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Section 1. Technical Notes on Facial Analyses 
 
The key individual demographic variable—namely ethnicity and age—are not provided/available 
on Airbnb. Hence the only option was to obtain such information from the profile photos of the 
hosts. Given the large number of hosts in our sample, we leverage the advances in Convolutional 
Neural Networks (CNNs, an emerging deep learning framework, see Krizhevsky et al. 2012 and 
Simonyan and Zisserman 2015) to predict the ethnicity and age in a scalable and automatic way. 
Specifically, we employ the framework of ResNet-50, a CNNs that has led to important 
breakthroughs on various computer vision tasks including facial recognition and image 
classification (for example, Cao et al. 2018, He et al. 2016).  
 
A. The workflow of facial analysis 
We build a deep learning-based classifier to predict, given any Airbnb hosts’ photo, his/her 
ethnicity and age. To do so, we first construct a large data sets that consist of human face photos, 
each labeled with the ethnicity and age. Next, we train the deep learning model (i.e., ResNet-50 in 
this paper) on the training set. The deep learning model is optimized to extract facial features from 
face photos and learn the relationship between the facial features and the corresponding labels. 
Finally, the trained classifier is applied on our Airbnb face photos to predict the labels for each 
host in our sample. Below we describe each step. 
 
B. Facial data set (training data) 
For ethnicity classification, we combine multiple public face databases, including color Facial 
Recognition Technology (FERET) Database collected by the National Institute of Standards and 
Technology (NIST)1, Chicago Face Database (CFD) collected by the University of Chicago2, Face 
Place database collected by Brown University3, and part of the IMDB-WIKI image database 
created by the Computer Vision Lab at ETH Zurich4.  

For age prediction, we use IMDB-WIKI image database, which is constructed of 0.5 million 
images of celebrities crawled from IMDB and Wikipedia webpages. The date of birth of each 
celebrity combined with the date that each photo was taken output the age labels (Rothe et al. 
2015).  
 
C. Preprocessing: detecting and extracting faces 
Our Deep learning model analyzes the face photos. However, some images contain content that 
does not belong to a person’s face, e.g., body, shoulder, background. Hence, for each image, we 
first detect the existence of a face, then extract the face. For images in the training set (i.e., the 
public face data), this is straightforward since each image contains one face. For images in the 
Airbnb sample, very few images do not photograph any person’s face, hence were discarded. For 
images that contained multiple faces, we extracted and stored all faces for analysis. 
 A CNNs is a special kind of a deep learning model. As shown in Figure S1, a deep learning 
model consists of a sequence of layers, with each layer containing multiple neurons. Each layer is 
basically a multidimensional matrix, with each neuro ‘carrying’ a weight that represents the 

                                                 
1 https://www.nist.gov/itl/iad/image-group/color-feret-database.  
2 http://faculty.chicagobooth.edu/bernd.wittenbrink/cfd/index.html.   
3 http://wiki.cnbc.cmu.edu/Face_Place. 
4 https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/. 

https://www.nist.gov/itl/iad/image-group/color-feret-database
http://faculty.chicagobooth.edu/bernd.wittenbrink/cfd/index.html
http://wiki.cnbc.cmu.edu/Face_Place
https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/
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numeric value of each element. The number of layers that carry weight define the ‘depth’ of a deep 
learning model. 
 
 

Figure S1 The Architecture and Layer Description of ResNet-50. Shows the training 
framework, architecture of the deep learning model, and the detailed description of 
layer operations.  

 

 

 

Filters: Indicates the number 
of convolution windows (i.e., 
# feature maps) on each 
convolution layer.  

Pooling: subsampling 
method to reduce 
dimensionality and provide 
translation invariance. A 3x3 
window slides through 
(without overlap) each 
feature map at that layer, and 
then the average value in the 
window is picked as 
representation of the 
window.  

 

In a deep learning framework, high dimensional data such as images and texts are expressed as 
multidimensional matrices/arrays. Then the model processes the data through the neuron layers 



 

5 
 

implementing matrix multiplication on the data. What defines a CNNs is a special layer—
convolution layer, which operates dot productions on the input data (below we will describe 
operation of convolution layers)  

Multiple architectures of CNNs have been proposed, including AlexNet by Krizhevsky et al. 
(2012), VGG by Simonyan and Zisserman (2015), and Inception/GoogleNet by Szegedy et al. 
(2015), and ResNet (He et al.  2016). These variants follow classic CNNs framework—consisting 
sequence of convolution layers) but differ from each other on number/order/size of the layers in 
the sequence. Some advanced model such as Inception/GoogleNet and ResNet implemented 
special computation units in the model to tackle down particular challenges in the training of 
CNNs.  

In this study, we used ResNet-50—a ResNet model containing 50 parameter layers—since 
it has been shown to effectively solve the challenge that the gradient vanishing problem makes a 
very deep CNNs difficult to train (Glorot and Bengio 2010). This intriguing framework propose 
by He et al. (2016) has quickly gathered attention because the introduced residual learning 
functions make it easier to optimize a very deep neural network. ResNet provides state-of-the-art 
performance in various tasks such as object detection, image classification, facial recognition, and 
realistic voice generation (for example, Cao et al. 2018, Chen et al. 2014, Lee et al. 2017). Below 
we provide a brief description on the architecture of ResNet-505.  
 
D. Architectures of ResNet-50 
Figure S1presents the architecture of ResNet-50. As can been seen, the model is constructed of 
repeated blocks (or modules) of convolution layers that connect the input image and the output 
labels. As in a classic deep learning framework, the first input is the images (i.e., the face photo of 
a person).  An image is simply a 3-d matrix, with its weights equal to the pixel intensity in the 3 
channels (RGB). All images (both in training and in prediction tasks) are resized to 224X224 (in 
pixel) be consistent with the architecture of the ResNet-50 model.  

As introduced above, the model processes data through matrix multiplication between the 
input image and the first layer of neurons. This operation generates an intermediate output (also 
represented by a multi-dimensional matrix), which can be viewed as ‘useful information’ extracted 
from the image and serve as the input for the next layer. Such implementations continue till the 
last layer of the model, i.e., the output layer that computes the probability distribution over the 
multiple labels. The probability distribution is then converted to labels. 

Take ethnicity prediction as an example. For each possible label l (l= {white, black, others}), 
the output layer, given the input it receives 𝑋𝑋 and the its neuron weights 𝑊𝑊1 and 𝑊𝑊0, computes: 

 
 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑙𝑙|𝑋𝑋,𝑊𝑊1,𝑊𝑊0) =
exp (−�𝑋𝑋𝑇𝑇𝑊𝑊1

𝑙𝑙 + 𝑊𝑊0
𝑙𝑙�)

∑ exp (−�𝑋𝑋𝑇𝑇𝑊𝑊1
𝑔𝑔 + 𝑊𝑊0

𝑔𝑔�)𝐿𝐿
𝑔𝑔=1

 
(S1) 

 
where 𝐿𝐿 is the total number of possible outcomes. 𝑊𝑊1

𝑙𝑙 represents the weight parameters and 𝑊𝑊0
𝑙𝑙 

represents the bias (i.e., a constant) connecting the preceding layer (i.e., the 64-d fully connected 
layer) to the 𝑙𝑙𝑡𝑡ℎoutput layer (i.e., (he 3-d fully connected layer). 𝑋𝑋𝑇𝑇represents the output from the 
layer preceding the output layer. Then, for any image 𝐼𝐼𝐼𝐼𝐺𝐺𝑘𝑘 in the training set, the model outputs 
the label with the highest probability: 
                                                 
5  For a detailed visualization and interactive introduction on the model architecture, please go to this link: 
http://ethereon.github.io/netscope/#/gist/db945b393d40bfa26006. 

http://ethereon.github.io/netscope/#/gist/db945b393d40bfa26006
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 𝐿𝐿𝐿𝐿𝑝𝑝𝐿𝐿𝑙𝑙� (𝐸𝐸𝐸𝐸ℎ𝑛𝑛𝑛𝑛𝑛𝑛𝐸𝐸𝑛𝑛|𝐼𝐼𝐼𝐼𝐺𝐺𝑘𝑘) = 𝑙𝑙, 𝑠𝑠. 𝐸𝐸. 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑙𝑙|𝑋𝑋,𝑊𝑊1,𝑊𝑊0) > 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑔𝑔|𝑋𝑋,𝑊𝑊1,𝑊𝑊0) ∀ g

∈ 1 … 𝐿𝐿 
(S2) 

 
Note that 𝑋𝑋 is the output extracted via the implementations on all the preceding layers on 

the input image, hence it is a function of the model weights and the input image, i.e. 𝑋𝑋 =
Φ(𝐼𝐼𝐼𝐼𝐺𝐺𝑘𝑘 ,𝑊𝑊). For each training image 𝐼𝐼𝐼𝐼𝐺𝐺𝑘𝑘, we know its true label, hence we can optimize the 
model by adjusting the weights such that it predicts labels as accurate as possible. 
 Throughout the CNN model, there are a sequence of such weights on each layer, and the 
weights define the intermediate extracted vectors from each layer, including 𝑋𝑋𝑇𝑇as described 
above. Theses weights are adjusted during the training process, so as to optimize the model’s 
performance on predicting the images in the training set.  
 
E. Operations of key layers 
We describe convolution layer and pooling layer, which are the key layers in a CNNs. 
 
Convolution layer 
The convolution layer is the most important and unique layer in the CNN. A convolution layer 
consists of a stack of so-called convolution filter or convolution kernel. A convolution filter is 
simply a matrix with each element representing a numeric value. For example, in a convolution 
block, a convolution layer with a size of 3X3 and hence consists of 9 such numeric values6. Such 
a matrix, treating an image or an intermediate input as a matrix, operates a dot production by 
‘sliding’ through the input. Therefore, for an input with relatively large size (e.g., 224X224), a 
3X3convolution filter operates dot production for every 3X3 patch on that input matrix. The nice 
features of convolution operation are that: 1) it reduces the dimensionality of parameters, and 2) it 
well explores and reserves the (local) spatial relationships of the input. Particularly, an intuitive 
example of the second feature is that: if a convolution kernel extracts a particular oriented edge of 
an object, then operating this kernel on every small square (e.g., 3X3 and 1X1) on an image would 
extract all edges in that direct from the image. Many of such kernels that extract edges would 
extract edges in all directions—potentially constructing the contour of an object. As can been seen 
in Figure S1, each of the blocks consist of varying numbers of convolutional filters (e.g., 64, 128, 
256, 512, 1024, and 2048 filters). Hence, these kernels extract features from an input data, which 
represents the extracted features from the preceding layers. Towards the output layer in the CNN, 
the filters combined extract higher- and higher- level features. That is, the CNN is able to extract 
a hierarchical structure of features that are related to predict the output labels. 
 
Pooling layer 
It’s a common practice in CNN to insert a pooling layer in-between the successive convolution 
layer. A pooling layer is a small square filter. In our model, the pooling filter is a 3X3 matrix. 
Similar to the operation of convolution filter, an average-pooling layer applies to every 3X3 square 
patch on an input data. The function of a pooling layer is to pick and using the average value in 
that 3X3 square. Adding pooling layers can reduce the spatial size of the intermediate features and 

                                                 
6 The size of a convolution layer is a choice of the model architecture. 3X3 is a widely-used choice. Another common 
choice is 5X5. 
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the dimension of the trained parameters in the model. Particularly, it helps to efficiently prevent 
the problem of over-fitting. 
 
F. Training technical notes 
The three prediction tasks are implemented independently. For each task, we first randomly split 
the corresponding dataset, with 80% of the samples form the training set and the remaining 20% 
form the (hold-out) test set. To effectively learn facial features that have predicative power on 
ethnicity and age, we leverage transfer learning and build our model on top of an existing deep 
learning model that was well-trained for a related task. Specifically, we adopted the model of Cao 
et al. (2018), which trained a ResNet-50 on a large-scale face dataset, VGGFace2 that contains 3.3 
million images for over 9,000 subjects7. That is, our demographic classification model was built 
on a classic ResNet-50, with slight architecture modification. Specifically, the output layer in the 
original RexNet-50 was removed as it was specific to the original task (object classification). We 
then add three fully connected layers on top of that (dimension of 256, 64, 3 respectively), where 
the last layer is output layer.  

To improve the training process, we initialize the model weights with the pre-trained weights 
of the original ResNet-50 and then fine-tune the parameters. For images, the extracted information 
is generic, to some extent, across various tasks (e.g., early layers in CNNs serve as edge and 
contour detectors). Hence, we were able to optimize our model starting from a point where it was 
already close to ‘optimum’. The pre-trained RestNet-50 model was optimized for facial 
recognition task. Hence, we efficiently improved the learning process of our model, with the 
initialized able to extract facial features, from the images, that are relevant to the identity of a 
subject. The added three layers, without pre-trained weights available, were initialized with 
LeCun’s uniform scaled initiation method (LeCun et al. 1998). 

To improve the generalization power of the trained model, we employed a real-time data 
augmentation method, by randomly flipping, rescaling, and rotating the training samples during 
the training process (Krizhevsky et al. 2012). Specifically, we implement a real-time (i.e., during 
training) image transformation over each image in the training sample, by randomly 1) flipping 
input image horizontally, 2) rescaling input image within a scale of 1.2, 3) rotating the image 
within 20°. This method introduces random variation in the training sample, increasing the training 
set size and reducing the overfitting. 

The model was trained on NVIDIA GeForce Titan X-12GB-GPU for 100 epochs, with the 
model’s performance tested on the hold-out test set at the end of each epoch. The optimization is 
implemented with adaptive method of gradient descent (Adadelta optimization, see Zeiler 2012) 
on each mini-batch of 32 examples.  

The ethnicity classifier achieved an average accuracy of 92.5% (for classifying a person into 
three categories—white, black, and others). The age classifier achieved a MAE (mean absolute 
error) of 4.750 (for predicting a person’s age between 1 and 100). 

Once the RestNet-50 model was optimized to learn the relationship between the facial 
features and the image label. We then perform ethnicity-age predictions for the Airbnb hosts in 
our sample. Specifically, for each type of predictions, the trained ResNet-50 model extracted the 
facial features, from each face image, that are effective to predict the label. The model then assigns 
a label to the person, based on the extracted facial features and the learned feature-label 
relationship. 
                                                 
7 http://www.robots.ox.ac.uk/˜vgg/data/vgg_face2/.      
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Section 2. Data Sources, Descriptive Statistics and Anecdotal Evidence from Host Forums 
 
2.1 Data Sources 
We briefly discuss the main data sources that we have used in our paper and the variables that we 
obtained from each data source.  
(i) InsideAirbnb.com: This is a publicly available website from which we got the list of all 

Airbnb listings in each of the seven cities (Austin, Boston, Los Angeles, New York, San 
Diego, San Francisco and Seattle) and the unique listing IDs associated with each of the 
listings. As we will discuss in section 2.2, we used this list to randomly sample the hosts 
that we study in our analysis.  

(ii) AirDNA: We used AirDNA data to obtain information on average prices per month, 
occupancy status per month, and other characteristics mentioned on webpages of each 
property. This data spans from July 2015 to Aug 2017, and it covers all Airbnb listings in 
the seven cities (Austin, Boston, Los Angeles, New York, San Diego, San Francisco and 
Seattle). 

(iii) Scraping: We scraped the websites of all properties in our random sample to get daily 
information on whether or not the host used smart pricing algorithm, and also to get the 
profile photos of the hosts from which we inferred their ethnicity and age.  

(iv) Finally we used Zillow Research for inferring the values of the listed properties and median 
earnings and the education level in the neighborhood from American Community Survey.  

  
2.2 Sample Construction 

We first obtained the data from AirDNA, which spans from July 2015 to Aug 2017, and it 
covers all Airbnb listings in the seven cities (Austin, Boston, Los Angeles, New York, San Diego, 
San Francisco and Seattle). This data has information on average monthly prices, monthly 
occupancy status, and all other characteristics mentioned on webpages of the properties.  

