepts 1\

hasrefs + conceptrefs 1\ isrefs (5)

Thus, individual keywords are assigned to the sort concepts, with an
attribute data form (that is recursively defined) to the sort concepts 1\

conceptsmap, or with an attribute data form of references to the sort
concepts 1\ hasrefs. If a keyword has subordinate keywords of which some
but not all are defined elsewhere (and thus referenced here), then, this
keyword will be assigned to both the sorts concepts 1\ conceptsmap and
concepts 1\ hasrefs.

Figure 2 also presents an exemplar data form considering an architectural
typology for Ottoman mosques (Tunc;er et al. 2002). Note that the data form
does not specify any data to the sort conceptrefs 1\ isrefs, these are
automatically derived from the data to the sort concepts 1\ hasrefs.

DATA VIEWS, DATA RECOGNITION AND DESIGN RULES 225

sort conceptrefs: (concepts : [Label]);
sort (hasrefs, isrefs) : [Property] (concepts, conceptrefs);
sort conceptsmap : concepts + concepts " conceptsmap + concepts " hasrefs +

conceptrefs " isrefs;

concepts hasrefs

form $concepts = conceptsmap:
{(concepts" conceptsmap):

{ "physical"
{(concepts" conceptsmap):

{"mosque"
{(concepts" conceptsmap):

{ "structural"
{(concepts" hasrefs):

{ #om-concepts-26 "arcade"

conceptrefs isrefs

concepts conceptsmap

{ om-conceptrefs-5, om-conceptrefs-14, om-conceptrefs-19 } },
(concepts" conceptsmap):

{"arcade"
{concepts:

{"spandrel"},
(concepts" hasrefs):

{ #om-concepts-11 "arch"
{ om-conceptrefs-2, om-conceptrefs-6,

om-conceptrefs-16, om-conceptrefs-23 },
#om-concepts-13 "dome"

{ om-conceptrefs-3, om-conceptrefs-7} },
(concepts" conceptsmap):

{"arch"
{concepts:

{"tympanum"}},
"column"

{concepts:
{ "column base",

"column capital" } },
"dome"

{ (concepts" hasrefs):
{ #om-concepts-5 "crescent"

{ om-conceptrefs-1 , om-conceptrefs-4,
om-conceptrefs-29 } } } } },

... } } } } } } } };

Figure 2. Textual and graphical definition of a recursive sort representing a
(semantic) map of architectural concepts, and the (partial) description of an

exemplar data form (Sorts Description Language). In the definition of a sort, '+' and
'A' denote the operations of disjunctive composition and attribute, respectively; ':'

denotes the naming of a sort; '[Label]' and '[Property]' are primitive sorts, the latter
defines a property relationship sort between two given sorts.

226 R STOUFFS AND R KRISHNAMURTI

Both sorts conceptstree and conceptsmap present a possible
representation of a semantic structure. The selection of any particular
representation is dependent on the type of structure or semantic data, and
also on the visualization or application of the semantic structure. Figure
3 illustrates three different visualizations of the data forms considered in
Figures 1 and 2. For best results, data may need to be converted between
different representations (in both directions). The effects of such conversion
on the data can be deduced from a comparison of both sorts. The
comparison of conceptstree and conceptsmap results in a partial match: the
sort concepts is identical in both examples; when ignoring the attribute sorts
involving the aspects hasrefs and isrefs, the sort conceptstree and (part of)
the sort conceptsmap become similarly composed of identical and
(recursively) similar sorts. Therefore, converting data from conceptstree to
conceptsmap involves no data loss; obviously, a tree structure is a special
instance of a network or map structure. However, converting data in the
other direction may involve data loss; the data lost in this case is the
identification of shared keywords.

