
CAAD Futures 1997 (ed. R. Junge), pp.553-564, Kluwer Academic, Dordrecht, The Netherlands, 1997.
SORTS : A CONCEPT FOR REPRESENTATIONAL FLEXIBILITY

RUDI STOUFFS
Architecture and CAAD, Swiss Federal Institute of Technology Zurich
RAMESH KRISHNAMURTI
Department of Architecture, Carnegie Mellon University, Pittsburgh

This work is based on the recognition that there will always be a need for different
representations of the same entity, albeit a building or building part, a shape or other
complex attribute. This exigency ensues, formally, to define the relations between
alternative representations, in order to support translation and identify where exact
translation is possible, and to define coverage of different representations. We consider
an abstraction of representations to model sorts that allows us to define algebraic
operations on sorts and recognize algebraic relationships between sorts, providing us
with a method for the analysis of representations, and the comparison of their coverage.
We present the basis of support for a multi-representational environment.

1. Motivation

As computers become more powerful, we envision new domains, situations and
environments where the computer can play an important role as a facilitator. This
requires the integration and manipulation of increasing amounts of knowledge and
information. In a collaboration in space and time, knowledge may be combined from
multiple domains and exchanged between multiple disciplines; information may be
provided and requested by all participants in this activity process; and information may
change during the life-cycle of a designed artifact and because of advancements in
knowledge and technology. Such collaboration creates additional impediments to
effective computer support. The transfer of knowledge and information between multi-
disciplinary partners and the interpretation of this data are non-trivial tasks.

Exchange of Information. A key problem is the loss of information in data exchange
between representations supporting different views or abstractions of the same artifact.
Within the domain of geometric modeling, many different representations have
developed over the past thirty years, based on a variety of models, associated operations
and underlying concepts. At the same time, much effort has been spent in order to
arrive at a single representational standard for design and engineering data/tasks. The
IGES (Smith et al., 1988) and STEP (Bloor, 1991) projects are prime examples.
However, no single geometric representation exists to solve every problem. Over time,
new design and evaluation methods develop that require new information and extended
1

representations. For example, the ever increasing concern for performance issues in
building or engineering design necessitates the development of extended representations
and manipulations of design geometries, including form and material properties,
specified at various levels, in a hierarchical manner with dynamic relationships.

Multiple Representations. We strongly believe that there will always be a need for
different representations of the same entity, albeit a building or building part, a shape or
other complex attribute. Rather than provide specific applications for the translation
between alternative representations that may serve the same or similar purpose, the need
exists, formally, to define relations between alternative representations, to define
coverage of different representations and to define where exact translation is possible.
Our objective is to offer general translational support that recognizes the coverage of
and relations between different representations, and to support different representations
within a single, but, possibly locally or temporally disconnected environment (Stouffs et
al., 1996). Such an environment must be able to identify when and where exact
translation is possible so that the data-flow can be assessed and data-integrity can be
monitored.
We conceive an algebraically based formalism that provides a handle for dealing with,
operating on, and interrelating representations. This abstraction, termed sorts, defines
formal operations on sorts and recognizes relationships between sorts, providing us with
a method for the analysis of representations and the comparison of their coverage. Sorts
are distinguished by their component sorts, their compositional relationships, and their
assigned names. The manner in which sorts relate depends on the manner of their
composition. Alternative compositions of the same component sorts give rise to
alternative views of the same data, and can be derived from one another. Algebraically,
sorts incorporate all embedded views, and contrary to current CAD approaches, sorts do
not impose an object/geometry-centered view. For instance, by specifying a
compositional hierarchy of the component sorts using a dependency relationship, the top
component naturally becomes the focus of the information set. By altering the
dependency relations, representations can be restructured to reflect any particular view
of the information, adapting the organizational structure to the informational purpose.

Alternative Concepts and Ontologies. Probably the first and foremost problem
associated with an all-encompassing representational model is the imposition of a fixed
frame of reference. Instead, different disciplines adopt different ontologies; the same
term may prescribe different meanings, the same concept may define alternative
representations. Such semantic incompatibilities provoke data communication
problems that may prevent collaboration at its fullest potential. The concept of sorts
only provides for a common syntax, allowing for different vocabularies and languages
to be created, and providing the means to develop translational facilities between these.
For example, a point may be specified with any number of coordinates depending on its
dimensionality, its coordinates may constitute integers, reals or rationals, these may be
bounded in space, etc. Sorts can be defined accordingly, compared and related, and
translational support provided for. There is no imposition of concepts beyond the
2

purely syntactical, and the alphabet of building blocks for the vocabulary definition can
be readily extended at all times.