Our next task was to randomly sample a set of properties from the entire set of Airbnb 
properties. To do so, we obtained list of all Airbnb listings in each of the seven cities from a 
publicly available website, viz., InsideAirbnb.com. There were a total of 66,424 properties in this 
list as of October 2015, and each listing was associated with a unique ID. We randomly selected 
13,200 properties (roughly 20% of the listings IDs) from the overall list. We used Python’s library, 
‘random.sample,’ to shuffle and randomly sample the 13,200 properties (roughly 20% of the 
listings IDs) from the overall list. The library random.sample(population, k) takes two inputs: 
population is the list or sequence from which the a random sample is chosen, and k is the length 
of returned sample list, that is, the number of random elements to choose from population. This 
random sampling was done without replacement. Calling random.sample(population, k) returns a 
new list containing k elements, which are randomly sampled from population.  In our 
implementation of the library random.sample(population, k), we set population = the list of 66,424 
property IDs and set k = 13,200. The implementation thus returned a list of k = 13,200 randomly 
selected property IDs.  

Next, we discuss how we used the random sampled IDs to get to our final estimation sample. 
For each randomly selected property, we scraped its website to get its property calendar at the end 
of each month starting from Nov 2015. Out of the total of 13,200 properties, 12,587 properties 
returned a valid calendar page. The remaining listings returned an invalid page or an error. Thus 
we did not consider these for our analysis.  From the calendar pages that we scraped from the 
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12,587 listings every month, we obtained the information whether the property’s price in that 
month was determined by the smart pricing algorithm.  

For each of these 12,587 properties, we collected hosts’ profile photos by scraping the posted 
host photos on the webpages. Out of these, 10,924 properties had a host photo from which a human 
face was detected. As we discussed earlier, we used the hosts’ photos to infer their ethnicity and 
age. We did not consider the remaining properties for further analysis because they had 
photographs of either non-human objects (pets, background etc.) or the photographed face was too 
unclear and small to make a judgment on the person’s ethnicity or age. We then matched the listing 
of these 10,924 properties to the properties in the AirDNA data. Out of the 10,924 properties, we 
were able to match 10,903 properties with the properties in the AirDNA data.  

Our final step was to deal with the ‘stale vacancies’ issue. A stale vacancy issue refers to a 
scenario where a property is listed but the host neglected to update the listing status. As a result, a 
property may appear to be available but would never be reserved because hosts did not respond to 
any booking request. Fradkin et al. (2017) found that about 15% of the time that guest requests 
were rejected due to this issue. To address this issue, following Zalmanson et al. (2018) we 
removed properties that did not have any booking one year prior to the natural experiment and 
throughout the whole observation window. This resulted in 9,396 properties, which represented 
our final sample.  

We next describe the variables and the summary statistics in the final sample.  
 
2.3 Data description 
Full statistics of variables 

In Table S1, we report the statistics of the variables in our sample, grouped by adoption decision.. 
The data represents the sample after excluding properties to address the stale vacancy issue and 
before we applied IPTW strategy (inverse probability of treatment weighting). There are 9,396 
properties, out of which 2,118 properties are adopters.  
 

Table S1 Sample statistics: grouped by adoption. Shows the full statistics, presented by 
adoption group. 

 
(1) 

Adopters 
(2) 

Non-adopters 
(3) 

All Properties 
VARIABLES Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 
# Properties 2118 7278 9396 

Airbnb Host Demographics (Measured from Face Data) 
White (Ethnicity) 0.83 0.37 0.75 0.43 0.77 0.42 
Black (Ethnicity) 0.07 0.25 0.12 0.32 0.11 0.31 
Others (Ethnicity) 0.10 0.30 0.13 0.34 0.12 0.32 
Age 35.87 10.18 35.36 10.00 35.48 10.04 
# Photographed 
Faces 1.39 0.78 1.36 0.76 1.37 0.76 

Airbnb Property Performance 
Daily Revenue 
(on non-blocked 
days) 80.31 98.04 67.41 101.70 70.91 100.88 
Occupancy Rate 0.50 0.38 0.38 0.39 0.41 0.39 
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#Reservation Days 10.97 11.08 6.60 9.70 7.66 10.22 
#Blocked Days 
(on all months) 9.10 11.73 12.96 13.33 12.03 13.07 

Airbnb Property Characteristics 
Apartment 0.57 0.49 0.66 0.47 0.64 0.48 
Entire Home 0.56 0.50 0.64 0.48 0.62 0.49 
# Bedrooms 1.29 0.82 1.32 0.87 1.31 0.86 
Number of Reviews 42.88 51.64 28.07 41.78 31.65 44.82 
Number of Photos 18.67 13.23 16.07 11.31 16.70 11.86 
Super Host 0.23 0.42 0.16 0.36 0.17 0.38 
Instant Book 
Enabled 0.18 0.38 0.10 0.30 0.12 0.32 
Listing Title Length 33.28 7.34 32.15 6.54 32.43 6.76 
Listing Nightly 
Rate 179.80 179.30 194.61 190.43 191.03 187.91 
Security Deposit 163.63 331.45 140.76 310.24 146.29 315.65 
# Minimum Stay 2.97 10.58 3.03 5.54 3.01 7.09 
Response Rate (%) 94.06 12.81 92.08 15.40 92.65 14.73 
# Host-owned 
Listings 2.54 3.92 3.02 8.72 2.90 7.84 

Neighborhood Characteristics 
Home Value 704.19 416.69 751.07 443.32 739.73 437.49 
Walk Score 82.97 24.03 84.75 22.61 84.32 22.98 
Transit Score 76.73 22.23 78.20 22.92 77.84 22.77 
Drive to Downtown 
(min) 14.92 9.72 14.52 9.73 14.61 9.73 
Population Density 
(Per Sq. Mile) 37051.98 31542.19 39340.66 33834.17 38786.95 33308.49 
Bachelor (%) 51.36 19.28 54.42 19.06 53.68 19.15 
Median Home 
Earning 
(1000 USD) 48.88 20.52 52.11 22.04 51.33 21.73 

Airbnb Property Amenities Information (all variables are binary features) 
Parking 0.58 0.49 0.44 0.50 0.48 0.50 
Pool 0.06 0.23 0.06 0.25 0.06 0.24 
Beach 0.02 0.15 0.01 0.10 0.01 0.12 
Internet 0.99 0.10 0.98 0.14 0.98 0.13 
TV 0.74 0.44 0.75 0.43 0.75 0.44 
Dryer 0.81 0.39 0.70 0.46 0.73 0.44 
Washer 0.59 0.49 0.60 0.49 0.60 0.49 
Iron 0.57 0.49 0.32 0.47 0.38 0.49 
Essentials 0.72 0.45 0.50 0.50 0.55 0.50 
Heating 0.97 0.18 0.93 0.25 0.94 0.24 
Microwave 0.22 0.41 0.11 0.31 0.13 0.34 
Refrigerator 0.25 0.43 0.12 0.33 0.15 0.36 
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Laptop-friendly 0.52 0.50 0.30 0.46 0.35 0.48 
Fireplace 0.13 0.34 0.13 0.34 0.13 0.34 
Elevator 0.16 0.37 0.21 0.41 0.20 0.40 
Gym 0.06 0.23 0.08 0.27 0.07 0.26 
Family-friendly 0.15 0.36 0.22 0.41 0.20 0.40 
Smoker Detector 0.70 0.46 0.49 0.50 0.54 0.50 
Shampoo 0.60 0.49 0.40 0.49 0.45 0.50 
Breakfast 0.08 0.26 0.06 0.23 0.06 0.24 
AC 1.00 0.05 0.99 0.09 0.99 0.08 

 
 
2.4 Anecdotal evidence on reasons to adopt/not adopt smart pricing algorithm 
Airbnb hosts self-select into adopting the pricing algorithm. To better understand their selection 
process, we identified the primary reasons for adoption/non-adoption of the algorithm from the 
Airbnb host forums. In Table S2 we present a piece of anecdotal evidence that we collected for the 
three main reasons for adoption/non-adoption decisions—1) the host may want to adopt the 
algorithm if his/her cost of frequently changing prices is high, and 2) a host may not want to adopt 
algorithm if the algorithm-recommended prices are very low 3) a host may not adopt because s/he 
does not trust the algorithm or does not trust Airbnb’s motives.  

 
Table S2 Evidence from host forums – factors that may affect a host’s adoption of smart 
pricing. Shows examples of discussions from Airbnb hosts regarding the reasons they 
adopted/not adopted Airbnb’s smart pricing algorithm.  
 

Category 1 

 
Category 2 

 
Category 2 

 
Category 2 
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Building on our research on the Airbnb host discussions on their reasons for adopting/not adopting 
the algorithm (Table S2), we summarize these reasons into two categories. Below we discuss the 
measures that we used to capture the two categories of reasons.  
 Category 1: High opportunity cost of time: hosts with a high opportunity cost of time have 
a greater incentive to adopt since they then do not have to expend effort to decide and update prices 
every day. We include the following variables to capture this cost: (i) MedianEarningin and 
HomeValuei. MedianEarningin is defined as the median earnings in a neighborhood n conditioned 
on host i’s ethnicity and age. We collected this information from the American Community 
Survey8. HomeValuein is defined as the average home value across homes in neighborhood n with 
the same size as that of host i. We collected these data from Zillow Research9.  (ii) How long has 
the property been listed on Airbnb, whether the host owns multiple listings, and whether the host 
manages the entire place (as opposed to renting out a room). Gibbs et al. (2017) found that hosts 
who are more experienced, own multiple listings, and manage entire places are the ones who as 
such dynamically update their prices over time, and thus have lower costs of updating prices. 

Category 2: This relates to the reasons for not adopting the algorithm, which are: a) lack of 
trust in the technology and in Airbnb (hosts believe that Airbnb does not have their best interests 
in mind), and b) prices recommended by the algorithm are too low. We include the following 
variables to capture these reasons: (i) age and education level of hosts, which capture their 
receptiveness towards the new technology. The education level is captured by Bachelorin and 
Graduatein which are the ratios of people in the same neighborhood n who have a bachelor’s and 
master’s degrees respectively and share the same demographics as host i. (ii) Whether the property 
has unique features. This captures reason (b) - while the algorithm takes standard features into 
account when pricing a property, it may not incorporate the more unique features (Ye et al. 2018), 
and hence may set a lower price for such properties. To capture this effect, we include the presence 
of all features and amenities listed on the property webpages.   
 
2.5 AirDNA Data: Data Collection, Limitations and Reliability  
We used AirDNA data to obtain information on average monthly prices, monthly occupancy 
status, and other characteristics mentioned on webpages of the properties. This data spans from 
July 2015 to Aug 2017, and it covers all Airbnb listings in the seven cities. To understand the 
potential concerns with the AirDNA data, we will first explain where we use this data in our 
analysis. We use the AirDNA data to calculate each property’s average daily revenue in a month, 
which is the DV in our analysis. Recall that we computed the average daily revenue as  

Average Daily Revenue in a Month = Average Nightly Price × Occupancy 
Occupancy= # booked days in a month/(Total # of days in a month - # blocked days in a 

month).    
In the formula above, the number of blocked days in a month are the number of days in 

which the property not available to any guest because it was blocked by the host (for say personal 
use), and the number of booked days in a month are the number of days in which the property was 
rented out/reserved by guests. The above formula shows that in order to compute occupancy and 
revenues, we need to know the prices, number of booked days in a month and the number of 
blocked days in a month. The information on daily prices is publicly available and AirDNA is able 
to scrape this information from each host’s webpage. Thus the information on prices from AirDNA 
is accurate. Prior to Dec 2015, AirDNA was able to use Airbnb’s API to get accurate information 
                                                 
8 https://www.socialexplorer.com/explore/tables. https://www.census.gov/programs-surveys/acs/.  
9 https://www.zillow.com/research/data/.  

https://www.socialexplorer.com/explore/tables
https://www.census.gov/programs-surveys/acs/
https://www.zillow.com/research/data/
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on the number of booked as well as blocked days in a month for each property. However from Dec 
2015 onwards, Airbnb disabled its API. As a result, AirDNA could only observe the sum of the 
number of blocked and booked days in a month, but not their individual values. To deal with this, 
AirDNA built a proprietary ML algorithm that helps determine the number of blocked vs. booked 
days for each property in each month.  

The above discussion brings out the potential concern with the AirDNA data, which is that 
the AirDNA’s algorithm may not be accurate enough to predict which of the non-open days were 
booked or blocked.  AirDNA provides two reasons why its algorithm is fairly accurate in its 
predictions reasons. First, the data that AirDNA uses for training and prediction testing of its ML 
algorithm is of high quality obtained from two sources10.  
(i) Historical data that AirDNA had collected through Airbnb’s API for each Airbnb rental 

property for 18 months prior to December 2015. This data consists of the daily true 
reservation status, daily prices and all other information on the property webpages.  

(ii) The ongoing stream of data that AirDNA has been collecting since Dec 2015 through its 
collaborations with individual hosts and professional managers who manage large number 
of listings on behalf of Airbnb hosts. Based on our conversations with AirDNA, there are 
more than 650,000 such properties under collaborative arrangement across the U.S. and 
Europe. From these individual hosts and professional managers, AirDNA gets daily 
information on each property’s true reservation status (i.e., whether it was unreserved, 
booked or blocked), daily prices and other property characteristics. The hosts and managers 
also provide useful insights to AirDNA on what other behavioral variables they should feed 
into the ML algorithm to improve its predictability.  

 
Both these sources of data contain rich set of explanatory variables (such as location, time, property 
characteristics, length of booking, booking lead time, historical performance of the property, and 
other behavioral variables learnt from hosts and professional managers etc.) which AirDNA feeds 
into their algorithm. Moreover, since the second source of data mentioned above is an ongoing 
stream of data, AirDNA’s ML algorithm continues to learn and improve as time goes on.  

Second, as per AirDNA, their algorithm is consistently accurate within a 5% margin of error 
when they compare the predicted blocked vs. booked days rate in a month with those in the hold 
out sample (AirDNA randomly splits the joint data (i) and (ii) into training and hold out samples 
for their ML algorithm). We cautious the readers that AirDNA uses its proprietary algorithm to 
discriminate a booked day versus a blocked day for calculating the monthly occupancy rate. 
AirDNA claims that its algorithm is able to predict the monthly occupancy rate within 5% error. 
However since we do not have access to AirDNA’s proprietary algorithm, we are not able to verify 
this claim.  

In the AirDNA data, all the observations in the entire panel pertaining to the reservation 
status (that is, whether the property was booked, blocked or unreserved) were based on the 
predictions of AirDNA’s algorithm. This is important because recall that AirDNA could observe 
the true reservation status prior to Dec 2015, but could only make predictions of it post Dec 2015. 
Since Dec 2015 lies within the span of our data (our data spans from July 2015 to Aug 2017), it is 
important that we maintain consistency throughout the entire panel on how reservation status is 
obtained. Additionally, based on our conversations with AirDNA, their algorithm has a consistent 
performance in terms of predicting accuracy on their test set across time, which includes periods 
before and after Dec 2015.  
                                                 
10 Please see https://www.airdna.co/blog/short-term-rental-data-methodology. 

https://www.airdna.co/blog/short-term-rental-data-methodology
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Section 3. Inverse Probability Treatment Weighting (IPTW): Analysis, Variables, and 
Robustness Checks 

 
Inverse Probability Treatment Weighting (IPTW) is a widely-applied weighting method to 
construct a balanced sample of treated and untreated units (Rosenbaum 1987, Austin and Stuart 
2015). This method first computes the weight for each given unit as the inverse of its treatment 
probability, and then weighs all units to eliminate any existing systematic differences between 
treated and untreated units in terms of the observed covariates that explain the treatment 
probability. Unlike matching methods in which units in the two groups that are not very similar to 
each other are discarded, the IPTW method does not have to discard any unit when creating a 
balanced sample (Guo and Fraser 2015). Prior Monte Carlo studies have shown that IPTW method 
leads to lower mean squared error in the estimates of treatment effects as compared to those 
obtained from matching methods such as Propensity Score Matching (Austin 2013, Austin and 
Stuart 2015).  