_,.
~/fi!I'J

\~,~ /
3{1<11..~· · Structure ""'Wet tower

/
/

buttr,ss \
pier

Figure 3. Three different visualizations of the data fonns from Figures 1 and 2. The
top-drawing shows a straightforward depth-first enumeration, albeit graphically

enhanced; references to keywords already defined are marked with a different color
border (e.g., "crescent"). The bottom left and right drawings show a 2D/3D
graphical presentation of a hierarchical structure and a network structure,

respectively. Image by Bige Tun9er.

DATA VIEWS, DATA RECOGNITION AND DESIGN RULES 227

2.3. EXAMPLE C: A COLLECTION OF KEYWORDS

Comparing sorts can become far more complex if one of the sorts is defined
recursively, while the other is not. Consider another alternative
representation of keywords without any (hierarchical or other) relationships.
The sort concepts represents such a simple collection of keywords.
Converting data from concepts to conceptstree (or conceptsmap) is fairly
straightforward. Both sorts conceptstree and conceptsmap are defined in
such a way that they allow for the representation of keywords without any
subordinate relationships: the sort concepts is a part (or component) of the
sort conceptstree under the disjunctive composition operator. The result is a
partial match of identical sorts.

Converting data in the other direction is less obvious: the only keywords
that can be converted are those that have no subordinate relationships. In the
example of Figure 1 that leaves not a single keyword. However, this is not
the only way that the sort concepts can be mapped onto a component of the
sort conceptstree. First, the sort concepts also appears as a (parent)
component under the attribute operator. Given such a partial match under
the attribute relationship, the sorts concepts and concepts 1\ conceptstree are
said to be partially convertible. In the example of Figure 1, only the root
keyword of the hierarchical structure, "theater," will be retained upon
conversion. Second, through the recursive definition of conceptstree, the
sort concepts could also be mapped onto an attribute component of the sort
concepts 1\ conceptstree. However, such a mapping cannot be considered in
the context of a comparison of the sorts concepts and conceptstree as
mapping concepts onto the conceptstree component of conceptstree would
create an infinitely recursive mapping.

The conversion of a hierarchical structure of keywords (as represented
by a sort that is recursively defined) into a simple collection of keywords as
represented by the sort concepts, such that all or most keywords are retained
in the conversion, can only be achieved through the construction of an
intermediate representation. Consider a sort concepts2 that is a composition
under the attribute operator of the sort concepts twice:

concepts2 : concepts 1\ concepts (6)

Comparing the sorts concepts2 and conceptstree at best results in a partial
match of similar sorts, allowing for the conversion of those keywords that
are directly subordinate to the root keyword in the hierarchical structure of
Figure 1 and do not have any subordinate keywords themselves. Comparing
the sorts concepts and concepts] results in a partially convertible match
where either component under the attribute operator can be mapped onto the
sort concepts. In this way, the keywords that resulted from the conversion
above can be further converted, in two steps, into a collection of keywords

228 R STOUFFS AND R KRISHNAMURTI

(without hierarchical relationships). The intermediate representation can be
extended in order to include more keywords in the conversion.

3. Shape and Data Recognition

Creative design activities rely on a restructuring of information uncaptured
in the current information structure, as when looking at a design provides
new insights that lead to a new interpretation of the design elements. It can
be proven that continuity of computational change requires an anticipation
of the structures that are to be changed (Krishnamurti and Stouffs 1997).
Creativity, on the other hand, is devoid of anticipation.

Computationally recognizing emergent shapes requires determining a
geometric, commonly Euclidean, transformation under which a specified
similar shape is a part of the original shape. For example, a square must be
computationally recognized as a square irrespective of its scale, orientation
or location. The same approach applies to other kinds of data. For example,
search-and-replace functionalities in text editors generally consider case
transformations of the constituent letters. Clearly, this matching problem
depends on the representational structure adopted. The maximal element
representation for shapes is a particularly appropriate representation as each
element type specifies its own part or match relationship (Krishnamurti and
Stouffs 1997; Krishnamurti and Earl 1992).