Extensibility and Adaptability. No language thus created ever needs to be static. A
vocabulary may be extended from the existing alphabet or using newly developed
building blocks. Augmented representations that provide support for extended
information and technological advances can be achieved by combining sorts into a new
composition or by specifying additional component sorts to an existing composition.
Far from having to redevelop not only the data but also the applicative operations, the
concept of sorts aims to provide almost continuous support to evolving representations,
providing for an environment that supports exploration and trial, even with respect to
the representation. Data can be readily converted to new and extended (or condensed)
representations, procedural operations may remain applicative if written with flexibility
in mind. This extensibility provides ample support to explore extended representations
for such purposes as building performance evaluation or the inclusion of design history
and design intent into an artifact’s design information.

2. Definition

Conceptually, a sort specifies a set of similar models that can be described in terms of a
single set of equations. We denote the system of equations for a sort its characteristic
individual. The models of a sort constitute its individuals; a form is any group of
individuals of the same sort. Given any system of equations, the corresponding set of
all models described by these equations defines a sort. Then, each individual of the sort
is specified by assigning a value to each of the equational parameters. For example, a
point is specified by its tuple of coordinates. From a purely conceptual point of view,
sorts can be related by comparing their systems of equations, in a mathematical
manner. For instance, since each equation constraints the values its parameters may
adopt, a sort subsumes another sort if its equations form a subsystem of the other sort’s
equations. Note that while a sort commonly specifies a continuum of models, the extent
of this continuum can easily be altered with respect to any conceptualization or purpose,
by adding to and/or removing from its system of equations.
In practice, we specify the characteristic individual of a primitive sort as an elementary
data type. Primitive sorts combine to composite sorts, using the formal operations to
specify the compositional relationships. For instance, the attribute operator provides for
(recursively) subordinate compositions of sorts using an object-attribute relationship in
both a one-to-one and a one-to-many instantiation. For example, a sort of labelled
points is specified as a sort of points, with one or more labels assigned to each point in
the data form. The operation of sum allows for co-ordinating, disjunctive compositions
of multiple sorts, under many-to-one and many-to-many instantiations, where each sort
may -but does not have to- be represented in the data form. For example, a shape rule
has both a lhs (left-hand-side) and rhs (right-hand-side) shape, either of which can be
omitted. Finally, naming sorts provides for a semantic-like differentiation of sorts that
3

may otherwise be syntactically identical, e.g., lhs and rhs denote equivalent -not
identical- sorts.
While an analysis of the representational structure may be sufficient for a one-way
translation, in order to provide for continuous support for data exchange in a multi-
representational environment, some domain-specific knowledge is additionally needed.
Consider the conversion and subsequent re-conversion of some data between two sorts.
At least a canonical representation for individuals and forms is required in order to
control information-loss in a strict sense. If the data is also altered between conversion
and reconversion, additionally, appropriate ways of manipulating the data within the
conceptual framework of the sorts are needed to achieve the same level of control.
While certain other purposes or cases may demand even further domain-specific
knowledge, providing uniform ways of handling different and a priori unknown data is a
necessary condition for correct translation.
As an example, consider the association of building performance data to design
geometries. The behavior of these data as a result of alterations to the geometries can
be expressed through a number of operations chosen to match the expected behavior.
When data is presented into a collaborative environment, the applicable manipulative
operations are provided as well, allowing any application to properly interpret,
manipulate and re-present this information without unexpected data loss. Therefore, the
definition of a sort includes a specification of the operational behavior of its individuals
for common arithmetic operations. The foundation of this approach is an algebraic
model for shapes (Stouffs, 1994) that offers a uniform and consistent approach for
dealing with geometries of mixed-dimensionality and non-spatial attributes, using
common arithmetic operations of sum, difference and product (intersection) (Stouffs
and Krishnamurti, 1996, discuss the adaptability of the algebraic model to domain-
specific functionality). Extending this model to sorts, these serve as an abstraction of
representations that enable us to compare multiple representations in terms of their
coverage and thus support translation.