In what follows, we first provide an overview of the IPTW method and explain how it works. 
Following that we will explain each of the steps in the IPTW method in more detail. In the IPTW 
method, we first estimate the treatment probabilities to construct the weights. The treatment 
probability (also called propensity score) is the probability that an individual unit is assigned to 
the treatment condition, conditional on a set of observed variables (Rosenbaum and Rubin 1983). 
We specify propensity score for each unit i as a function of a set of K-dimensional observed 
covariates 𝑿𝑿𝒊𝒊, which impact host i’s decision of adoption of the algorithm (or assignment into the 
treatment condition). These covariates would also include all observed confounders that impact 
the adoption decision and are also correlated with the DV in the subsequent DiD regressions: 

 
𝑝𝑝𝑠𝑠�𝑖𝑖 = 𝑓𝑓(𝑿𝑿𝒊𝒊𝜷𝜷)           (S3) 

 
The observed covariates, Xi, includes both time invariant as well as time varying observables that 
can impact adoption of the algorithm. Regarding the time varying observables, the caveat is that 
we can only take their pre-treatment values in the regression. Therefore, to capture the impact of 
the time varying observables in our analysis, we followed the prior literature by taking their pre-
treatment values when estimating the adoption probabilities (Austin 2011) – that is, when 
estimating the adoption probability for each property, we took the values of the time varying 
observables at the beginning of Nov 2015, which was just before the algorithm was launched. We 
approximate propensity score 𝑝𝑝𝑠𝑠�𝑖𝑖  by estimating the parameter vector 𝛃𝛃  by fitting a logistic 
regression where the input is the vector of observed covariates 𝑿𝑿𝒊𝒊  and the output is a binary 
response, which equals 1 if unit i was observed to receive treatment and equals 0 if otherwise. The 
estimation process finds a parameter vector 𝜷𝜷 that maximizes the data likelihood of observed 
treatment assignments (Rosenbaum and Rubin 1983), where f (.) takes a logit functional form. 
Given the estimate of β, we compute each unit i’s propensity score as 𝑝𝑝𝑠𝑠�𝑖𝑖 = 𝑓𝑓(𝑿𝑿𝒊𝒊𝜷𝜷), which we 
use to compute the weights of the sub-sample of the observations of each property i as (T is the 
binary treatment indicator, which takes the value of 1 if the unit i belongs to the treatment group)    
 

𝑤𝑤𝑖𝑖 = 𝑇𝑇
𝑝𝑝𝑠𝑠𝑖𝑖

+ 1−𝑇𝑇
1−𝑝𝑝𝑠𝑠𝑖𝑖

         (S4)   
 
These weights capture the contribution of different units when estimating the average 

treatment effects in the subsequent DiD regressions. In other words, we estimate the average 
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treatment effects in the subsequent DiD regressions using weighted least squares, with wi being 
the weight of each unit i. By weighting each unit i’s observations by wi, IPTW creates a ‘synthetic 
sample’ of weighted treatment and control groups in which the covariates X are balanced across 
the two weighted groups. Since the covariates X also include the potential observed confounders, 
the covariate balance across the weighted treatment and control groups ensures that the treatment 
assignment across the two weighted groups is independent of any observed confounder; further if 
there were no unobserved confounders, this would in turn imply that the weighted treatment and 
control groups are as good as data to being sampled from a population in which treatment 
assignments were random. This random treatment assignment would then ensure that the estimate 
of the average treatment effect is unbiased.   

The rest of this section is organized as follows. In section 3.1, we list the covariates X that 
we use for estimating the propensity scores, along with the estimates of their coefficients. 
Following that in section 3.2, we do the covariate balance assessment to check whether the 
weighted treatment and control groups are balanced in terms of the covariates X. Finally in section 
3.3, we assess the sensitivity of the estimates of treatment effects to unobserved confounders.  
 
3.1. Estimation of the Treatment Probability  
To improve the performance of IPTW and to reduce potential bias due to omitted variables in the 
subsequent DiD, we used a broad list of observed covariates, X, that are available to us for 
estimating the probability of treatment assignment of each property (i.e., the probability of 
adoption of the algorithm). These variables include the ones that that we discussed in section 2.4 
of the Web Appendix. We estimate the probability as a logit function of the observed covariates 
X. In Table S3 we present the list of covariates used in the estimation of the adoption probability 
and the estimation results.  
 

Table S3 List of variables and estimation results in Treatment Probability Estimation.  
 

VARIABLES Estimate Std. Err. p-value 
# Bedrooms -0.08686 0.041818 0.038 
Apartment -0.19591 0.068849 0.004 
Entire Home -0.32363 0.064367 0 
Listing Title Length 0.013507 0.003936 0.001 
Number of Photos 0.006519 0.002465 0.008 
Number of Reviews 0.000255 0.000941 0.787 
Listing Nightly Rate 5.69E-05 0.000242 0.814 
# Minimum Stay -0.0035 0.01127 0.756 
Security Deposit 1.64E-05 8.68E-05 0.85 
# Blocked Days in a month -0.02426 0.002881 0 
# Reservation Days 0.003233 0.003618 0.372 
Median Home Earning (1000 USD) 0.002108 0.002423 0.384 
Private Parking 0.164609 0.167851 0.327 
Pool 0.109914 0.126473 0.385 
Iron -0.10366 0.212219 0.625 
Internet 0.105076 0.290149 0.717 
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TV -0.11238 0.065056 0.084 
Dryer 0.094626 0.096851 0.329 
Washer -0.15115 0.077124 0.05 
Beach nearby -0.496169 0.095586 0 
Essentials 0.338564 0.11026 0.002 
Heating 0.413384 0.142156 0.004 
Microwave 0.04468 0.163114 0.784 
Refrigerator 0.184393 0.158359 0.244 
Laptop friendly 0.14706 0.088842 0.098 
Fireplace -0.16589 0.080206 0.039 
Elevator -0.1523 0.076067 0.045 
Gym -0.13081 0.127532 0.305 
Family friendly 0.217464 0.081042 0.007 
Smoker detector 0.336256 0.100669 0.001 
Shampoo -0.03363 0.084676 0.691 
Breakfast 0.035317 0.106263 0.74 
AC 0.041163 0.563674 0.942 
# Photographed Faces 0.016342 0.035888 0.649 
Walk Score -0.00271 0.001611 0.092 
Transit Score 0.008991 0.002413 0 
Drive to Downtown (min) -0.00178 0.003112 0.568 
Population Density (Per Sq. Mile) 1.58E-06 1.44E-06 0.271 
Graduate (%) 0.0316 0.008379 0 
Bachelor (%) 0.01114 0.004725 0.018 
Host Age -0.00444 0.002748 0.106 
Home Value (1000 USD) -7.4E-05 7.67E-05 0.336 
Number of months since the property has 
been listed -0.00475 0.002028 0.019 
Number of properties owned by the host -0.03667 0.007686 0 
Observations 9396 
Log likelihood -4610.69 

 
3.2. Validation checks for IPTW: covariates balance assessments 
Given the estimates, β, we compute the weights of the sub-sample of the observations of each 
property i from the expression given in equation (S3).  By weighting each unit i’s observations by 
wi, the objective of the IPTW method is to create a synthetic sample of weighted treatment and 
control groups in which the covariates X are balanced across the two weighted groups. Thus our 
next step is to validate whether the resulting adopters and non-adopters (in the weighted sample) 
are comparable over the observed covariates that we listed in section 3.1. We thus assess the 
covariates balance on the weighted sample. Following prior literature (Rubin 2001, Stuart 2010), 
we compute the standardized difference in the means of the covariates across the two groups. This 
method compares, over M-dimensional covariates, the means of the treated group, 𝑿𝑿�𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕, 
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with the means of the control group, 𝑿𝑿�𝒄𝒄𝒄𝒄𝒕𝒕𝒕𝒕𝒕𝒕𝒄𝒄𝒄𝒄. The standardized differences are computed by 
normalizing the difference by the sample variance, 𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2  and 𝑠𝑠𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑙𝑙2 : 

 
 

𝑑𝑑𝑡𝑡 = ��
𝑋𝑋�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑋𝑋�𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑙𝑙𝑡𝑡

�𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
2 + 𝑠𝑠𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑙𝑙2

2

�� 

(S5) 

 
We calculate the above statistic for each observed variable in the two weighted samples. The 

statistic 𝑑𝑑𝑡𝑡 stands for the standardized difference between the treatment and the control group 
along variable m. If 𝑑𝑑𝑡𝑡 is small, then it means the differences in that observed variable between 
the two weighted samples are small, which implies that the two groups are comparable in that 
observed variable. In the above equation, the means and variances in the treatment and control 
groups are weighted by the sample weight, represented by 𝜔𝜔𝑖𝑖 . The means and variance for 
treatment and for control groups are:  

 
 

⎩
⎪
⎨

⎪
⎧ 𝑿𝑿�𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 =

∑ 𝜔𝜔𝑖𝑖𝑿𝑿𝒊𝒊𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

∑ 𝜔𝜔𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
                                                         

𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2 =
∑ 𝜔𝜔𝑖𝑖𝑖𝑖

(∑ 𝜔𝜔𝑖𝑖)𝑖𝑖
2 − ∑ (𝜔𝜔𝑖𝑖)2𝑖𝑖

�𝜔𝜔𝑖𝑖(𝑋𝑋𝑖𝑖𝑡𝑡 − 𝑋𝑋�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 )2
𝑖𝑖

   
𝑛𝑛 𝑛𝑛𝑛𝑛 𝐸𝐸𝑝𝑝𝐿𝐿𝐿𝐿𝐸𝐸𝑡𝑡𝐿𝐿𝑛𝑛𝐸𝐸 𝑔𝑔𝑝𝑝𝑝𝑝𝑔𝑔𝑝𝑝 

 

(S6) 

 

⎩
⎪
⎨

⎪
⎧ 𝑿𝑿�𝒄𝒄𝒄𝒄𝒕𝒕𝒕𝒕𝒕𝒕𝒄𝒄𝒄𝒄 =

∑ 𝜔𝜔𝑖𝑖𝑿𝑿𝒊𝒊𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑙𝑙

∑ 𝜔𝜔𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑙𝑙
                                                               

𝑠𝑠𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑙𝑙2 =
∑ 𝜔𝜔𝑖𝑖𝑖𝑖

(∑ 𝜔𝜔𝑖𝑖)𝑖𝑖
2 − ∑ (𝜔𝜔𝑖𝑖)2𝑖𝑖

�𝜔𝜔𝑖𝑖(𝑋𝑋𝑖𝑖𝑡𝑡 − 𝑋𝑋�𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑙𝑙𝑡𝑡 )2
𝑖𝑖

    
        𝑛𝑛 𝑛𝑛𝑛𝑛 𝑛𝑛𝑝𝑝𝑛𝑛𝐸𝐸𝑝𝑝𝑝𝑝𝑙𝑙 𝑔𝑔𝑝𝑝𝑝𝑝𝑔𝑔𝑝𝑝 

(S7) 

 
where 𝜔𝜔𝑖𝑖 is the sample weight computed for unit i as inverse of the probability of treatment that 
unit i received. Specifically for unit i in the treatment group, 𝜔𝜔𝑖𝑖 = 1

𝑝𝑝𝑠𝑠𝚤𝚤�
, and for unit in the control 

group, 𝜔𝜔𝑖𝑖 = 1
1−𝑝𝑝𝑠𝑠𝚤𝚤�

 (𝑝𝑝𝑠𝑠𝚤𝚤� is the estimated propensity of adopting smart pricing algorithm). 
We next assess the sample balance by computing the standardized differences in the 

covariates. If for a given covariate, the absolute standardized difference between the control group 
and the treatment group is below 10% (i.e., 0.1), then it is considered that the imbalance is 
negligible (see discussion in Austin and Stuart 2015). As shown in Table S4, the absolute value of 
the standardized differences in all covariates (in the weighted sample) are well below 0.1. This 
indicates that our IPTW strategy created a weighted sample that effectively removed significant 
imbalances in the observed covariates that may have existed in the raw sample. 
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Table S4 Validation test for IPTW: covariates balance check. Shows the standardized 
difference between the adopters and the non-adopters along the list of observed covariates. 

The statistics before IPTW-weighted (raw sample) and after IPTW-weighted (weighted 
sample) are both presented. 

 

VARIABLES 
Standardized Differences 

Unweighted Sample Weighted Sample 
# Bedrooms -0.034 -0.003 
Apartment -0.167 0.005 
Entire Home -0.139 -0.006 
Listing Title Length 0.152 0 
Number of Reviews 0.193 0.004 
Number of Photos 0.153 -0.011 
Listing Nightly Rate -0.108 0.025 
# Minimum Stay -0.028 0.015 
Security Deposit 0.01 -0.001 
# Blocked Days -0.229 0.077 
# Reservation Days 0.216 -0.019 
Occupancy Rate 0.12 -0.006 
Median Home Earning (1000 USD) -0.143 0.014 
Parking 0.275 -0.032 
Pool -0.038 -0.001 
Beach 0.08 -0.007 
Internet 0.059 -0.021 
TV -0.02 -0.014 
Dryer 0.231 -0.033 
Washer -0.027 -0.009 
Iron 0.529 -0.043 
Essentials 0.518 -0.029 
Heating 0.122 -0.057 
Microwave 0.322 0.001 
Refrigerator 0.354 -0.002 
Laptop friendly 0.461 -0.044 
Fireplace 0.002 -0.007 
Elevator -0.137 -0.012 
Gym -0.095 -0.005 
Family friendly -0.211 -0.006 
Smoker detector 0.512 -0.035 
Shampoo 0.452 -0.028 
Breakfast 0.053 0.006 
AC 0.063 -0.052 
# Photographed Faces 0.024 -0.03 
Walk Score -0.052 0.018 
Transit Score -0.038 0.017 
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Drive to Downtown (min) 0.063 0.004 
Population Density (Per Sq. Mile) -0.052 0.008 
Bachelor (%) -0.154 0.021 
Professional Host  
(#host-owned listings) -0.109 -0.028 
# Listed Month 0.031 0.001 
Host Age 0.038 -0.022 
Home Value (1000 USD) -0.087 0.05 

Note: the means and standard deviations of the covariates were computed for the pre-
treatment (i.e., at the beginning of Nov. 2015) measurements. 

 
3.3. Sensitivity analysis of Selection on Unobservables: Conditional c-Dependence Test 
The unbiasedness of the treatment effect rests on the conditional independence assumption (CIA) 
that we have used in our IPTW and DiD analysis. The CIA assumption is that conditional on the 
distributions of the observed covariates f(X), the potential outcome Y is independent of the 
treatment assignment T. Though the weighted sample of adopter units and non-adopter units are 
comparable along the list observed covariates, it is still possible that there were relevant variables 
omitted from the IPTW implementation. This is because the treatment probabilities (propensity 
scores) are computed as a function of observables. If there are unobservables that affect hosts’ 
adoption decision, then this may introduce a bias in the estimated treatment effect as the 
unobservables could be correlated with the dependent variable in the subsequent regression.  

To deal with the issue of unobserved confounders, researchers have proposed methods to 
assess the sensitivity of the estimator to CIA. Researchers have typically used Rosenbaum bounds 
sensitivity analysis to do that. In our study, we do not use the Rosenbaum sensitivity analysis. 
Instead we use the conditional c‐dependence sensitivity test, which was recently proposed in the 
literature by Masten and Poirier (2018, 2019 and 2020) to assess the robustness of the average 
treatment effect (average impact of adoption on revenues) as well as the differential effect 
(differential impact of adoption on revenues of black vs. white hosts) to unobserved confounders. 
The conditional c-dependence sensitivity analysis does not impose parametric assumption on the 
modeling of the selection process or on the impact of treatment on the outcome variable. There are 
two reasons why we do not use the Rosenbaum bounds sensitivity analysis, and instead use the 
conditional c-dependence analysis. First, Rosenbaum sensitivity analysis cannot be employed 
when using IPTW. It can only be employed when we use PSM to create a matched sample. Second, 
the Rosenbaum bounds analysis cannot be used to test the robustness of the differential effect. It 
can only be used to test the robustness of the average treatment effect. 