Sorts can be considered as an extension of the maximal element
representation to other, non-geometric, data, without necessarily considering
non-spatial information as attributes to shapes. The concept of sorts
distinguishes various behaviors data can adhere to, all based on a part
relationship (Stouffs and Krishnamurti 2002). Examples are a discrete
behavior, corresponding to a mathematical set, for labels or points, an
ordinal behavior for numeric weights, line thicknesses or shades of gray, an
interval behavior for line segments, and similar behaviors for plane
segments and volumes. Consider the sort conceptstree and the
corresponding data form in Figure 1. Keywords are assigned to the sort
concepts, a sort of labels, with discrete behavior. The recognition of
keywords therefore requires the full keyword to be provided, though case
transformations may apply such that the word "Infrastructure" can match the
keyword "infrastructure".

The behavior of a composite sort is derived from the behaviors of the
component sorts, in a manner that depends on the compositional
relationship (Stouffs and Krishnamurti 2002). That means that the keyword
"Infrastructure" as instance of the sort concepts cannot be matched to the
keyword "infrastructure" in the exemplar data form in Figure 1 without
automatic conversion of data forms. The latter keyword, namely, is a

DATA VIEWS, DATA RECOGNITION AND DESIGN RULES 229

subordinate keyword to the keyword "theater" and together form an instance
of the sort conceptstree.

However, transformations may apply not only to the data, corresponding
to the individual data types, but also to the composite structure of the data.
When looking for a yellow square, one does not necessarily need to be
concerned with the fact that yellow is represented as an attribute to the
square, as in a graphical visualization, or instead that the square is
represented as an attribute to the color yellow, as in a sorting of the
geometries by color. Thus, the matching problem may involve different data
views and the conversion of data between these views, all of which can be
supported using sorts. In this case, if an instance of the sort concepts 1\

concepts (or concepts2) is constructed using "Theater" and "Infrastructure,"
then the recognition of this instance in the exemplar data form will be
successful because the sorts concepts2 and conceptstree result in a partial
match of similar sorts (see section 2.3). Similarly, the keyword "Theater" as
instance of the sort concepts can be matched to the keyword "theater" as
partial instance of the sort conceptstree. However, the problem still remains
how the keyword "Infrastructure" as instance of the sort concepts could be
recognized in the data form as mapping concepts onto the conceptstree
component of conceptstree creates an infinitely recursive mapping.

The part relationship underlying the various behaviors enables the
matching problem to be implemented for each primitive sort or data type.
Since composite sorts inherit their behavior, and part relationship, from
their component sorts, the technical difficulties of implementing the
matching problem apply only once for each primitive sort or data type. As
the part relationship can be applied to all kinds of data types, recognition
algorithms can easily be extended to deal with arbitrary data forms, even if a
proper definition of what constitutes a transformation is still necessary.

4. Design Queries

Querying design information, as distinguished from visual inspection,
generally requires the analysis of existing information in order to derive new
information that is not explicitly available in the information structure. A
viable query language has to be based on a model for representing different
kinds of information that adheres to a consistent logic providing access to
information in a uniform and consistent manner.

Stouffs and Krishnamurti (1996) indicate how a query language for
querying graphical design information can be built from basic operations
and geometric relations that are defined as part of a maximal element
representation for weighted geometries. These operations and relations are
augmented with operations that are derived from techniques of counting and
pattern matching for the purpose of composing more complex and versatile

230 R STOUFFS AND R KRISHNAMURTI

geometric and non-geometric queries. For example, by augmenting networks
of lines that are represented as volumes (or plane segments) with labels as
attributes, and by combining these augmented geometries under the
operation of sum, as defined for the representational model, colliding lines
specifically result in geometries that have more than one label as attribute.
These collisions can easily be counted, while the labels on each geometry
identify the colliding lines, and the geometry itself specifies the location of
the collision (Stouffs and Krishnamurti 1996).