Notation. In the sequel, we adopt the following notation for sorts and their definition.
We reserve the letters a through h to denote sorts (i.e., their names) and i through l for
characteristic individuals (as elementary data types). A primitive sort is specified by a
name, a characteristic individual and, optionally, a number of arguments dependent on
the particular characteristic individual (see section 4 for some examples). We write
a : [i] or b : [j](x). In some cases, a primitive sort specifies multiple aspects,
each of which is assigned a name and considered a sort. The actual primitive sort only
exists as a linking construct. We write (c, d) : [k](y, z). The definition of a
composite sort similarly consists of a name and an expression in terms of its component
sorts using the symbols ‘^’ and ‘+’ to denote the respective attribute and sum
operations. Parentheses provide for the nesting of definitions. We write e : b + c

and g : f ^ e, g : f ^ (e : b + c), or
g : f ^ (e : (b : [j](x)) + c).
4

3. Matching

Compositions of sorts can be compared and potential matches classified according to
their similarity, in rough terms, as equivalent, similar (as composed of equivalent sorts)
and convertible. A more detailed classification is provided in table 1, using a numerical
ordering system, termed levels, to differentiate the matches computationally. Different
integral levels specify different matching types, decimal levels allow for finer
comparisons. Equivalent as well as similar sorts guarantee correct conversion of the
data without information loss, except semantically. Incomplete or partial conversions,
either through augmentations (by adding sorts under the attribute operation) or
diminutions (by removing sorts under the attribute operation) always result in data loss.
Whether data-loss occurs in complete conversions, i.e., through rearrangements of the
component sorts (by inverting attribute relationships), depends on the behavioral
categories of the constituent sorts. It also depends on conversions between primitive
sorts that share the same or similar characteristic individuals, but differ in one or more
constraints or arguments (i.e., equations). Finally, the operation of sum specifies a
subsumption relationship on sorts, where one sort may match a part, under sum, of
another sort, providing an additional (perpendicular) grading scheme.

This approach allows us to monitor data-integrity during the design process, at all times,
for a large variety of data. Specifically, we know that data-integrity is maintained for

level match interpretation example

= 0.0 identical semantic equality a ↔ a

< 1.0 equivalent semantic derivability a ↔ b : a

< 2.0 strongly
similar

a ^ b ↔ a (c : b)
a + (d : b + c) ↔

(e : a + b) + c

< 3.0 weakly similar syntactic equality a : [i] ↔ b : [i]

< 4.0 convertible syntactic
convertibility

a ^ b ↔ b ^ a
a : [i](x) ↔ b :
[i](y)

< 5.0 incomplete
• augmentation
• diminution

partial convertibility
• a → a ^ b
• a ^ b → a

= 5.0 incongruous no valid conversion

Table 1. Integral levels of sort matching.
5

each data sort under any of the formal operations on data forms within this sort; the
coverage of data sorts can be compared; data can always be moved from more-
restrictive to less-restrictive sorts without data loss; and data loss can be measured when
moving data in the opposite direction. Active control over which conversions should
and should not be allowed or considered is presented to the user in the form of a level
tuner (see table 2): three user-defined levels specify level intervals of predefined
handling behavior. Additional control is envisioned using rules of exception.

4. Exemplar Sorts

With the arrival of the world-wide web into the architectural domain, (virtual)
architecture has conquered new territories, presenting the challenge to support, newly,
any and all data types that can be envisioned. Rather than supplying slots for generic
entities in a database-like fashion, sorts provide the ability to select the appropriate
operational behavior, resulting in a more intelligent integration of the entities in the
information environment. Currently, we consider characteristic individuals for
geometric entities (i.e., points, lines, line segments, planes, plane segments and
volumes), attribute entities (e.g., labels, weights, identifiers and signs), relational
entities (e.g., properties) and hypermedia entities (e.g., images, text). Below, we
describe some of these characteristic individuals, with their behavior, in detail.

Sorts of Labels and Points. A sort of labels provides the simplest example. A label, a
string of characters, can be created, deleted or, as a combination of both, altered. When
creating/adding a label to a form of labels, it becomes an additional element in the set
that represents this form. When deleting/subtracting a label, the element is removed
from the set. The algebraic operations behave as set operations; an empty set specifies
an empty form. The resulting behavior is termed discrete. Discrete behavior ensures
that two individuals are combined into one, only if these are identical. Another example
of discrete behavior is a sort of points. Though a point can and may be considered as a
composite sort, i.e., corresponding to a tuple of coordinates, specifying a characteristic

level handling

< l1 sorts are considered equal,
conversion is performed without notification

< l2 user is notified of conversion

< l3 user’s approval is requested for conversion

Š l3 conversion is not allowed,
unless upon user’s specific initiation

Table 2. Level tuner.
6

individual for points trivializes consistency checking and generally simplifies data
management and retrieval. For example, a one-step creation ensures that each point has
the exact number of coordinates. The conversion of such a point into any other
description, e.g., as a composite sort of coordinates, can be added easily.