 
3.3.1. Overview of the Conditional c-Dependence Sensitivity Analysis 

We followed the work of conditional c-dependence proposed by Masten and Poirier (2018). The 
objective of the conditional c-dependence exercise is to inform us how large the impact of 
hypothetical unobserved confounders need to be in order for the treatment effect to be nullified – 
the larger the value of unobserved confounders that is needed to nullify the treatment effect, the 
greater will be the confidence that our estimated treatment effect will be robust to unobserved 
confounders. 
 To see how conditional c-dependence analysis works, first note that in our IPTW and DiD 
analysis, we estimated the treatment effects based on the assumption that the conditional 
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independence assumption (CIA) holds true. In other words, in our IPTW and DiD analysis, we 
estimated our treatment effects based on the assumption that the probability of being selected for 
treatment conditional on the observed covariates, X, and unobserved potential outcome variable is 
equal to the probability of treatment conditional on the observed covariates X only. Note that this 
assumption holds true as long as there are no unobserved confounders. In contrast, Masten and 
Poirier (2018) proposed a class of assumptions that are weaker than CIA, namely the conditional 
c-dependence or partial independence, which can be used to assess the sensitivity of the treatment 
effects (obtained under CIA) to hypothetical unobserved confounders.  

The conditional c-dependence assumption states that under a hypothetical scenario in which 
CIA is violated, the two aforementioned conditional probabilities would not be identical, but 
should be within a distance from each other. Under conditional c-dependence, the deviation from 
CIA, as captured by the maximum distance between the two aforementioned conditional 
probabilities, is described by a scalar variable c. If CIA were true, the two conditional probabilities 
would be equal to each other, and the value of c will be zero. If CIA is violated, there will be a 
non-zero distance between the two conditional probabilities, bounded by the value of c. This 
distance c captures the impact of unobserved confounders. The greater the magnitude of c, the 
greater will be the impact of unobserved confounders, and consequently the greater will be 
violation of CIA.  

Given these primitives, the objective of the conditional c-dependence exercise is to calculate 
the minimum amount of deviation required from the CIA (or the minimum value of c) that would 
nullify the treatment effect that we had estimated assuming CIA to hold true. Intuitively, if it 
requires a large value of c to nullify a treatment effect obtained under CIA (i.e., the hypothetical 
unobserved factors need to be so large enough to violate CIA), then it would imply that the estimate 
of the treatment effect that we had obtained by assuming CIA is quite robust to hypothetical 
unobserved confounders. On the other hand, if a small value of c can nullify the treatment effect, 
then it would suggest that the estimate of the treatment effect that we had obtained under CIA is 
sensitive to the hypothetical unobserved confounders. This minimum value of c required to nullify 
the treatment effect is called ‘breakdown value’.  

We next briefly discuss how the breakdown point is calculated. Formally, the conditional c-
dependence is defined in the following framework: 

• 𝑌𝑌𝑇𝑇: the potential outcome for a given treatment T ∈{0, 1} 
• T: binary treatment status; T=1 for being selected to treatment (i.e., the property adopted 

the algorithm) and T=0 for not exposed to treatment (i.e., the property did not adopt the 
algorithm) 

• X: the set of observed covariates used in IPTW 
• Y: the observed outcome 

 
Hence, we observe (Y,T,X), where only the 𝑌𝑌 = 𝟏𝟏{𝑇𝑇 = 1}𝑌𝑌1 + 𝟏𝟏{𝑇𝑇 = 0}𝑌𝑌0 is observed as the 

realized outcome. Under CIA, we have: 
 

𝑃𝑃(𝑇𝑇 = 1|𝑌𝑌𝑇𝑇 = 𝑛𝑛𝑇𝑇 ,𝑋𝑋 = 𝑥𝑥) = 𝑃𝑃(𝑇𝑇 = 1|𝑋𝑋 = 𝑥𝑥)       (S8) 
 
where 𝑃𝑃(∙) indicates the conditional treatment/adoption probability, 𝑛𝑛𝑇𝑇 ∈ support of (𝑌𝑌𝑇𝑇|𝑋𝑋 = 𝑥𝑥) 
and 𝑥𝑥 ∈ support of (𝑊𝑊). On the other hand, under conditional c-dependence, the independence 
only partially holds true, such that: 
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𝑠𝑠𝑔𝑔𝑝𝑝
𝑦𝑦𝑇𝑇∈𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝(𝑌𝑌𝑇𝑇|𝑋𝑋=𝑥𝑥)

|𝑃𝑃(𝑇𝑇 = 1|𝑌𝑌𝑇𝑇 = 𝑛𝑛𝑇𝑇 ,𝑋𝑋 = 𝑥𝑥) − 𝑃𝑃(𝑇𝑇 = 1|𝑋𝑋 = 𝑥𝑥)| ≤ 𝑛𝑛    (S9) 

 
where sup-norm distance denotes how much the two adoption/treatment probabilities differ from 
each other. The scalar c has a value between 0 and 1, where 0 refers to the full conditional 
independence assumption as a special case. The treatment effect based on IPTW and DiD analyses 
is point estimated when CIA holds true (i.e., when c=0 or when there are no unobserved 
confounders). On the other hand, Masten and Poirier (2018) show that if CIA is violated (i.e., when 
c>0 or when there are unobserved confounders), then the treatment effect based on IPTW and DiD 
analyses will not be point estimated and will instead be defined in a range for a given significance 
level. There will be an upper and lower bound around the estimated treatment effect, which reflect 
the uncertainty in the estimate of the treatment effect due to unobserved confounders. Masten and 
Poirier (2018) showed that the values of the lower- and upper- bounds around the estimated 
treatment effect for a given level of significance can be computed as functions of c. These bounds 
collapse to the same point estimate when c=0, i.e., when CIA holds true. The bounds get ‘wider’ 
as c increases, i.e., when the hypothetical unobservable leads to a deviation from CIA.  
 Given the upper and lower bounds vary as functions of c, we can then identify the breakdown 
point, cb. The break down point, cb, is defined as the minimum value of c at which the data 
disproves the conjecture about the treatment at 95% significance level. When our conjectured 
value of the treatment effect is positive, the breakdown value, cb, will be the value of c when the 
lower bound curve intersects the baseline of zero (x axis); and when our conjectured value of the 
treatment effect is negative, the breakdown value, cb, will be the value of c when the upper bound 
curve intersects the baseline of zero. Once we get the value of cb, we can then make inferences on 
how robust our estimated treatment effect is to hypothetical unobserved confounders (more on this 
in section 3.3.4). In our context, the treatment effects of interest are the average treatment effect 
(the average impact of adoption on revenues) and the differential effect (the differential impact of 
adoption on revenues of black vs. white hosts). Thus in what follows, we report the results on cb 
for the average treatment effect in section 3.3.2. In section 3.3.3, we report the results on cb for the 
differential effect. And finally in section 3.3.4, we discuss what obtained values of cb imply in 
terms of robustness of the main and differential effects.  
 
3.3.2. Results on conditional c-dependence sensitivity analysis: the average treatment effect 
We present results on the upper and lower bounds and the corresponding breakdown point based 
on 95% significance level for the average treatment effect. For our implementation, we used Stata 
package – tesensitivity – developed by the authors of conditional c-dependence (Masten and Poirier 
2019). This package is implemented following Stata’s command – teffects – for estimating 
treatment effect using IPTW11.  

As shown in Table S5, the upper bound and the lower bound have the same value when c=0. 
That is, the treatment effect is point identified under CIA. Recall that that the size of c depends on 
the size of the impact of the hypothetical unobservable. As the impact of the hypothetical 
unobservable increases (i.e., value of c increases), we become more uncertain about the size of the 
treatment effect and can only place bounds (as opposed to point estimates) on the estimate (these 
are bounds around the estimate of the average treatment effect). The formula that the software used 

                                                 
11  StataCorp. 2013. Stata: Release 13. Statistical Software. College Station, TX: StataCorp LP. 
https://www.stata.com/manuals13/te.pdf 

https://www.stata.com/manuals13/te.pdf
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to compute the bounds as well as their theoretical derivations and proof are in Theorem 1 
(Proposition 3-Corllary 1 and Proposition 4 of Masten and Poirier 2018). 

To see this graphically in Figure S2, the bounds become wider as value c increases. Here 
we have shown the results for the first 10 values of c. As shown in Figure S2 and Table S5 the 
breakdown point is 𝑛𝑛𝑏𝑏 = 0.083 for the average treatment effect, suggesting that the closed interval 
on the estimated treatment effect would start to include 0, above the value of 0.083 12. The 
estimated breakdown point implies that in order for our estimated average treatment effect of the 
pricing algorithm to be nullified, the potential unobservables that enter the adoption decision of 
the algorithm must be large enough so that the unobservables cause a deviation of at least 0.083 in 
the adoption probability..  

In section 3.3.4, we will benchmark the breakdown point in terms of the results obtained 
in prior studies that have used conditional c-dependence and other sensitivity analyses. That will 
give a better picture of how robust our results are to hypothetical unobserved confounders.   
 

Table S5 Treatment effects sensitivity: conditional c-dependence bounds 
Analysis: conditional c-dependence 

c  Upper Bound Lower Bound 
0 14.13 14.13 
0.026 9.77 18.47 
0.051 5.39 22.77 
0.077 1.00 27.00 
0.103 -3.32 31.08 
0.128 -7.51 34.91 
0.154 -11.54 38.49 
0.179 -15.42 41.86 
0.205 -19.17 45.06 
0.231 -22.82 48.13 
Outcome mode: logistic 
Treatment model: linear quantile 
Outcome variable: Average Daily Revenue over Adoption Periods 
Conjecture: β> 0 
Breakdown  point: 0.083 

 

                                                 
12 Note that this breakdown value 𝑛𝑛𝑏𝑏 was reported as an output by the software – tesensitivity –. 
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Figure S2 The Conditional c-Dependence Bounds on Effect of Using Smart Pricing 
Algorithm on the Airbnb Property Revenue: Bounds vary over the value of c 

 
3.3.3. Results on conditional c-dependence sensitivity analysis: the differential effect13 
In this section we assess how sensitive the differential effect is to any violation of CIA. To do so, 
we first conducted the conditional c-dependence analysis separately for two subgroups in the 
sample—for hosts in the white and the black ethnicity groups, respectively. Then we examined the 
value of c when the bounds on the estimated treatment effects for the two subgroups start to 
overlap. That value of c would be the breakdown point of the estimate of differential effect. 
Essentially, we first computed the average treatment effect conditional on each ethnicity group, 
then computed the bounds for each treatment effect, when in turn informed us on the value of c 
when the bounds of the two groups start to overlap.  

To see this formally, here we are interested in the difference between the treatment effects 
for white and for black ethnic groups, i.e.,  

∆𝛽𝛽 = 𝛽𝛽𝑏𝑏𝑙𝑙𝑡𝑡𝑐𝑐𝑘𝑘 − 𝛽𝛽𝑤𝑤ℎ𝑖𝑖𝑡𝑡𝑡𝑡        (S10) 
where 𝛽𝛽𝑏𝑏𝑙𝑙𝑡𝑡𝑐𝑐𝑘𝑘 and 𝛽𝛽𝑤𝑤ℎ𝑖𝑖𝑡𝑡𝑡𝑡 are the treatment effect of using smart pricing on the property demand for 
black hosts, and for white hosts, respectively. We can construct bounds on the difference as: 

𝑈𝑈𝐵𝐵∆𝛽𝛽 = 𝑈𝑈𝐵𝐵𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝐿𝐿𝐵𝐵𝛽𝛽𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖       (S11) 
𝐿𝐿𝐵𝐵∆𝛽𝛽 = 𝐿𝐿𝐵𝐵𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑈𝑈𝐵𝐵𝛽𝛽𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖       (S12) 

where UB and LB refers to upper bound, and lower bound, respectively. Then we could just plot 
that single set of bounds, (𝑈𝑈𝐵𝐵𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 , 𝐿𝐿𝐵𝐵𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 , 𝑈𝑈𝐵𝐵𝛽𝛽𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖 , 𝐿𝐿𝐵𝐵𝛽𝛽𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖), as functions of c. Note that 
𝐿𝐿𝐵𝐵𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the lower bound of the estimated treatment effect for the black ethnic group and 
𝑈𝑈𝐵𝐵𝛽𝛽𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖 is the upper bound of the estimated treatment effect for the white ethnic group, in the 
presence of uncertainty. The value c where 𝐿𝐿𝐵𝐵𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  and 𝑈𝑈𝐵𝐵𝛽𝛽𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖  first intersect (as we are 
interested in testing 𝛽𝛽𝑏𝑏𝑙𝑙𝑡𝑡𝑐𝑐𝑘𝑘 > 𝛽𝛽𝑤𝑤ℎ𝑖𝑖𝑡𝑡𝑡𝑡) would give us the smallest 'amount of unobserved selection' 
required for ∆𝛽𝛽 to be zero, and that will be the breakdown point for the differential effect. Note 
that the with way we compute the bounds for the differential effect, we should interpret the 
sensitivity results as conservative estimates. This is because looking at the lower bound of black 
                                                 
13  We thank Matthew Masten (author of Masten and Poirier 2018, 2019) for suggesting the methodology for 
calculating the breakdown value of the differential effect. 
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(𝐿𝐿𝐵𝐵𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) and upper bound of white (𝑈𝑈𝐵𝐵𝛽𝛽𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖) is a conservative comparison, in the sense that it 
is assuming the data lines up to make the difference ∆𝛽𝛽 = 𝛽𝛽𝑏𝑏𝑙𝑙𝑡𝑡𝑐𝑐𝑘𝑘 − 𝛽𝛽𝑤𝑤ℎ𝑖𝑖𝑡𝑡𝑡𝑡 as small as possible.  

In  
 
Figure S3 we plot the bounds for the estimated treatment effect for white, and black, ethnic 

groups. Clearly, the difference (or amount that 𝛽𝛽𝑏𝑏𝑙𝑙𝑡𝑡𝑐𝑐𝑘𝑘 above 𝛽𝛽𝑤𝑤ℎ𝑖𝑖𝑡𝑡𝑡𝑡) diminishes as c increases. The 
value of the breakdown point 𝑛𝑛𝑏𝑏 is 0.034 – it is the point above which the two intervals on the 
estimated treatment effects for white and black ethnic groups would start to overlap. This 
breakdown point implies that in order for our estimated differential effect of the pricing algorithm 
to be nullified, the potential unobservables that enter the adoption decision of the algorithm must 
be large enough so that the unobservables cause a deviation of at least 0.034 in the adoption 
probability. In section 3.3.4, we will benchmark the breakdown point value in terms of the results 
obtained in prior studies that have used conditional c dependence and other sensitivity analyses. 
That will give a clearer picture of how robust our results are to hypothetical unobserved 
confounders.   

 
Figure S3 Conditional c-Dependence Bounds on Effect of Using Smart Pricing 

Algorithm on the Airbnb Property Revenue: For White and Black Ethnic Group Separately 

 
 
3.3.4. Interpretation of conditional c-dependence sensitivity analyses 
Recall that our estimate of breakdown point is 0.083 for the average treatment effect, and 0.034 
for the differential effect. To understand what these values imply in terms of percentage changes 
in adoption probabilities, note that the mean treatment (adoption) probability in our sample is 
19.5%. Thus if we were translate our result in terms of percentage changes in adoption 
probabilities, our estimated breakdown points imply that in order for our estimated average 
treatment (differential) effect of the pricing algorithm to be nullified, the potential unobservables 
that enter the adoption decision of the algorithm must be large enough so that the unobservables 
cause a deviation of at least 0.083/0.195=42.6% (0.034/0.195 =17.4%) change in the adoption 
probability.   
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Next, to get a better sense of what these breakdown values imply in terms of robustness, we 
benchmarked these in two ways. First, we will benchmark our results with the robustness measures 
obtained in prior studies that have used conditional c-dependence analysis. Following that, we will 
benchmark our results with the robustness measures obtained in prior studies that have used the 
Rosenbaum bounds analysis. As discussed earlier, Rosenbaum bounds analysis a widely-used 
sensitivity analysis when using PSM.  