In order to consider counting and other functional behavior as part of the
representational approach, sorts consider data functions as a data kind,
offering functional behavior integrated into data constructs. Data functions
are assigned to apply to a selected property attribute of a specific sort,
which itself may be a data function. Then, the result value of the data
function is computed from the values of the property attribute of the data
entities of this sort. This result value is automatically recomputed each time
the data structure is traversed, e.g., when visualizing the structure. For this
purpose, this target sort must be related to the data function's sort within the
representational structure under a sequence of one or more attribute
relationships, with restrictions. As a data kind, data functions specify both a
functional description, a result value, and a sort and its property attribute.

Data functions can introduce specific behaviors and functionalities into
representational structures, for the purpose of counting or other numerical
operations. Consider, for example, a data structure corresponding to a
composition of two sorts where one sort specifies a cost to the other sort.
Then, by augmenting the data structure with a sum function, applied to the
numeric value attribute property of the cost sort, the value of this function is
automatically computed as the sum of all cost values. Figure 4 illustrates a
similar example in the context of lighting design for a stage or TV or movie
studio. Consider a sort lights, of labels denoting spot lights or other movable
lights, a sort intensityvalues, of numeric values representing light intensities
or wattage values, and a sort intensity, of numeric functions:

lights : [Label]
intensityvalues : [Numeric]
intensity: [NumericFunction] (7)

Both labels and numeric functions adhere to a discrete behavior, while
numeric values adhere to an ordinal behavior. Consider a composition of
these three sorts under the attribute relationship, such that each intensity
function has as attribute a collection of lights and each light has as attribute
a single intensity value:

lights _intensity : intensity 1\ lights 1\ intensityvalues (8)

DATA VIEWS, DATA RECOGNITION AND DESIGN RULES 231

By instantiating the sort intensity with a sum function applied to the
numeric value property attribute of the sort intensityvalues, the value of this
function is automatically computed as the sum of all intensity values of the
lights that are assigned as attribute to this sum function.

Next, consider an extension of this composition of sorts with another
sort providing type or clustering information, e.g., a sort beams, of labels
denoting the beams that serve to hold the lights above the stage:

beams : [Label] (9)

Then, the relative position of this new sort with respect to the sort of
functions has important consequences considering the number of instances
of the selected function and, therefore, the result of each of these functions.
Figure 5 presents two alternative data views of the same data. In the first
data view (left side of Figure 5), the sort beams is considered as an attribute
to the sort intensity, such that the intensity function has as attribute a
collection of beams, each of which has as attribute a collection of lights and
each light has as attribute a single intensity value:

lights _intensity 1 : intensity " beams " lights " intensityvalues (10)

In this case, the result of the sum function is still the total intensity of all
lights, irrespective of the beams these lights are assigned to.

In the second data view (right side of Figure 5), the sort intensity is
instead considered as an attribute to the sort beams, such that each beam has
as attribute an intensity function, which itself has as attribute a collection of
lights and each light has as attribute a single intensity value:

lights _intensity2 : beams" intensity" lights" intensityvalues (II)

In this case, each beam specifies its own sum function and the respective
results are the total intensity of only the lights on this beam.

Thus, moving data functions within the data structure by altering the
compositional structure of the representation, automatically alters the scope
of the function and thus the result. In this way, data functions can be used as
a technique for querying design information, and moving the data function
alters the query. Functions that apply simultaneously to two property
attributes of two different sorts, or compositions thereof, can be used to
compute more complex derivations. Consider cost values for linear building
elements such as beams, with the cost expressed per meter. If the beam
element has a property attribute specifying the length of the element, in the
case of a line segment representing the beam, a function might be applied
that sums the product of the length of each beam element with the respective
cost per unit length. A similar approach could be considered for non­
numeric functions, for example, applying to strings or vectors.