Figure 1. Visualization of forms of labels and points in VRML. Bige Tunçer.

Sorts of Images. An example of where such conversion is already provided, while it is
both commonplace and necessary, is a sort of images. The characteristic individual for
images, referencing an image, e.g., filename, accepts an argument specifying the image
type, e.g., GIF, JPEG and TIFF. This argument to the sort’s definition provides the
ability to create separate sorts for gif-images, jpeg-images and tiff-images. In notational
form, these become:

gif-images : [Image](GIF)

jpeg-images : [Image](JPEG)

tiff-images : [Image](TIFF)

Provided that an application(s) or procedure(s) is available for the bytecode-wise
conversion of images between different types, the characteristic individual for images
specifies a conversion operation that can be invoked automatically. For example, in
order to convert a form of images to “web-able” images, it suffices to define sorts of

images : gif-images + jpeg-images + tiff-images

web-images : gif-images + jpeg-images

and convert the form of images to a form of web-images.

Sorts of Properties. More complex representations often include relationships between
data entities, for instance, for the purpose of referencing library entities, or for
specifying a relational system between information aspects and artifacts. For example,
a boundary representation for solids specifies vertices, edges, faces and solids, with
edges linking vertices, edges bounding faces, and faces bounding solids. A
7

characteristic individual for properties provides similar capabilities to sorts. A property
is a two-way link between two individuals of given sorts. In order to prevent
information-loss when handling properties and their associated individuals, an
individual must know of any properties that link it to other individuals. All properties
of the same sort thus assigned to an individual make up an attribute form with respect to
the individual. Appropriate sorts must be defined accordingly under the attribute
relationship. For example, a polygonal boundary representation with vertices and edges
may define the following sorts:

points : [Point]

line-segments : [LineSegment]

(endpoints, segments) : [Property](line-segments, points)

vertices : points ^ segments

edges : line-segments ^ endpoints

An edge is defined as a line segment with (two) endpoints; a vertex is a point with any
number of segments originating from it. The operational behavior of properties, termed
relationship, is an extension of the discrete behavior, incorporating appropriate data-
management procedures and ensuring data-consistency. For example, when deleting or
otherwise modifying either individual associated to a property, this property is deleted
or modified correspondingly.

5. Behavioral Categories

Most computer aided design applications, currently, adopt an object-behavioral
approach. This approach specifies that once an entity is created (as an object), it
remains unaltered except through explicit user intervention. Such behavior closely
resembles the discrete behavior. The latter specifies that two individuals combine into
one, only if these are identical. An object-oriented behavior can be achieved for any
sort, by combining this with a sort of (unique) identifiers under the attribute
relationship. The resulting data form is akin to a database of individuals, where each
individual has a unique key assigned.
Often, a sort may profit from a more complex behavior that induces additional
strengths. For instance, under the discrete behavior, a conscientious decision is required
from the user on any change to the individual. This does not readily support creativity
and novelty which rely on the concept of emergence, i.e., the recognition of information
components and structures that are not explicitly present in the information and its
representation, and on the restructuring of information (Stiny 1993; Krishnamurti and
Stouffs, 1997).
Computationally recognizing emergent structures requires determining a transformation
under which a specified similar structure is a part of the original structure (Krishnamurti
and Earl, 1992). This part relationship can be freely defined, as long as it constitutes a
partial order relationship. The algebraic model (Stiny, 1991; Stouffs, 1994) is based on
such a part relationship. Under the algebraic model, a form is specified as an element of
an algebra that is ordered by a part relation and closed under the algebraic (sum,
8

difference and product) operations and (affine) transformations. Fundamental to the
algebraic model is that under the part relation, any part of a form is a form. As such, a
form specifies an infinite set of (sub)forms that are each part of the original form, and
users can deal with forms in indeterminate ways. The maximal element representation
(Krishnamurti, 1992; Stouffs, 1994) captures this notion. Figure 2 illustrates this
definition of a form, under the part relation, with a form of line segments. The six
maximal line segments can be grouped to three by three to form two triangles.
However, other interpretations are possible and up to five triangles can be recognized in
the shape and manipulated as such.

Figure 2. A shape with six maximal lines, specifying five different triangles.