  
1. Comparison with Robustness Measures obtained in Prior Studies that have used Conditional c-
Dependence Analysis: We first benchmarked our results with the breakdown values obtained in 
the prior literature that has used conditional c-dependence analysis. Since conditional c‐
dependence analysis is a recent development, there are only a few applications. Masten and Poirier 
(2018, 2019) performed the conditional c-dependence analysis on the well known Lalonde1986 
dataset that has been used by researchers to measure the causal effect of education on income. This 
dataset consists of two samples: a randomized experimental sample that was used by LaLonde 
(1986) and a reconstructed non-experimental matched sample that was used by Dehejia and Wahba 
(1999). Masten and Poirier (2019) performed the conditional c-dependence analysis on these two 
samples, and obtained the breakdown values of the treatment effect as 0.075 for the randomized 
experimental sample, and 0.020 for the non-experimental matched sample. The breakdown value 
of 0.020 for the non-experimental matched sample serves as a useful benchmark because Dehejia 
and Wahba (1999) had demonstrated that the non-experimental matched sample is successful in 
dealing with confounders and it yields estimates of the treatment effect that are very similar to the 
ones estimated from the randomized experimental sample. Since the values of the breakdown 
points that we obtain in our analysis are larger than 0.020, it suggests that our estimates of both 
the average treatment and the differential effects are fairly robust to unobserved confounders. 
Recall that when analyzing the sensitivity for the differential effect, we assumed that the data lines 
up to make the additional increase for black host, compared to the effect for white hosts, as small 
as possible. Hence, in the way we compared the bounds for the treatment effect for black versus 
for white ethnic groups, the sensitivity result we obtained for the differential effect is a 
conservative estimate.   
 
2. Comparison with Robustness Measures obtained in Prior Studies that have used Rosenbaum 
Bounds Analysis:14 Rosenbaum bounds analysis is a sensitivity test for assessing the robustness of 
the estimate of the treatments effect (that was obtained using PSM) to hypothetical unobserved 
factors that enter the treatment selection process (Rosenbaum 2002). Similar to conditional c- 
dependence analysis, Rosenbaun bounds analysis identifies the minimum value of the impact of 
unobservables that enter the treatment selection process at which the treatment effect is nullified. 
However unlike the conditional c-dependence analysis in which the impact of unobservables is 
captured in terms of the absolute distance between the conditional probabilities (as in equation 
S9), the impact of unobservables in Rosenbaum bounds analysis is captured in terms of change in 

                                                 
14 A caveat is in order here since we are comparing robustness measures across two different methodologies. The 
reason why we have made this comparison is because there are very few studies that have used the conditional c‐
dependence analysis, and there are lot more studies have used Rosenbaum bounds analysis. Thus comparing our 
robustness measures with those obtained in the past studies that have used Rosenbaum bounds analysis is the next best 
option.  Based on our correspondence with Matthew Masten (author of Masten and Poirier 2018), the results of these 
two methodologies are similar, and they yield almost identical results when we have a one on one matched sample 
based on PSM.  
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odds ratio of being treated between two units that are otherwise similar on the observables. Thus 
unlike the conditional c-dependence test in which the robustness of the treatment effect is measured 
in terms of the breakdown value (which is the minimum value of the absolute distance between 
the conditional probabilities at which the treatment effect is nullified), the robustness of the 
treatment effect in the Rosenbaum bounds analysis is measured in terms of the Gamma value, 
which is the minimum value of the change in odds ratio at which the treatment effect is nullified.  

The above discussion implies that if we were to compare the robustness measures across 
conditional c-dependence analysis and Rosenbaum bounds analysis, we would need to translate 
the breakdown value obtained from the conditional c-dependence analysis to ‘the change in odds 
ratio’. This would be done as follows. Suppose there exist hypothetical unobservables that cause 
a deviation in the adoption probability by an amount of 𝑛𝑛𝑏𝑏—the breakdown point value. We then 
compute, for an average property, what the ‘altered’ adoption probability would be under the 
impact of hypothetical unobservables, and accordingly what the ‘altered’ odds would be. The 
change in the odds ratio would give us the equivalent Gamma value. In our sample, the adoption 
odds for the average property (given that the mean adoption probability in our sample is 19.5%) is 
19.5%/(1-19.5%)) = 0.24. If the hypothetical unobservables caused a deviation in the adoption 
probability by 𝑛𝑛𝑏𝑏=0.083 for the average treatment effect, then the altered odds ratio would be 
(19.5%+8.3%)/[1-(19.5%+8.3%)] =0.39. Thus the change in the odds ratio for cb=0.083 will be 
0.39/0.24 =1.63, which is the equivalent Gamma value for the average treatment effect in the 
Rosenbaum bounds analysis. Similarly, the impact of 𝑛𝑛𝑏𝑏=0.034 for the differential effect can be 
translated in term of change in odds ratio to a Gamma value of 1.25.  

This translation implies that in order to nullify our inference of the average treatment 
(differential) effect at 95% significance level, the potential unobserved confounders that enter the 
adoption decision must be large enough so that the Airbnb units in our sample must be 63% (25%) 
more likely in terms of odds-ratio to adopt the algorithm. Our values of Gamma for both the main 
and differential effects are similar to the ones in the prior literature that reported values from 1.2 
to 1.6 (e.g., DiPrete et al. 2004, Sun and Zhu 2014, Manchanda et al. 2015). This once again 
implies that our results are fairly robust to potential unobserved confounders.  

 
3. Interpreting the results using one-leave-out analysis: We have present additional analyses that 
allows us to interpret the breakdown values of the average treatment effect and the differential 
effect in terms of the impact of a known covariate on the adoption probability. The additional 
analysis is called the ‘leave-one-out’ analysis (Masten and Poirier 2018, 2020), which we explain 
as follows. 

Recall that for the average treatment effect (differential effect), the estimate of the 
breakdown value was c=0.083 (0.034), which implies that the hypothetical unobservable needs to 
cause a deviation of at least 8.3% (3.4%) in order to nullify the average treatment effect 
(differential effect). In this regard, an alternative to interpret the value of c is to identify the 
covariates that would cause a shift in the adoption probability by a similar magnitude that our 
obtained breakdown values would imply (which is 8.3% for the average treatment effect and 3.4% 
for the differential effect). The leave one out analysis helps with this task. In the leave-one-out 
analysis, for each given covariate Xm in the adoption model, we compare the following two 
estimated adoption probabilities: (i) the estimated probability obtained when we include all the 
covariates that we had used in the adoption probability model, and (ii) the estimated adoption 
probability obtained when we leave out the covariate Xm from the adoption model, and (ii). 
Comparing these two probabilities for each covariate Xm ϵ{X1..XM}, will allow us to assess the 
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impact of each of the covariates on the adoption probability. Following that, we can then assess 
which of the M covariates have an impact greater than what the breakdown values of the average 
treatment effect would imply (which is 8.3%) and the differential effect would imply (which is 
3.4%), and also identify the specific covariates whose impact is the same as what the breakdown 
values of the treatment effect and the differential effect would imply.  
 In more specific terms, suppose in our main analysis we used all covariates {𝑋𝑋𝑡𝑡}𝑡𝑡=1

𝑀𝑀  and 
computed the adoption probability for each property i as a function of the covariates: 𝑝𝑝𝑖𝑖 =
𝑓𝑓(𝑋𝑋𝑖𝑖1,𝑋𝑋𝑖𝑖2, … ,𝑋𝑋𝑖𝑖𝑀𝑀) . The leave-one-out analysis then computes M sets of alternative adoption 
probabilities, where for each mth covariate excluded from the estimation, it estimates 𝑝𝑝𝑖𝑖−𝑡𝑡 =
𝑓𝑓(𝑋𝑋𝑖𝑖1,𝑋𝑋𝑖𝑖2, … ,𝑋𝑋𝑖𝑖𝑡𝑡−1,𝑋𝑋𝑖𝑖𝑡𝑡=1, … ,𝑋𝑋𝑖𝑖𝑀𝑀). Here -m indicates that covariate 𝑋𝑋𝑡𝑡 was not used in estimating 
the adoption probability. Comparing the two adoption probabilities 𝑝𝑝𝑖𝑖  and 𝑝𝑝𝑖𝑖−𝑡𝑡 will tell us the 
deviation in the adoption probability for individual i when we exclude 𝑋𝑋𝑡𝑡. For a given property i, 
this deviation will be a point value. However, across the population of properties, the deviation in 
the adoption probability when we exclude the covariate  𝑋𝑋𝑡𝑡 will be a distribution, since the value 
of 𝑋𝑋𝑡𝑡 is itself randomly distributed across properties in the sample. To run the analysis, we have 
used the Stata package – tesensitivity. By default, the package reports the maximum (i.e., the 
supremum over the distribution) and the 50th, 75th, and 90th percentiles of the distribution for 
each covariate.  

We have reported the results in Table S6 below. To assess the impact of omitting each 
variable Xm ϵ{X1..XM}, we typically look at the 50th percentile in the distribution of its deviation in 
the adoption probability. Given these 50th percentile values across all covariates, we then search 
for the covariate for which the 50th percentile in its distribution of the deviation in adoption 
probability is greater than 0.083 (for the average treatment effect) and greater than 0.034 (for the 
differential effect). Looking at the 50th percentiles (column ‘0.5 (median)’) across all covariates in 
Table S6, we see that none of covariates are associated with a deviation in the adoption probability 
that is as large as 0.083. Even when we look at the maximum possible deviation in the adoption 
probability caused by each ‘omitted’ covariate (column ‘max’), only 13 of the 44 covariates 
achieve a deviation comparable to or above 0.083: # Bedrooms, Entire Home, Listing Title Length, 
Iron, Essentials, Smoker detector, Transit Score, Number of Photos, Security Deposit, # Blocked 
Days, # Host-owned Listings, # Listed Month, Listing Nightly Rate. Out of these 13 covariates, the 
breakdown value of 0.083 is closest to the maximum deviation that # Bedrooms would cause on 
the propensity score (=0.082). Hence, the estimated breakdown value of 0.083 for the average 
treatment effect suggests that in order for the average treatment effect to be nullified, the impact 
of hypothetical unobserved confounders on the adoption probability needs to close to the 
maximum impact that the variable, size of the property (in terms of # Bedrooms), has been 
observed to have in our sample.  

We next do the same for the differential effect. Looking at the 50th percentiles (column ‘0.5 
(median)’) across all covariates in 10, we see that none of covariates are associated with a deviation 
in propensity scores that is as large as 0.034. If we compare the maximum deviation in propensity 
score (see column ‘max’ in Table S6), the breakdown value is still greater than the maximum 
impact of the following 14 of the 44 observed covariates: Pool, Internet, TV, Dryer, Microwave, 
Laptop friendly, Fireplace, Gym, Shampoo, Breakfast, Drive to Downtown , Population Density, 
Median Home Earning, Home Value. Out of these 14 covariates, the breakdown value of 0.034 is 
closest to the maximum deviation that # Reservation Days would cause on the propensity score 
(=0.036). Hence, the estimated breakdown value of 0.034 for the differential effect suggests that 
in order for the differential effect to be nullified, the impact of hypothetical unobserved 
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confounders on the adoption probability needs to close to the maximum impact that the variable, 
# Reservation days, was observed to have in our sample. 

 

Table S6 Interpreting Sensitivity Analysis: Leave-one-out on the Difference in Propensity 

Scores 

Analysis: leave one out propensity score difference 
‘Left-out’ Covariate 
 

Quantile in the Distribution of Propensity Score Difference 
0.5 (Median) 0.75 0.9 max 

# Bedrooms 0.003 0.007 0.013 0.082 
Apartment 0.007 0.012 0.019 0.041 
Entire Home 0.017 0.026 0.037 0.155 
Listing Title Length 0.005 0.012 0.028 0.182 
Parking 0.008 0.015 0.022 0.056 
Pool 0.001 0.002 0.005 0.035 
Beach 0.001 0.001 0.003 0.048 
Internet 0 0 0 0.005 
TV 0.004 0.007 0.011 0.024 
Dryer 0.002 0.003 0.004 0.016 
Washer 0.004 0.01 0.018 0.038 
Iron 0.007 0.017 0.043 0.119 
Essentials 0.005 0.008 0.023 0.087 
Heating 0.002 0.003 0.004 0.058 
Microwave 0 0.001 0.004 0.03 
Refrigerator 0.001 0.002 0.004 0.042 
Laptop friendly 0.001 0.004 0.01 0.027 
Fireplace 0.002 0.005 0.011 0.033 
Elevator 0.004 0.008 0.014 0.043 
Gym 0.001 0.002 0.006 0.033 
Family friendly 0.006 0.011 0.015 0.054 
Smoker detector 0.004 0.008 0.021 0.096 
Shampoo 0.001 0.002 0.004 0.01 
Breakfast 0 0 0 0.001 
AC 0 0.001 0.001 0.058 
# Photographed Faces 0.001 0.002 0.003 0.04 
Walk Score 0.002 0.005 0.01 0.058 
Transit Score 0.01 0.02 0.032 0.108 
Drive to Downtown 
(min) 0 0 0.001 0.003 
Population Density 
(Per Sq. Mile) 0.001 0.002 0.003 0.011 
Graduate (%) 0.001 0.003 0.006 0.033 
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Bachelor (%) 0.006 0.011 0.018 0.06 
Median Home Earning 
(1000 USD) 0.001 0.002 0.003 0.027 
Host Age 0.004 0.007 0.012 0.055 
Number of Photos 0.005 0.01 0.016 0.269 
Number of Reviews 0.001 0.003 0.006 0.06 
# Minimum Stay 0.001 0.002 0.003 0.043 
Security Deposit 0.001 0.003 0.005 0.097 
# Blocked Days 0.009 0.017 0.028 0.086 
# Reservation Days 0.004 0.006 0.01 0.036 
Home Value (1000 
USD) 0.001 0.001 0.002 0.031 
# Host-owned Listings 0.008 0.015 0.026 0.305 
# Listed Month 0.008 0.014 0.022 0.089 
Listing Nightly Rate 0.001 0.002 0.003 0.086 
Treatment model: logistic regression 
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Section 4. DiD Regressions: Analysis and Variables 
 
We implement Difference-in-Difference analyses on the constructed weighted sample to estimate 
the effect of using the smart pricing algorithm on revenues, prices and occupancy rate. That is, 
estimating the DiD model on our sample, with the computed sample weights enter the estimation 
in a WLS manner. In our study, we include property fixed effects, city specific monthly fixed 
effects and city specific year effects. We model the outcome variable (which is either average daily 
revenue or average daily price or occupancy), for property i in period t as follows: 
 
 𝑌𝑌𝑖𝑖𝑡𝑡 = 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝐿𝐿𝑝𝑝𝐸𝐸𝑛𝑛𝑖𝑖 + 𝛽𝛽 ∙ 𝑆𝑆𝑡𝑡𝐿𝐿𝑝𝑝𝐸𝐸𝑃𝑃𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑔𝑔𝑖𝑖𝑡𝑡 + 𝜆𝜆 ∙ 𝐶𝐶𝑝𝑝𝑛𝑛𝐸𝐸𝑝𝑝𝑝𝑝𝑙𝑙𝑠𝑠𝑖𝑖𝑡𝑡 + 𝑆𝑆𝐿𝐿𝐿𝐿𝑠𝑠𝑝𝑝𝑛𝑛𝐿𝐿𝑙𝑙𝑛𝑛𝐸𝐸𝑛𝑛𝑖𝑖𝑡𝑡 + 𝜀𝜀𝑖𝑖𝑡𝑡 (S13) 

 
where 𝜀𝜀𝑖𝑖𝑡𝑡 is idiosyncratic shock in 𝑌𝑌𝑖𝑖𝑡𝑡. Property fixed effects, 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝐿𝐿𝑝𝑝𝐸𝐸𝑛𝑛𝑖𝑖, capture time-invariant 
factors and control for the time-invariant confounders, such as property size, location, hosts’ 
demographics, local demographic, unobserved property quality. Seasonality fixed effects, 
𝑆𝑆𝐿𝐿𝐿𝐿𝑠𝑠𝑝𝑝𝑛𝑛𝐿𝐿𝑙𝑙𝑛𝑛𝐸𝐸𝑛𝑛𝑡𝑡 , includes the city-specific yearly and monthly fixed effects that impact Airbnb 
property’s revenue. As discussed in the paper, since the primary factors that impact the adoption 
decision are time invariant, incorporating the property fixed effects would control for all the 
primary confounding factors. 𝐶𝐶𝑝𝑝𝑛𝑛𝐸𝐸𝑝𝑝𝑝𝑝𝑙𝑙𝑠𝑠𝑖𝑖𝑡𝑡 represent a set of covariates that may correlate with 𝑌𝑌𝑖𝑖𝑡𝑡. 
The variable 𝑆𝑆𝑡𝑡𝐿𝐿𝑝𝑝𝐸𝐸𝑃𝑃𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑔𝑔𝑖𝑖𝑡𝑡  equals 1(0) if the prices in period 𝐸𝐸  of property 𝑛𝑛  were (not) 
determined by the pricing algorithm. Thus, the DiD estimator—𝛽𝛽—identifies the change in the 
economic outcomes caused by the pricing algorithm, i.e., the effect of pricing algorithm on Yit. 
 