232 R STOUFFS AND R KRISHNAMURTI

sort lights : [Label];
sort intensityva/ues : [Numeric];
sort intensity: [NumericFunction];
sort /ights_intensity: intensity A lights A intensityva/ues;

form $lights = lights_intensity:
{ sum(intensityva/ues.value)

{ "light1"
{ 100 },

"light2"
{ 150 },

"light3"
{70}} };

Figure 4. Textual and graphical definition of a sort representing the intensity values
of lights and including a numeric function, and the description of an exemplar data
form with a sum function applied to the numeric value attribute property of the sort
intensityvalues (Sorts Description Language). In the definition of a sort, '"' denotes
the operation of attribute; ':' denotes the naming of a sort; '[Label]', '[Numeric]'
and '[NumericFunction]' are primitive sorts, the latter defines a sort of numeric

functions applied to a single attribute property of another sort.

5. Design Rules and Grammars

Spatial change can be viewed as a computations- f{a) + j{b), where sis a
shape, andf{a) is a representation of the emergent part (shape) that is altered
by replacing it with the shape f{b) (Krishnamurti and Stouffs 1997). This
computation subsumes both spatial recogmtwn and subsequent
manipulation. It can also be expressed in the form of a spatial rule a ~ b.
Rule application, then, consists of replacing the emergent shape
corresponding to a, under some allowable transformation, by b, under the
same transformation.

Rules can further be grouped into grammars. A grammar is a formal
device for the specification of a language; it defines a language as the set of
all structures generated by the grammar, where each generation starts with
an initial structure and uses rules to achieve a structure that contains only
elements from a terminal vocabulary. The specification of spatial rules and
grammars leads naturally to the generation and exploration of possible

DATA VIEWS, DATA RECOGNITION AND DESIGN RULES 233

sort lights : [Label];
sort intensityvalues : [Numeric];
sort beams : [Label]
sort intensity: [NumericFunction];
sort lights_intensity1 : intensity A beams A lights A intensityvalues;
sort lights _intensity2 : beams A intensity A lights A intensityva/ues;

form $lights= lights_intensity1:
{ sum(intensityvalues.value)

{ "beam1"
{ "light1"

{ 100 },
"light2"
{150}},

"beam2"
{ "light3"

{ 70}}} };

form $lights = lights_intensity2:
{ "beam1"

{ su m(intensityvalues.value)
{ "light1"

{ 100 },
"light2"
{ 150}}},

"beam2"
{ sum(intensityva/ues.value)

{ "light3"
{ 70}}} };

Figure 5. Textual and graphical definition of two alternative sorts representing the
intensity values oflights (attached to beams) and including a numeric function, and
the description of exemplar data forms with the sum function applied to the numeric
value attribute property of the sort intensityvalues (Sorts Description Language). In
the definition of a sort, 'A' denotes the operation of attribute; ':' denotes the naming

of a sort; '[Label]', '[Numeric]' and '[NumericFunction]' are primitive sorts.

234 R STOUFFS AND R KRISHNAMURTI

spatial designs; the concept of spatial elements or shapes emerging under a
part relation is highly enticing to design search (Mitchelll993; Stiny 1993).

The concept of search is more fundamental to design than its
generational form alone might imply. Furthermore, there is no need to
restrict it to spatial structures. In fact, any mutation of an information
structure into another one, or parts thereof, can constitute an action of
search. As such, a design rule may be considered to specify a particular
composition of design operations and/or transformations that is recognized
as a new, single, operation and applied as such. Design rules can serve to
facilitate common operations, e.g., for changing one design element into
another or for creating new design information based on existing
information in combination with a rule. Similarly, a grammar is more than a
framework for generation; it is a tool that permits a structuring of a
collection of rules or operations that have proven their applicability to the
creation of a certain set (or language) of designs.