Interval Behavior. The maximal element representation for line segments specifies an
individual as an interval segment on an infinite line carrier, and a form as a (minimal)
set of such individuals. A form is termed maximal if no two segments on the same
carrier touch or overlap, i.e., these must be disjoint. Any two non-disjoint individuals
are combined into one. Then, an individual is a part of another individual if its segment
is embedded in the other segment on the same carrier. The algebraic operations on
forms differ in their behavior from the discrete behavior in that individuals interact, not
only if these are identical, but also if these overlap or touch.

Ordinal Behavior. Stiny (1992) explores the application of the maximal element
representation to geometries with weights as attributes. Weights may be considered to
denote thicknesses for points and lines, or tones for planes and volumes. A behavior for
weights becomes apparent from drawings: a single line drawn multiple times, every
time with different thickness, appears as it was drawn once with the largest thickness,
even though it assumes the same line with other thicknesses. Thus, unlike behaviors
described above, weight individuals from the same form always combine into a single
individual. This (maximal) individual has as weight value the least upper bound of all
the individuals’ weight values, i.e., their maximum value. This behavior is termed
ordinal; using numbers to represent weights, the part relation on weights corresponds to
the less-than-or-equal relation on numbers.

Behavior of Compositions. A composite sort inherits its behavior from its component
sorts in a manner that depends on the compositional relationship. Under the operation
of sum, the behavior is that of the component sort for each component. Forms from
different component sorts never interact, the resulting form, termed metaform,
9

corresponding the composite sort, is the group of forms for all component sorts. When
adding an individual to a metaform, this individual gets added to the appropriate
component form. When an algebraic operation applies to two metaforms of the same
sort, the operation instead applies to the respective component forms. A metaform is
empty only if all component forms are empty.
The attribute operation on sorts specifies a dependency relation on the sorts in a
composition, where each component, except the first, defines an attribute sort to the
previous component. That is, a corresponding form consists of individuals of the first
component sort each of which has, as attribute, a form corresponding to the sort as a
composition of all but the first component, in a recursive manner. Thus, the behavior of
such a sort is defined by the behavior of its first component sort. Specifically, when an
algebraic operation applies to two forms of the same composite sort (under the attribute
relationship), identical individuals merge and their attribute forms combine under the
same algebraic operation. Any individuals that have an empty attribute form are
removed from their respective forms.
For example, a form of line segments with attributes, corresponding to a composite sort
under the attribute relationship, is maximal if no two segments on the same carrier
overlap and any two segments that touch have non-equal attribute forms. Then, an
individual is contained in a form if a discrete classification of this individual into
component individuals can be found such that each component is a part of an individual
in the form, and the respective attribute forms adhere to the appropriate part relation.

Singly-associated versus multiply-associated sorts. Behaviors play an important role
when assessing data-loss in information exchange between different sorts.
Reorganizing component sorts under the attribute relationship into a different
compositional hierarchy may alter the corresponding behavior and trigger data-loss.
Consider a sort of weighted points, i.e., a sort of points with attribute weights, and a sort
of points of weights, i.e., a sort of weights with attribute points. A form of the former
sort is a set of non-coincident points, each of which has a single weight assigned. These
weights may be different for different points. The resulting behavior of the form is
discrete. A form of the latter sort is composed of a single weight with an attribute form
of points, and has ordinal behavior. In both cases points are associated with weights.
However, in the first case different points may be associated with different weights,
whereas, in the second case all points are associated with the same weight. In a
conversion from the first to the second sort, data-loss is inevitable.
Sorts with ordinal behavior are also denoted singly-associated sorts. A form of a
singly-associated sort necessarily contains only a single individual, unless empty. In
contrast, forms of multiply-associated sorts can contain any number of individuals.
Sorts with discrete, relationship or interval behavior are all multiply-associated sorts.
The previous exposition always applies to compositions of both singly-associated and
multiply-associated sorts under the attribute relationship.
10