List of variables in DiD  
In our DiD specification as shown in Equation (S7), the property fixed effect 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝐿𝐿𝑝𝑝𝐸𝐸𝑛𝑛𝑖𝑖 takes care 
of all time invariant unobserved confounders. For the variables that are time-varying, we include 
them in 𝐶𝐶𝑝𝑝𝑛𝑛𝐸𝐸𝑝𝑝𝑝𝑝𝑙𝑙𝑠𝑠𝑖𝑖𝑡𝑡. The list of time varying control variable include: property’s # guest reviews, 
# property photos, # required minimum stays, security deposit, instant booking feature, whether a 
host is professional, and/or is a super host, and hosts’ responsiveness to guests. We present the 
statistics of these variables in Table S7. 
 

Table S7 List of control variables used in DiD. These variables may vary over time and 
correlate with property’s daily revenue. Thse statistics are presented by adoption group. 

VARIABLES 
 

(1) 
Adopters 

(2) 
Non-adopters 

(3) 
All Properties 

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 
Number of Reviews 42.88 51.64 28.07 41.78 31.65 44.82 
Number of Photos 18.67 13.23 16.07 11.31 16.70 11.86 
Super Host 0.23 0.42 0.16 0.36 0.17 0.38 
Instant Book 
Enabled 0.18 0.38 0.10 0.30 0.12 0.32 
Security Deposit 163.63 331.45 140.76 310.24 146.29 315.65 
# Minimum Stay 2.97 10.58 3.03 5.54 3.01 7.09 
Response Rate (%) 94.06 12.81 92.08 15.40 92.65 14.73 
# Host-owned 
Listings 2.54 3.92 3.02 8.72 2.90 7.84 
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Section 5. Second Stage Regression for Estimating the Main Effect of the variable ‘Black’ 
 
In this section, we explain how we computed the main effect of the variable ‘Black’ in the DiD 
regression given in equation (2) in the main paper which we re-write as follows.  
 
𝑌𝑌𝑖𝑖𝑡𝑡 = 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝐿𝐿𝑝𝑝𝐸𝐸𝑛𝑛𝑖𝑖 + β ∙ 𝑆𝑆𝑡𝑡𝐿𝐿𝑝𝑝𝐸𝐸𝑃𝑃𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑔𝑔𝑖𝑖𝑡𝑡 + 𝛿𝛿 ∙ (𝑆𝑆𝑡𝑡𝐿𝐿𝑝𝑝𝐸𝐸𝑃𝑃𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑔𝑔𝑖𝑖𝑡𝑡 × 𝐸𝐸𝐸𝐸ℎ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝐸𝐸𝑛𝑛𝑖𝑖) + 𝜆𝜆

∙ 𝐶𝐶𝑝𝑝𝑛𝑛𝐸𝐸𝑝𝑝𝑝𝑝𝑙𝑙𝑠𝑠𝑖𝑖𝑡𝑡 + 𝑆𝑆𝐿𝐿𝐿𝐿𝑠𝑠𝑝𝑝𝑛𝑛𝐿𝐿𝑙𝑙𝑛𝑛𝐸𝐸𝑛𝑛𝑖𝑖𝑡𝑡 + 𝜀𝜀𝑖𝑖𝑡𝑡 
(S14) 

  
In this regression the DV is Yit, which can take the value of either average daily revenue per month, 
average daily price per month or average occupancy per month. Note that the main effect of Black 
cannot be directly identified from the regression in equation (S14) because it is absorbed in the 
property fixed effects Propertyi. Thus we first ran the regression in equation (S14) from which we 
obtained the property fixed effect, 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝐿𝐿𝑝𝑝𝐸𝐸𝑛𝑛𝑖𝑖, for each property i. The estimate, 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝐿𝐿𝑝𝑝𝐸𝐸𝑛𝑛𝑖𝑖 then 
captures the time-invariant factors, for example, neighborhood, host demographic, that impact 
daily revenue for i prior to the launch of smart pricing. Then in the second step, we regress all 
estimated 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝐿𝐿𝑝𝑝𝐸𝐸𝑛𝑛𝑖𝑖 on the timeinvariant property and neighborhood characteristics, as shown in 
Equation (S15) using minimum distance estimation (as discussed in Nevo 2000 and Chamberlain 
1982):  

 
 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝐿𝐿𝑝𝑝𝐸𝐸𝑛𝑛𝑖𝑖 = 𝛼𝛼 ∙ 𝐸𝐸𝐸𝐸ℎ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝐸𝐸𝑛𝑛𝑖𝑖 + 𝜂𝜂 ∙ 𝐶𝐶ℎ𝐿𝐿𝑝𝑝𝐿𝐿𝑛𝑛𝐸𝐸𝐿𝐿𝑝𝑝𝑛𝑛𝑠𝑠𝐸𝐸𝑛𝑛𝑛𝑛𝑠𝑠𝑖𝑖 + 𝑁𝑁𝐿𝐿𝑛𝑛𝑔𝑔ℎ𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑝𝑝𝑝𝑝𝑑𝑑𝑡𝑡 + 𝜀𝜀𝑖𝑖𝑡𝑡 (S15) 

 
where we include host’s ethnicity and let White serve as the reference ethnicity group. The purpose 
is to estimate the coefficient of key variable, Black, which captures the impact of being a black 
host, compared to a white host, on property’s daily revenue. The coefficient 𝛼𝛼 with respect to Black 
represents the main effect of the variable, Black. For the case when the DV in equation (S14) is 
revenues, α will represent the amount of revenue that black hosts earned over and above the white 
hosts prior to the adoption of the algorithm, conditional on all property fixed effects and all other 
host and property characteristics. Similarly, for the case when the DV in equation (S14) is average 
nightly rate (occupancy), α will represent the price (occupancy) difference between black and 
white hosts prior to the adoption of the algorithm, conditional on all property fixed effects and all 
other host and property characteristics. 

Note that black and white host may have very different property, neighborhood and host 
characteristics (e.g., white hosts on average may own properties in good location, higher 
neighborhood income, and with better property amenities). To make a proper comparison between 
black and white hosts, we need to take into account the differences (in the host, property and 
neighborhood characteristics) between the two. Hence in Equation (S15) we incorporate all the 
observed property, host characteristics that are available to us. 𝐶𝐶ℎ𝐿𝐿𝑝𝑝𝐿𝐿𝑛𝑛𝐸𝐸𝐿𝐿𝑝𝑝𝑛𝑛𝑠𝑠𝐸𝐸𝑛𝑛𝑛𝑛𝑠𝑠𝑖𝑖 represents a set 
of covariates that may correlate with 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝐿𝐿𝑝𝑝𝐸𝐸𝑛𝑛𝑖𝑖. See Table S8 for the list of these covariates. We 
also include neighborhood fixed effects, 𝑁𝑁𝐿𝐿𝑛𝑛𝑔𝑔ℎ𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑝𝑝𝑝𝑝𝑑𝑑𝑡𝑡, to capture unobserved time-invariant 
neighborhood factors that may affect 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝐿𝐿𝑝𝑝𝐸𝐸𝑛𝑛𝑖𝑖 (such unobserved factors would include location 
convenience, traffic, nearby hotels/restaurants/malls, and local demographics within the 
neighborhood). After controlling aforementioned characteristics, the coefficient of Black indicates 
the conditional revenue/price/occupancy gap in a black host to his white counterpart, prior to the 
adoption of the algorithm.  

Since we use Propertyi as a DV in the second stage regression in which we regress it on time 
invariant property and host characteristics, we need to account for the fact that has sampling error 
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– otherwise we will under-estimate the standard errors of the estimates in the second stage 
regression. To do so, we followed Nevo (2000, 2001) and used Minimum-Distance Estimation in 
the 2nd stage regression. In his work, Nevo (2001) first estimated brand fixed effects (which is akin 
to property fixed effects in our case) and then in the 2nd stage, regressed the estimated brand fixed 
effects over a set of time invariant product characteristics (which is akin to time invariant 
neighborhood, property and host characteristics in our case) using Minimum-Distance Estimation 
proposed by Chamberlain (1982).  
 Specifically, following Nevo (2001), if we let f as the J ×1 property fixed effects that we 
obtained from the first-stage regression and X be the J × K property attributes (e.g., the property 
characteristics, host ethnicities, neighborhood fixed effects etc.), then in the second-stage, we 
regress property fixed effects on X: 
 

𝑓𝑓~𝑋𝑋𝛽𝛽 + 𝜖𝜖         (S16) 
 
where 𝜖𝜖 is the error term. The estimate of coefficient for property and host characteristics can be 
written as: 

𝛽𝛽 = �𝑋𝑋′𝑉𝑉𝑓𝑓−1𝑋𝑋�
−1
𝑋𝑋′𝑉𝑉𝑓𝑓−1𝑓𝑓      (S17) 

 
where 𝑉𝑉𝑓𝑓 is the covariance matrix of the estimated property fixed effects, 𝑓𝑓, that we obtained from 
estimating the first-stage regression. Hence the estimation of second-stage can be seen as a 
generalized least squares (GLS) regression where the correlation in the dependent 𝑓𝑓 are weighted 
by the estimated covariance matrix 𝑉𝑉𝑓𝑓. The standard errors (variance matrix) were computed using 
standard formulas of the standard errors in a two-step parametric M-estimator (Hansen 1982, 
Newey and McFadden 1994)). Specifically, if we specify the two stage coefficients as 𝛼𝛼� = �𝑓𝑓, �̂�𝛽�

′
, 

then with 𝛼𝛼∗ indicate the true values, the asymptotic variance of √𝑛𝑛(𝛼𝛼� − 𝛼𝛼∗) is given by 
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−1
   (S18) 

 
where 𝑔𝑔(∙) in consists the first order conditoins for the M-estimators in the two step of regressions.  

The estimates of the second stage regression related to revenue are reported in the first 
column of Table S7.  Observe that the coefficient of key variable, Black, is negative and significant 
(𝛼𝛼=-12.16, p<0.001). The coefficient implies that there was a gap of $12.16 in the average daily 
revenues earned between white and black hosts (conditional on all other observed property and 
hosts characteristics). The estimates of the second stage regression related to average nightly rate 
are reported in the second column of Table S7.  Observe that the coefficient of key variable, Black, 
is insignificant, which implies that both black and white hosts were charging similar prices prior 
to the introduction of the algorithm (conditional on all other observed property and hosts 
characteristics). The estimates of the second stage regression related to occupancy are reported in 
the third column of Table S7.  Observe that the coefficient of key variable, Black, is negative and 
significant (𝛼𝛼=-0.104, p<0.001). The coefficient implies that the occupancy of black hosts was 
0.104 lower than that of white hosts prior to the introduction of the algorithm (conditional on all 
other observed property and hosts characteristics). 
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Table S8 Regression Estimates of Property fixed effects on property, host and 
neighborhood characteristics: Shows the effect of black ethnicity, compared to white 

ethnicity, on host’s average daily revenue, average nightly rate, and average occupancy 
rate, prior to the introduction of smart pricing algorithm. The dependent variables are 
property-specific fixed effects. Hence the number of observations equals the number of 

properties in our sample. Base ethnicity group: white. 
 

VARIABLES 

(1) 
Gap in Daily Revenue 

(2) 
Gap in Nightly Rate 

(3) 
Gap in Occupancy Rate 

Coefficient Std. Err. Coefficient Std. Err. Coefficient Std. Err. 
Black -12.16*** (2.095) 2.024 (4.769) -0.104*** (0.0104) 
Others -6.086*** (1.839) -6.928 (5.219) -0.0361*** (0.00930) 
Apartment -3.761* (1.633) -38.60*** (5.521) 0.0139 (0.00750) 
Entire Home 39.80*** (3.142) 132.8*** (9.812) 0.0385* (0.0170) 
Private Room 6.972** (2.440) 47.19*** (8.796) 0.0197 (0.0184) 
# Bedrooms 23.61*** (1.727) 104.9*** (5.947) -0.0356*** (0.00387) 
Home Value 0.0148*** (0.00396) 0.0477*** (0.0127) -0.00000767 (0.00000779) 
Walk Score -0.00817 (0.0409) 0.00998 (0.0749) 0.000133 (0.000166) 
Transit Score 0.329* (0.155) 0.822** (0.282) 0.000367 (0.000500) 
Drive to Downtown(min) 0.0309 (0.134) -0.698 (0.368) 0.000841 (0.000563) 
Bachelor (%) -0.0383 (0.0862) 0.876*** (0.207) -0.00116** (0.000402) 
Median Home Earning 
(1000 USD) 0.202* (0.0975) -0.149 (0.230) 0.000959** (0.000300) 
Parking -0.408 (1.780) 1.897 (4.127) 0.00248 (0.00664) 
Pool 10.18*** (3.044) 24.54* (10.09) 0.0264 (0.0142) 
Beach 5.832 (9.257) -3.364 (11.59) 0.0107 (0.0248) 
Internet 10.97* (4.522) -11.59 (13.13) 0.0930*** (0.0217) 
TV 1.091 (1.410) 15.21*** (3.026) -0.0366*** (0.00784) 
Dryer 3.266 (1.890) 1.902 (4.650) 0.0505*** (0.00996) 
Washer 1.245 (1.454) 11.83** (3.863) -0.0435*** (0.00721) 
Iron 9.878*** (2.305) -6.351 (4.614) 0.0797*** (0.0125) 
Essentials 6.161* (2.985) 5.387 (7.371) 0.0233* (0.0108) 
Heating -2.753 (2.538) 9.764 (5.643) 0.0177 (0.0128) 
Microwave 4.658 (4.217) -1.501 (8.619) 0.0230 (0.0196) 
Refrigerator -3.710 (3.946) -8.184 (8.472) 0.0249 (0.0182) 
Laptop-friendly -0.0548 (1.948) 6.755 (5.135) -0.0272** (0.00876) 
Fireplace 3.390 (2.924) 40.74*** (6.781) -0.0333*** (0.00955) 
Elevator -3.724 (1.989) 13.84** (4.965) -0.0415*** (0.00929) 
Gym 4.900 (5.042) 29.58* (12.98) -0.0203 (0.0157) 
Family-friendly 0.735 (1.825) -8.107 (5.290) 0.0157* (0.00696) 
Smoker Detector 4.388 (2.466) 2.690 (5.657) 0.0168 (0.0114) 
Shampoo -5.448** (2.083) -3.309 (5.890) -0.0139 (0.00910) 
Breakfast -8.443*** (2.204) 0.134 (5.221) -0.0379*** (0.0113) 
AC -13.86* (6.778) -36.69 (40.79) -0.0148 (0.0364) 
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Age -0.0739 (0.0616) 0.248 (0.154) -0.000207 (0.000271) 
# Photographed Faces 3.015** (0.920) 2.366 (1.811) 0.0156*** (0.00428) 
Fixed Effect Neighborhood Neighborhood Neighborhood 
Observations 9396 9396 9396 
R-squared 0.31 0.56 0.24 
Note: only pre-treatment period (November 2015, variables were measured at the start of that period) 
observations were used for analyzing the revenue gap (column 1), nightly rate/price gap (column 2), occupancy 
gap (column 3), between the white and black ethnic groups of Airbnb hosts prior to the adoption of smart pricing 
algorithm. 
D.V. is the individual property fixed effect that we estimated from the first-step DiD regression, where in the 
first-stage regression the depend variable was daily revenue (column 1), nightly rate (column 2), and occupancy 
rate (column 3). 
Cluster-robust standard errors at individual neighborhood level in parentheses. 
* p<0.05   ** p<0.01   *** p<0.001 
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Section 6. Robustness Checks 
 
6.1 Validating DiD Model: Assessing Parallel Trends in Pre-treatment Periods between 
Adopters and Non-Adopters for IPTW sample, PSM sample and the raw sample 
 
We examine the pre-treatment trends to ensure that the weighted sample of adopters and non-
adopters followed similar trends in their property revenues. The standard approach of doing so is 
by estimating a relative-time model (Autor 2003), which decomposes the pretreatment periods in 
terms of a series of period dummies and estimates the coefficients of all those dummies that are 
within k periods prior to the treatment. Specifically, we decompose the pre-treatment periods and 
examine the following dummies:  Pre(k) indicates the kth period prior to the smart pricing algorithm 
adoption (for k=1,2,…5). Pre(6) represents the time segment from the beginning of our 
observational window all the way to the 6th period prior to smart pricing algorithm adoption.  
 