Applied to sorts, rules and grammars can be considered as a means to
contain and facilitate the flexibility and dynamism that sorts provides. The
specification of design queries through data functions, and the
transformation of sorts to support alternative data views, can also play a role
in the application of a design rule. The central problem in implementing
design rules and grammars is the matching problem, that of determining the
transformation under which the emergent part is recognized in the data. The
implementation of the matching problem for sorts relies on the part
relationship underlying the behavioral specification of sorts and only applies
to each primitive sort or data type (section 3). Rule application then results
in a subtraction operation followed by an addition operation. Both
operations are also defined as part of the behavioral specification of sorts.
Stouffs and Krishnamurti (2001b) present a few examples of grammar
formalisms that can be expressed with sorts.

6. User Interaction

Exploring alternative design representations requires the ability to alter
representational structures or sorts, e.g., by adding or removing components,
or by modifying the compositional relationships. Integrating data functions
into design data forms similarly necessitates the ability to intervene into the
data form and manipulate its composition of data entities and constructive
relationships. Utilizing data recognition and design rules also benefits from
the same ability to alter and build sorts and corresponding data forms. This,
furthermore, necessitates a degree of understanding of the representational
and data structures that can only be achieved using visual (graphical) means.
Practical representational structures for design however may become very
large and achieving a visual understanding of the representational structure

DATA VIEWS, DATA RECOGNITION AND DESIGN RULES 235

may be hard to achieve. Furthermore, manipulating large representational
structures by editing the individual components and relationships is far from
straightforward. Achieving a desired result may require detailed knowledge
or investigation of the structures and painstakingly specific manipulations.
Therefore, we argue for an incremental modeling approach (see also
Woodbury et al. 1999) and a user interaction to support this.

We consider sorts as a complex adaptive system; such systems possess
the distinguishing characteristics of robustness and flexibility (Dooley 1997;
Kooistra 2002). In the context of building representational structures,
robustness can be considered to mean that the system offers the possibility
for "correspondence" (communication) leading to an agreement on the
representation that prevails in the system. At the same time, the system must
offer the possibility for representations to change and in such a way that, in
principle, claims on this representation generate quality improvement. With
respect to sorts, assigning a name to a sort can be considered as laying claim
to this sort with the purpose of improving quality. Correspondence on sorts
can be achieved through incremental changes on sorts and by agreement on
the naming of sorts. This implies that the incremental modeling of sorts in
the form of defining sorts in terms of other sorts can play an important role
in achieving agreement and thus in containing the "chaos" to which the
construction of sorts can lead.

While sorts consider a finite vocabulary of primitive sorts or data types
and compositional operators, practical representational structures for design
can be very large and, therefore, the variety in sorts that can be constructed
is by any practical means immeasurable. Constructing sorts could therefore
result in a seemingly infinite series of questions or choices on which
component to add when and where in the representational structure and,
thus, result in "chaos." The complexity paradigm implies "systemic inquiry
to build fuzzy, multivalent, multilevel and multidisciplinary representations
of reality" (Dooley 1997). Sorts can be considered, to a certain extent, as a
means to build such representations. "Order arises from complexity through
self-organization" (Prigogine and Stengers 1984). In the context of building
representational structures or sorts, the process of self-organization can take
on the form of human communication or correspondence.

Correspondence on sorts must be facilitated through the user interaction
with sorts. We have already referred to the ability to model sorts
incrementally. We are also investigating kinds of actions that can be
perceived purposeful in an exploratory process. These are, for example, the
specification of a focus onto the structure expressing a particular interest
and the selection of a part of the structure as extent of our interest. Each of
these actions results in a transformation of the structure.

The expression of a focus onto a representational or data structure can be
directly related to the (hierarchical) composition of the structure's entities

236 R STOUFFS AND R KRISHNAMURTI

under the compositional relationships. Entities that are considered more
important are commonly found at a higher level in the structure's
composition. The attribute relationship serves as a prime example, leading
the focus onto the object of the relationship, while the attribute expresses a
qualifier with respect to this object. For example, in an architectural design
description, spatial information is commonly considered more important
such that other information entities are assigned as attributes to the relevant
spatial entities. Similarly, object-oriented models often adopt a hierarchical
structure of functional objects at various levels of detail, reflecting upon an
increasingly narrower information focus. For example, architectural design
models are commonly organized by a hierarchical classification of
functional areas, such as buildings, floors and zones, in that order.