6. Discussion

Our intention is not to create an all-encompassing representation as a new standard that
would be “up to date” as to current research and usage. Given the sheer variety of
representations available and used, any single standard, however flexible, will always
typify a rather subjective evaluation that is indifferent to the purposes of the different
representations. Moreover, as technology evolves and knowledge increases, any
standard would become quickly outdated. Indeed, solid modelers with new capabilities
are being developed, such as the parametric solid modelers found in Pro-Engineer™,
SDRC’s IDEAS™ and Autodesk’s DESIGNER™ for which no adequate translators
exist.
Instead, we propose an alternative approach that is not restricted to currently known
representations and that may take away the need for standards altogether. Conceptually,
we distinguish the data classes and subclasses that constitute a representation and
consider a multi-way communication system using these data classes as the vocabulary
elements (see also Stouffs et al., 1996). This vocabulary is not a priori limited and may
be extended at all times by any application. Using sorts to achieve such a
communication system, new applications that adopt sorts as their representational
framework may synthesize any or all of the sorts’ strengths into their functionality.
How and whether these strengths are presented to the user depends on this
functionality. Redeveloping an existing application to profit from sorts, without altering
the original functionality, only extends the application with readily accessible
communicational capabilities, but does not provide a glimpse of the flexibility that is
intrinsic to sorts. How such flexibility can be presented to the user, in the best and
easiest manner, makes for an interesting question on its own. Currently, we are
developing database support for persistent information, data visualization tools in
VRML, and a JAVA-based interpreter/interface.
Sorts were conceived in order to respond to and deal with issues of data-loss in
information exchange, mainly between existing applications. These, primarily, profit
from a framework for data communication constructed on sorts. When dealing with a
substantial number of applications and corresponding representations, all of which may
not be known at the time of development, it becomes inefficient to develop a tool for
every (possible) channel linking two applications. Instead, consider a support system
for data exchange consisting of a node for facilitating data transfer and translation, and a
query language for communication between the node and each application. Such a
system only requires from each participating application a (single) communication
front-end that can pose and answer queries to and from the node. For an example,
consider the domain of solid modeling. Whereas different boundary representations
specify different relational systems to link the boundary entities, the entity classes of
vertices, edges, faces and solids are common to the domain and, in some variations, to
the representations. Using a domain-specific query language that understands these
concepts, and the node’s ability to explore different entity relationships, a multi-way
communication system can be established that supports solid representations (Stouffs et
al., 1996, present a theoretical analysis of solid representations for this purpose).
11

Additional non-geometric data can be treated as attributes to the geometric entities and
communicated as such.
Sorts present a method for the analysis of representations, and the comparison of their
coverage. A multi-way communication system based on sorts provides the ability to
identify when and where exact translation is possible. While we cannot guarantee
complete and correct translation, at least, data-flow can be assessed and data-integrity
monitored.

Acknowledgments

The first author wishes to thank Kuk-Hwan Mieusset and Bige Tunçer for their
contributions to the current developments, respectively, database support and data
visualization. He also wishes to thank Gerhard Schmitt for his undaunted belief and
support.

Bibliography

Bloor, M.S. (1991) STEP-standard for the exchange of product model data, Standards and Practices in
Electronic Data Interchange, IEE Colloquium, 2/1-3, The Institution of Electrical Engineers (IEE), London.

Krishnamurti, R. (1992) The maximal representation of a shape, Environment and Planning B: Planning and
Design 19, 267-288.

Krishnamurti, R., and Earl, C.F. (1992) Shape recognition in three dimensions, Environment and Planning B:
Planning and Design 19, 585-603.

Krishnamurti, R., and Stouffs, R. (1997) Spatial change: continuity, reversibility and emergent shapes,
Environment and Planning B: Planning and Design 24.

Smith, B., Rinaudot, G.R., Reed, K.A., and Wright, T. (1988) Initial Graphics Exchange Specification (IGES),
Version 4.0, SAE/SP-88/767, Society of Automotive Engineers, Warrendale, Pa.

Stiny, G. (1991) The algebras of design. Research in Engineering Design 2, 171-181.

Stiny, G. (1992) Weights, Environment and Planning B: Planning and Design 19, 413-430.

Stiny, G. (1993) Emergence and continuity in shape grammars, CAAD Futures ‘93 (eds., U. Flemming and S.
Van Wyk), 37-54, North-Holland, Amsterdam.

Stouffs, R. (1994) The Algebra of Shapes, Ph.D. dissertation, Departement of Architecture, Carnegie Mellon
University, Pittsburgh, Pa.

Stouffs, R., and Krishnamurti, R. (1996) The extensibility and applicability of geometric representations, 3rd
Design and Decision Support Systems in Architecture and Urban Planning Conference, Architecture
Proceedings, 436-452. Eindhoven University of Technology, Eindhoven, The Netherlands.

Stouffs, R., Krishnamurti, R., and Eastman, C.M. (1996) A formal structure for nonequivalent solid
representations, IFIP WG 5.2 Workshop on Knowledge Intensive CAD II (eds. S. Finger, M. Mäntylä and T.
Tomiyama), International Federation for Information Processing, Working Group 5.2.
12