 𝑌𝑌𝑖𝑖𝑡𝑡 = 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝐿𝐿𝑝𝑝𝐸𝐸𝑛𝑛𝑖𝑖 + �𝛼𝛼𝑗𝑗 ∙ 𝐴𝐴𝑑𝑑𝑝𝑝𝑝𝑝𝐸𝐸𝐿𝐿𝑝𝑝𝑖𝑖 ∙ 𝑃𝑃𝑝𝑝𝐿𝐿(𝑗𝑗)𝑖𝑖𝑡𝑡

𝑗𝑗>0

+ 𝛽𝛽 ∙ 𝑆𝑆𝑡𝑡𝐿𝐿𝑝𝑝𝐸𝐸𝑃𝑃𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑔𝑔𝑖𝑖𝑡𝑡 + 𝜆𝜆

∙ 𝐶𝐶𝑝𝑝𝑛𝑛𝐸𝐸𝑝𝑝𝑝𝑝𝑙𝑙𝑠𝑠𝑖𝑖𝑡𝑡 + 𝑆𝑆𝐿𝐿𝐿𝐿𝑠𝑠𝑝𝑝𝑛𝑛𝐿𝐿𝑙𝑙𝑛𝑛𝐸𝐸𝑛𝑛𝑖𝑖𝑡𝑡 + 𝜀𝜀𝑖𝑖𝑡𝑡 

(S19) 

 
where 𝐴𝐴𝑑𝑑𝑝𝑝𝑝𝑝𝐸𝐸𝐿𝐿𝑝𝑝𝑖𝑖 equals 1 if property i is in the treatment group—i is observed to adopt the pricing 
algorithm, and equals 0 if otherwise. The series of time dummies 𝑃𝑃𝑝𝑝𝐿𝐿(𝑗𝑗)𝑖𝑖𝑡𝑡 equals 1 if period t is j 
periods prior to the period when the smart pricing adoption took place for property i and equals 0 
if otherwise. The parameters {𝛼𝛼𝑗𝑗}  hence identify the trend in the dependent variable for the 
treatment group, relative to the control group, in the pre-treatment periods. We set the period prior 
to the adoption month as reference period (i.e. �𝛼𝛼𝑗𝑗�𝑗𝑗=1 was normalized to zero). For a positive 
estimated treatment effect to be valid, we would expect that the set of 𝛼𝛼𝑗𝑗  are not positive and 
significant. 

Table S9 reports the estimation results for the IPTW weighted sample. As we can see, the 
estimated coefficients for the pre-treatment dummies are all statistically insignificant. Thus the 
parallel trends assumption is not rejected.   
 

Table S9 Validating DiD Model: Assessing Parallel Trends Assumption in Pre-treatment 
Periods for the IPTW weighted sample 

VARIABLES ESTIMATES 

 Coefficients Std. Err. 
Pre-Treatment Trends 

Adopter·Pre(6) -0.825 (2.038) 
Adopter·Pre(5) 0.240 (2.514) 
Adopter·Pre(4) 0.634 (2.507) 
Adopter·Pre(3) 0.927 (2.468) 
Adopter·Pre(2) 1.577 (3.064) 
Adopter·Pre(1)—reference -- -- 
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Effect of Smart Pricing on Daily Revenue 
Smart Pricing 6.396** (1.996) 
log Number of Reviews 11.87*** (1.183) 
log Number of Photos 6.772* (2.952) 
log Security Deposit 6.084*** (0.254) 
log # Min. Stays -10.43*** (2.293) 
Instant Book Enabled 11.03*** (1.466) 
Super Host 9.023*** (1.961) 
Professional Host (log # listings) 0.353 (4.285) 
Host Effort (Response Rate) 0.0278 (0.0287) 
Fixed Effect Property 
Seasonality City-Year, City-Month 
Observations 162617 
R-squared 0.51 
Cluster-robust standard errors at individual property level in parentheses  
* p<0.05   ** p<0.01   *** p<0.001 

 
Visualizing Parallel Trends: In Figure S4 we plot the estimated coefficients that represent the pre-
treatment trends for the IPTW sample. Note that the 95% confidence intervals of all coefficients 
in the pre-treatment periods contain zero. 

Figure S4 Plot of Estimated Coefficients in Pre-treatment Periods for the IPTW sample 
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Testing Pre-treatment Trends for DiD Analysis on PSM matched sample 

We examine the pre-treatment trends in the sample of adopters and non-adopters based on 
Propensity score matching (PSM). We use the same relative-time model that we used to assess the 
common pre-treatment trends assumption, as describe in this section. The only difference being 
that, we regress the relative-time model on the PSM sample.  

The table below (Table S10) reports the estimation results. As we can see, none of the 
estimated coefficients for the pre-treatment dummies are statistically significant, suggesting that 
in the PSM sample, there do not exist significant difference in the outcome variables between the 
adopters and the non-adopters, prior to the treatment. In Figure S6 figure below we plot the 
estimated coefficients that represent the pre-treatment trends. Consistently, the 95% confidence 
intervals of all coefficients in the pre-treatment periods contain zero, showing common pre-
treatment trends. 
 

Table S10 Assessing Pre-treatment Trends: DiD on PSM-Matched  

VARIABLES ESTIMATES 
 Coefficients Std. Err. 

Pre-Treatment Trends 
Adopter·Pre(6) -1.315 (1.590) 
Adopter·Pre(5) -1.647 (1.617) 
Adopter·Pre(4) -1.039 (1.572) 
Adopter·Pre(3) -0.275 (1.813) 
Adopter·Pre(2) -1.110 (1.773) 
Adopter·Pre(1)—reference -- -- 

Effect of Smart Pricing on Daily Revenue 
Smart Pricing 4.572** (1.377) 
log Number of Reviews 12.35*** (1.474) 
log Number of Photos 6.358** (2.399) 
log Security Deposit 2.451*** (0.271) 
log # Min. Stays -11.76*** (2.731) 
Instant Book Enabled 10.99*** (1.567) 
Super Host 6.983*** (1.238) 
Professional Host (log # listings) 2.998 (3.452) 
Host Effort (Response Rate) 0.0252 (0.0295) 
Fixed Effect Property 
Seasonality City-Year, City-Month 
Observations 101536 
R-squared 0.54 
Cluster-robust standard errors at individual property level in parentheses  
* p<0.05   ** p<0.01   *** p<0.001 
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Figure S5 Plot of Estimated Coefficients in Pre-treatment Periods: PSM-Matched Sample 

 

 

Testing Pre-treatment Trends for DiD on the Raw Sample (i.e., no matching/weighting) 

We examine the pre-treatment trends in the raw sample of adopters and non-adopters (that is, 
without any matching or weighting), in their property revenues. We use the same relative-time 
model that we used to assess the common pre-treatment trends assumption, as describe in this 
section. The only difference being that, we regress the relative-time model on the raw sample.  
 Table S11 reports the estimation results. As we can see, the estimated coefficients for the 
pre-treatment dummies are all statistically significant, suggesting that in the raw sample, there 
existed significant difference in the outcome variables between the adopters and the non-adopters, 
prior to the treatment. In Figure S6 we plot the estimated coefficients that represent the pre-
treatment trends. The 95% confidence intervals of all coefficients in the pre-treatment periods do 
not contain zero, showing a lack of common pre-treatment trends. 

Our results show that the parallel trends assumption for the pre-trends was rejected on the 
raw sample. This implies that in the raw sample, there were systematic differences across the 
treatment and control groups that can influence the outcome variable and the adoption decision. 
On the other hand, our results show that parallel trends assumption for the pre-trends was not 
rejected on the samples based on either PSM or IPTW. This suggests that PSM and IPTW do help 
in terms of identification to the extent that the systematic differences in the two groups that can 
influence the outcome variable are reduced (so that the parallel trends assumption is not rejected). 
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Table S11 Assessing Pre-treatment Trends for the raw sample (without matching or 

weighting) 

VARIABLES ESTIMATES 
 Coefficients Std. Err. 

Pre-Treatment Trends 
Adopter·Pre(6) -11.06*** (1.909) 
Adopter·Pre(5) -8.699*** (2.112) 
Adopter·Pre(4) -7.152*** (2.089) 
Adopter·Pre(3) -7.158*** (2.012) 
Adopter·Pre(2) -5.141* (2.165) 
Adopter·Pre(1)—reference -- -- 

Effect of Smart Pricing on Daily Revenue 
Smart Pricing 0.236 (1.787) 
log Number of Reviews 13.66*** (1.068) 
log Number of Photos 6.326** (1.968) 
log Security Deposit 6.397*** (0.181) 
log # Min. Stays -11.46*** (1.889) 
Instant Book Enabled 11.30*** (1.329) 
Super Host 9.316*** (1.617) 
Professional Host (log # listings) 1.620 (2.616) 
Host Effort (Response Rate) 0.012 (0.0234) 
Fixed Effect Property 
Seasonality City-Year, City-Month 
Observations 162617 
R-squared 0.52 
Cluster-robust standard errors at individual property level in parentheses  
* p<0.05   ** p<0.01   *** p<0.001 
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Figure S6 Plot of Estimated Coefficients in Pre-treatment Periods: Lack of Parallel Trends 
when only DiD was performed on the raw (unmatched/unweighted) sample 

 
 
 
 
6.2 Validating DiD Model: Assessing Parallel Trends between Adopters and non-adopters in 

White and Black Ethnic Groups for IPTW weighted sample 

We examine the pre-treatment trends for two ethnic groups of hosts, namely black hosts and white 
hosts for the IPTW weighted sample. Similar to Section 6.1, we examined the trends for a 6-period 
segment in the pre-treatment period. To assess the within ethnic group (i.e., white/black) trends, 
we interacted the ethnicity (white as reference ethnic group) of hosts with the series of pre-period 
dummies, and with the Adopter dummy (see section 6.1): 
 𝑌𝑌𝑖𝑖𝑡𝑡 = 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝐿𝐿𝑝𝑝𝐸𝐸𝑛𝑛𝑖𝑖 + �𝛼𝛼𝑗𝑗 ∙ 𝐴𝐴𝑑𝑑𝑝𝑝𝑝𝑝𝐸𝐸𝐿𝐿𝑝𝑝𝑖𝑖 ∙ 𝑃𝑃𝑝𝑝𝐿𝐿(𝑗𝑗)𝑖𝑖𝑡𝑡

𝑗𝑗

+ �𝜂𝜂𝑗𝑗 ∙ 𝐴𝐴𝑑𝑑𝑝𝑝𝑝𝑝𝐸𝐸𝐿𝐿𝑝𝑝𝑖𝑖 ∙ 𝑃𝑃𝑝𝑝𝐿𝐿(𝑗𝑗)𝑖𝑖𝑡𝑡
𝑗𝑗

∙  𝐸𝐸𝐸𝐸ℎ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝐸𝐸𝑛𝑛𝑖𝑖 + 𝛽𝛽 ∙ 𝑆𝑆𝑡𝑡𝐿𝐿𝑝𝑝𝐸𝐸𝑃𝑃𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑔𝑔𝑖𝑖𝑡𝑡 + 𝜆𝜆 ∙ 𝐶𝐶𝑝𝑝𝑛𝑛𝐸𝐸𝑝𝑝𝑝𝑝𝑙𝑙𝑠𝑠𝑖𝑖𝑡𝑡
+ 𝑆𝑆𝐿𝐿𝐿𝐿𝑠𝑠𝑝𝑝𝑛𝑛𝐿𝐿𝑙𝑙𝑛𝑛𝐸𝐸𝑛𝑛𝑖𝑖𝑡𝑡 + 𝜀𝜀𝑖𝑖𝑡𝑡 

(S20) 
 

 
where is similar to what we did in section 6.1, we set the period prior to adoption month as the 
reference period, i.e., we normalize Pre(1) to zero. Since the reference ethnicity is white, the series 
of coefficients �𝛼𝛼𝑗𝑗�𝑗𝑗=2

6
 capture the pre-treatment trend in the dependent variable within the white 

ethnic group, and the series of coefficients �𝛼𝛼𝑗𝑗 + 𝜂𝜂𝑗𝑗�𝑗𝑗=2
6

 in the series of the three-way interaction 
terms capture the pre-treatment trend in the dependent variable within the black ethnic group.  

Table S12 reports the estimation results. We present the trends for white (𝛼𝛼𝑗𝑗) and for black 
host (𝜂𝜂𝑗𝑗) in column (1) and (2), respectively. Note that 𝛼𝛼𝑗𝑗 and 𝜂𝜂𝑗𝑗 were obtained from the same 
regression, in which the rest of the parameters have been pooled across hosts with different 
ethnicities.15 As can be seen, the estimated coefficients for the pre-treatment dummies are all 
                                                 
15 Note that the nature of the results does not change even if we were to estimate the other parameters separately for 
black and white hosts.  
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statistically insignificant for each separate ethnic group. In addition, non-of the series of time-
trends exhibits a trend line that is increasing towards the adoption of smart pricing algorithm. Thus 
the parallel trends assumption for each of the two ethnic sub groups is not rejected. In Figure S7, 
we plot the pre-treatment trend for white, and for black, ethnic groups of hosts, respectively. As 
can be seen, within each ethnic group, for the adopters and non-adopters, their property daily 
revenues were not statistically different prior to their adoption of smart pricing algorithm.  
 