Thus, expressing a focus onto the representational or data structure can
result in a transformation of the hierarchical structure that raises the entity
under focus towards the top of the structure. Such a transformation can be
achieved automatically by reversing attribute relationships and by modifying
other compositional relationships. This transformation may take place under
the objective to maximize compatibility with the original representation and
minimize data loss. Selecting a part of the structure can similarly lead to the
breakup of compositional relationships attempting to maintain maximal
compatibility with respect to the selection.

When considering that every change to a representational structure or
sort constitutes a different data view, it can be argued that advanced support
for exploring different data views at the same time facilitates the
investigation and manipulation of representational structures. We are
currently developing a prototype interface to build and edit definitions of
sorts, to compare and match sorts and to construct corresponding data
forms.

7. Conclusion

Representational flexibility for design cannot be simply realized by
providing the user access to the representational and data structures and
enabling the modification of these structures through the addition of
attributes or the manipulation of the structures' entities and compositional
relationships. It also has to facilitate the exploration of these structures
through searching and querying the structures. Furthermore, it can be
desirable to be offered the ability to identify and store common actions and
manipulations for later reuse. Through support for data views, data
recognition, design queries and design rules, the theory of sorts is a more
than viable candidate for achieving representational flexibility for design.
The success of this or other approach is as much dependent on the
accessibility of the approach and its techniques to the user. For example,

DATA VIEWS, DATA RECOGNITION AND DESIGN RULES 237

powerful query languages do not as such serve the end user (or designer)
who is only interested in having easy access to the information, not in
learning a new language. A visual approach can offer a solution. "Visual
query languages [...] allow the user to express arbitrary queries without
having to master the syntax of a rigid textual query language" (Erwig 2002).
Further research and developments into sorts will focus onto the user
interaction aspect of utilizing sorts for exploring alternative data views, data
recognition, design queries and design rules. This should also enable us to
consider and investigate more complex and practical examples.

Acknowledgements

This work is partly funded by the Netherlands Organization for Scientific Research
(NWO), grant nr. 016.007.007. The second author is funded by a grant from the
National Science Foundation, CMS #0121549, support for which is gratefully
acknowledged. Any opinions, findings, conclusions or recommendations presented
in this paper are those of the authors and do not necessarily reflect the views of the
Netherlands Organization for Scientific Research or the National Science
Foundation. The authors would like to thank Bige Tuns;er for the development of the
semantic structures presented in Figures 1 and 2, and Michael Cumming for his work
on the development of a prototype interface to build and manipulate sorts. The first
author benefited from communication with Jan Kooistra concerning complex
adaptive systems.

References

Bazjanac, V: 1998, Industry foundation classes: Bringing software interoperability to the
building industry, The Construction Specifier 6/98: 47-54.

Dooley, KJ: 1997, A complex adaptive systems model of organization change, Nonlinear
Dynamics, Psychology, and Life Sciences 1(1): 69-97.

Erwig, M: 2002, Design of spatio-temporal query languages, position paper presented at the
Workshop on Spatia-temporal Data Models for Biogeophysical Fields, San Diego
Supercomputer Center, La Jolla, California,
<www.calmit.unl.edu/BDEI/papers/erwigyosition.pdf>(l2 February 2004).

Groth, DP and Robertson, EL: 1998, Architectural support for database visualization,
Proceedings of the 1998 Workshop on New Paradigms in Information Visualization and
Manipulation, ACM Press, New York, NY, pp. 53-55.

ISO: 1994, ISO 10303-1, Overview and Fundamental Principles, International
Standardization Organization, Geneva.

Kooistra, J: 2002, Flowing, Systems Research and Behavioral Science 19(2): 123-127.
Krishnamurti, R: 1992, The maximal representation of a shape, Environment and Planning B:

Planning and Design 19: 267-288.
Krishnamurti, R and Earl, CF: 1992, Shape recognition in three dimensions, Environment

and Planning B: Planning and Design 19: 585-603.
Krishnamurti, Rand Stouffs, R: 1997, Spatial change: Continuity, reversibility and emergent

shapes, Environment and Planning B: Planning and Design 24: 359-384.

Miintylii, M: 1988, An Introduction to Solid Modeling, Computer Science Press, Rockville,
MD.

238 R STOUFFS AND R KRISHNAMURTI

Mitchell, WJ: 1993, A computational view of design creativity, in JS Gero and ML Maher
(eds), Modeling Creativity and Knowledge-Based Creative Design, Lawrence Erlbaum
Associates, Hillsdale, NJ, pp. 25-42.

Prigogine, I and Stengers, I: 1984, Order Out of Chaos, Bantam Books, New York.
Snyder, JD: 1998, Conceptual Modeling and Application Integration in CAD: The Essential

Elements, PhD dissertation, School of Architecture, Carnegie Mellon University,
Pittsburgh, P A.

Snyder, J and Flemming, U: 1999, Information sharing in building design, in G Augenbroe
and C Eastman (eds), Computers in Building, Kluwer Academic, Boston, pp. 165-183.

Stiny, G: 1991, The algebras of design, Research in Engineering Design 2: 171-181.
Stiny, G: 1993, Emergence and continuity in shape grammars, in U Flemming and S Van

Wyk (eds), CAAD Futures '93, North-Holland, Amsterdam, pp. 37-54.
Stouffs, R: 1994, The Algebra of Shapes, PhD dissertation, Department of Architecture,

Carnegie Mellon University, Pittsburgh, P A.

Stouffs, R and Krishnamurti, R: 1996, On a query language for weighted geometries, in 0
Moselhi, C Bedard and S Alkass (eds), Third Canadian Conference on Computing in
Civil and Building Engineering, Canadian Society for Civil Engineering, Montreal, pp.
783-793.

Stouffs, Rand Krishnamurti, R: 200la, On the road to standardization, in B de Vries, J van
Leeuwen and H Achten (eds), Computer Aided Architectural Design Futures 2001,
Kluwer Academic, Dordrecht, The Netherlands, pp. 75-88.

Stouffs, R and Krishnamurti, R: 200lb, Sortal grammars as a framework for exploring
grammar formalisms, in M Burry, S Datta, A Dawson and J. Rollo (eds), Mathematics
and Design 2001, The School of Architecture & Building, Deakin University, Geelong,
Australia, pp. 261-269.

Stouffs, Rand Krishnamurti, R: 2002, Representational flexibility for design, in JS Gero (ed),
Artificial Intelligence in Design '02, Kluwer Academic, Dordrecht, The Netherlands, pp.
105-128.

Tunyer, B, Stouffs, R and Sariyildiz S: 2002, Document decomposition by content as a means
for structuring building project information, Construction Innovation 2(4): 229-248.

van Leeuwen, JP: 1999, Modelling Architectural Design Information by Features, PhD
dissertation, Eindhoven University of Technology, The Netherlands.

van Leeuwen, JP and Fridqvist, S: 2003, Object version control for collaborative design, in B
Tunyer, S bzsariyildiz and S Sariyildiz (eds), £-Activities in Building Design and
Construction, Europia Productions, Paris, pp. 129-139.

Woodbury, R, Burrow, A, Datta, S and Chang, T, 1999, Typed feature structures and design
space exploration, Artificial Intelligence in Design, Engineering and Manufacturing
13(4): 287-302.