Table S12 Validating DiD Model: Assessing Parallel Trends Assumption in Pre-treatment 
Periods with separate pre-treatment trends for Black and White Hosts for IPTW sample 

VARIABLES ESTIMATES 

 White Group (reference) Black Group 
Pre-Treatment Trends (White: reference group) 

Adopter·Pre(6) -0.154 -1.687 

 (2.689) (4.403) 
Adopter·Pre(5) 2.485 -6.732 
 (3.259) (4.936) 
Adopter·Pre(4) 1.215 3.672 
 (3.167) (5.042) 
Adopter·Pre(3) 1.190 -1.377 

 (3.265) (5.444) 
Adopter·Pre(2) 1.786 4.616 

 (4.018) (7.081) 
Adopter·Pre(1)—reference -- -- 

Effect of Smart Pricing on Daily Revenue 
Smart Pricing 6.388** 

 (2.352) 
log Number of Reviews 11.91*** 

 (1.177) 
log Number of Photos 6.729* 

 (2.951) 
log Security Deposit 6.073*** 

 (0.255) 
log # Min. Stays -10.43*** 

 (2.294) 
Instant Book Enabled 11.04*** 

 (1.467) 
Super Host 8.996*** 

 (1.958) 
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Professional Host (log # listings) 0.262 

 (4.299) 
Host Effort (Response Rate) 0.0278 

 (0.0287) 
Fixed Effect Property 
Seasonality City-Year, City-Month 
Observations 162617 
R-squared 0.51 
Note: Column (1) and (2) presents the relative-time pre-trend assessment (traced for 6-
period back) for black ethnic sub-group only, and for white ethnic sub-group only.   
Cluster-robust standard errors at individual property level in parentheses  
* p<0.05   ** p<0.01   *** p<0.001 

 
 

Figure S7 Plot of Estimated Coefficients in Pre-treatment Periods: Assessing Parallel 
Trends Assumption in Pre-treatment Periods, Separate Assessment by Host Ethnic Group 

for IPTW sample 
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6.3 Dynamic Treatment Effects  
We examine whether or not and to what extent there are dynamics in the treatment effect of the 
smart pricing algorithm on revenues. There are potentially three sources of dynamic treatment 
effects. First, since Airbnb may change the way its algorithm computes and recommends its prices 
to hosts over time, its impact on revenues would vary over time. Second, the impact of adoption 
of the algorithm on revenues of a host will diminish over time as the number of other properties 
that adopt the algorithm in the neighborhood increase. Third, the treatment effect could vary across 
peak and off-peak seasons.  

Starting with the first source (i.e., changes in the algorithm over time), we do not know the 
specific points in time when Airbnb made these changes. However, if Airbnb did make changes to 
its algorithm, then it is reasonable to believe that these changes would have been improvements in 
the algorithm. Therefore all else being the same, the first source would result in increase in the 
average treatment effect over time. Moving on to the second source (i.e., the competitive effect 
from other properties who have adopted the algorithm), it will result in the average treatment effect 
to diminish over time. And finally the third source (i.e., the seasonality effect) will only lead to 
seasonal variations in the treatment effect.  

It is easy to identify the dynamic impact of the third source since it only results in seasonal 
variations in the treatment effect. However, since we do not know when Airbnb made changes in 
its algorithm, and since we do not have access to a variable that can ‘accurately’ capture the 
competitive effect from other properties that have adopted the algorithm (more on this later), it is 
difficult to separately identify the dynamic impact of the first two sources. Nevertheless, we run 
two regressions to identify these dynamic treatment effects. In the first regression, we identify the 
dynamic effect of the third source (seasonality) and the joint effect from the first two sources. In 
the second regression, we will attempt to identify the dynamic effect of each of the three sources.  

Starting with the first regression, in order to identify the dynamics from the third source and 
the joint effect of the first two sources, we regress revenue on three-way interaction terms 
involving the following variables:  
(i) Adoption of the algorithm (SmartPricingt), which is a dummy variable that takes a value 

of 1 if the focal host/property adopted the algorithm in the given time period;  
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(ii) Seasonality: For simplicity, we classify seasonality in terms of two seasons only: peak 
and off-peak seasons with peak season being the baseline season. For each city, we 
classified each month into either peak or off-peak season16. We represent this variable by 
a seasonal dummy, OffPeakt, which takes the value of 1 if the month t was in the off-peak 
season.  

(iii) Number of years lapsed since the launch of the algorithm (PostYeart): If the observation 
month t in the data lies between Nov 2015 (which is the time period when the algorithm 
was launched) and Oct 2016, PostYeart takes a value of 1, and if the observation month t 
in the data lies between Nov 2016 to Aug 2017, PostYeart a value of 2. Also PostYeart =1 
includes pre-launch periods. This does not make any material difference since smart 
pricing adoption is zero for the pre-launch period. 

 
In this regression, the interaction terms involving adoption of the algorithm with seasonality 

will capture the dynamics the in treatment effects that stem form the third source, and the 
interaction terms involving the adoption of the algorithm and number of years lapsed since the 
launch of the algorithm will capture the dynamics that stem from the first two sources combined. 

  The results of the regression are reported in column 1 of Table S13. The parameters of 
interest related to the joint effect of the first two sources are the coefficients of the interaction 
terms, (PostYear=2)×SmartPricing and (PostYear=2)×SmartPricing×OffPeak. Observe that the 
coefficients of these interaction terms are negative but non-significant. This suggests that there 
may not be significant dynamics in the treatment effects that stem from the joint effect of the first 
two sources.  

In the next regression, we will try to separately identify the dynamics from all three sources. 
To separately identify the second source (the competitive effect) from the other sources, we 
introduce an additional variable in the above regression. This variable is Zip-code adoption rate, 
which is defined the fraction of listings in the same zip-code as that of the focal property that have 
adopted the algorithm at that point in time. The interaction of ‘Zip code adoption rate’ with the 
variable, ‘adoption of the algorithm’ will capture the impact of the second source. We thus regress 
revenue on four way interaction terms involving the following variables:  
(i) Adoption of the algorithm (SmartPricingt), which is a dummy variable that takes a value 

of 1 if the focal host/property adopted the algorithm in the given time period;  
(ii) Seasonality: For simplicity we classified seasonality in terms of two seasons only: peak 

and off-peak seasons with peak season being the baseline season. For each city, we 
classified each month into either peak or off-peak season. We represent this variable by a 
seasonal dummy, OffPeakt, which takes the value of 1 if the month t was in the off-peak 
season.  

(iii) Number of years lapsed since the launch of the algorithm (PostYeart): If the observation 
month t in the data lies between Nov 2015 (which is the time period when the algorithm 
was launched) and Oct 2016, PostYeart takes a value of 1, and if the observation month t 
in the data lies between Nov 2016 to Aug 2017, PostYear a value of 2. Also PostYeart =1 
includes pre-launch periods.  

(iv) Zip-code adoption ratet: This is defined the fraction of listings in the same zip-code as 
that of the focal property, which have adopted the algorithm in the observation month t. 
We operationalize the zip-code adoption rate from our sample.  

                                                 
16 Please see section 7 of the Web Appendix for details on how we operationalized the peak and off-peak seasons.  
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In this regression, the interaction terms involving the variables ‘adoption of the algorithm’ 

and ‘seasonality’ will capture the dynamics in the treatment effects that stem form the third source. 
The interaction terms involving ‘adoption of the algorithm’ and ‘zip code adoption rate’ will 
capture the dynamics that stem from the second source (the competitive effect). And the interaction 
terms involving ‘adoption of the algorithm’ and ‘number of years lapsed since the launch of the 
algorithm’ will capture the dynamics from the first source (changes in the algorithm over time).   

The results of the regression are reported in column 2 of Table S10. The parameters of 
interest related to the second source are the coefficients of all the interaction terms that involve 
zip-code adoption rate and SmartPricing. Observe that the coefficients of these interaction terms 
are insignificant. This suggests that there may not be significant dynamics in the treatment effects 
that stem from the second source (the competitive effect). And the parameters of interest related 
to the first source are the coefficients of all the interaction terms that involve (PostYear=2) and 
SmartPricing. Observe that the coefficients of these interaction terms are insignificant. This 
indicates that there may not be significant dynamics in the treatment effects that stem from the 
first source (changes in the algorithm over time).  

The above result has to be taken with caution for two reasons. First, the average adoption 
rate of the algorithm across all zip codes by Aug 2017 (which is the last month in our data) is 
13.8%, which is small. It could be that the dynamic treatment effects related to competition only 
kick in at higher adoption rates we do not observe in our data. Second, the variable, Zip-code 
Adoption Rate, may not accurately capture the true adoption rate at the zip code level. This is 
because we have operationalized the zip-code adoption rate from our sample and not the entire 
population of listings in each city.  
 
Table S13 Dynamics Effects of Smart Pricing on Property Daily Revenue: Interacting with 

Year-Dummies, Off-Peak Season, and Adoption Rate 

VARIABLES 

ESTIMATES 

(1) 
Interacting 

Yearly, Off-peak 

(2) 
Interacting Yearly, 
Off-peak, Zip-code 

Adoption Rate 
Smart Pricing  
(non off-peak season and 1st year as default) 8.182*** 10.51*** 
 (1.738) (2.623) 
Smart Pricing X Offpeak -2.171 -6.414 
 (3.954) (4.631) 
Smart Pricing X postYear =2 -1.463 -4.064 
 (2.405) (4.978) 
Smart Pricing X Offpeak X postYear=2 -5.996 -2.055 
 (4.794) (6.147) 
Zip-adoption Rate  -11.44 
  (10.56) 
Smart Pricing X Zip-adoption Rate  -21.91 
  (12.88) 
postYear X Zip-adoption Rate  -9.682 
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  (18.17) 
Smart Pricing X postYear X Zip-adoption Rate  22.80 
  (27.91) 
Offpeak X postYear X Zip-adoption Rate  23.24 
  (27.55) 
Smart Pricing X Offpeak X Zip-adoption Rate  74.51 
  (39.74) 
Smart Pricing X Offpeak X postYear X Zip-adoption Rate  -64.45 
  (50.30) 
Offpeak X Zip-adoption Rate  -41.02* 
  (20.23) 
logNumberofReviews 11.85*** 11.86*** 
 (1.187) (1.189) 
logNumberofPhotos 6.837* 6.855* 
 (2.930) (2.933) 
logSecurityDeposit 6.123*** 6.126*** 
 (0.254) (0.254) 
logMinimumStay -10.34*** -10.31*** 
 (2.299) (2.299) 
InstantBook 11.09*** 11.09*** 
 (1.465) (1.460) 
SuperHost 9.030*** 8.999*** 
 (1.968) (1.967) 
lognum_listings 0.352 0.336 
 (4.266) (4.194) 
Response Rate 0.0336 0.0348 
 (0.0288) (0.0289) 
Fixed Effect Property Property 

Seasonality 
City-Year, City-

Month 
City-Year, City-

Month 
Observations 162617 162617 
R-squared 0.51 0.51 
Robust Standard errors clustered at individual property level are presented in parentheses 
p<0.05 ** p<0.01 *** p<0.001 

 
 
6.4 A Comparisons of Alternative Methods: Raw DiD, DiD with Propensity Score Matching 
(PSM), and DiD with Synthetic Control Method (SCM) 
We present alternative approaches in assessing the estimated impact of using smart pricing on the 
daily revenue. We first show that a DiD analysis on the raw sample (without using weighting or 
matching). We then present results from estimating DiD on a PSM-matched sample. Lastly, we 
employ a Synthetic Control Method (SCM) for estimating the impact of using smart pricing 
algorithm.  
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Performing DiD on Raw Sample (i.e., without Matching/Weighting) 

We report the estimates of the DiD regression on the raw sample in Table S14 below. Since the 
parallel-trends assumption is rejected on the raw sample (see section 6.1), it follows that doing 
DiD on the raw sample can yield biased estimates of the treatment effects. This can be seen by 
comparing the average treatment effect and the differential effect across the DiD on the raw sample 
and DiD on the IPTW weighted sample. The average treatment effect is 6.396 (7.250) for the 
IPTW (raw) sample, and the differential effect is 8.700 (9.561) for the IPTW (raw) sample. This 
shows that performing DiD on the raw sample would lead to an overestimation of both effects.  
 

Table S14 A pure-DiD Analysis on Raw sample (Without Matching or Weighting Methods) 

VARIABLES Main Effect Interacting with Race 

 Coefficients Std. Err. Coefficients Std. Err. 
Smart Pricing 7.250*** (1.197) 6.006*** (1.327) 
Smart Pricing X Black   9.651** (3.132) 
Smart Pricing X Others   2.434 (3.367) 
log Number of Reviews 14.14*** (1.056) 14.14*** (1.055) 
log Number of Photos 6.486*** (1.966) 6.446** (1.969) 
log Security Deposit 6.391*** (0.181) 6.389*** (0.181) 
log # Min. Stays -11.52*** (1.885) -11.51*** (1.885) 
Instant Book Enabled 11.34*** (1.331) 11.37*** (1.331) 
Super Host 9.471*** (1.619) 9.505*** (1.619) 
Professional Host (log # listings) 1.922 (2.606) 1.921 (2.606) 
Host Effort (Response Rate) 0.0187 (0.0234) 0.0188 (0.0234) 
Fixed Effect Property Property 
Seasonality City-Year, City-Month City-Year, City-Month 
Observations 162617 162617 
R-squared 0.52 0.52 
Cluster-robust standard errors at individual property level in parentheses  
* p<0.05   ** p<0.01   *** p<0.001 

 

Performing DiD on PSM-matched Sample 

We report the results of the DiD regression on the matched sample based on PSM in Table S15 
below. The PSM approach resulted in a matched sample of 5,469 properties, of which 1,631 
properties adopted the pricing algorithm during the observation period. Note that the average 
treatment effect of using smart pricing is positive and significant. However, the differential effect 
of adoption was non-significant (b=4.895, p<0.11) for PSM, which is different from the result we 
obtained using IPTW in which the differential effect was significant.  
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Table S15 Impact of Pricing Algorithm on Average Daily Revenues: PSM Analyses 

VARIABLES 
(1) 

Main Effect 
(2) 

Interacting with Race 
 Coefficients Std. Err. Coefficients Std. Err. 
SmartPricing 4.822*** (1.322) 4.140** (1.464) 
SmartPricing×Black   4.895 (3.060) 
SmartPricing×Others   3.631 (3.061) 
Log Number_of_Reviews 12.35*** (1.474) 12.35*** (1.474) 
Log Number_of_Photos 6.358** (2.399) 6.340** (2.400) 
Log Security_Deposit 2.450*** (0.270) 2.452*** (0.270) 
Log #Min. Stays -11.76*** (2.731) -11.77*** (2.730) 
Instant_Book_Enabled 11.00*** (1.566) 11.02*** (1.567) 
Super_Host 6.982*** (1.238) 7.018*** (1.237) 
Log #host-owned listings  3.000 (3.452) 3.009 (3.451) 
Host-
_Effort(Response_Rate) 0.0251 (0.0294) 0.0249 (0.0294) 
Fixed Effect Property Property 
Seasonality City-Year, City-Month City-Year, City-Month 
Observations 101536 101536 
R-squared 0.54 0.54 
Cluster-robust standard errors at individual property level in parentheses 
* p<0.05   ** p<0.01   *** p<0.001 

 
There are two possible reasons for why the differential effect is significant with IPTW and non-
significant with PSM. The first possible reason is that PSM and IPTW yield different estimates of 
the treatment effects – while PSM yields ATT, IPTW yields ATE. The second possible reason is 
that of low statistical power when using PSM. While constructing the matched sample based on 
PSM, we had to get rid of 49% of the observations. Thus in our matched sample based on PSM, 
while we had a total of 5,469 properties with 1,631 adopters, the number of black hosts who 
adopted the algorithm were only 97. This small number of black adopters resulted in a non-
significant estimate of the differential effect. On the other hand, when we use IPTW, we use the 
full sample in which we have a total of 10,903 properties with 2,118 adopters and 150 black 
adopters. This 55% increase in the number of black adopters resulted in a significant estimate of 
the differential effect when using IPTW.  
 In order to ascertain which of the two reasons is correct, we ran another DiD regression on 
a matched sample based on synthetic control method. Note that similar to IPTW, SCM uses a full 
sample. However similar to PSM, SCM yields the ATT. This implies that the results of DiD on 
SCM will inform us of which of the two aforementioned reasons holds weight. If SCM were to 
also yield a non-significant estimate of the differential effect, it would suggest that the reason for 
the difference in results across IPTW and PSM is not because PSM has low statistical power. 
Instead it would be because IPTW and PSM yield different types of estimates of the treatment 
effects. On the other hand, if unlike PSM, SCM were to yield a significant estimate of the 
differential effect, it would suggest that the reason for the difference in results across IPTW and 
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PSM is because PSM has low statistical power. This brings us to the DiD regression on the SCM 
sample.  
 
Performing SCM Analysis 

The synthetic control strategy (Abadie et al. 2010, Abadie et al. 2015) identifies treatment effect 
by constructing a synthetic control group of units (i.e., counterfactuals) that mimics the treated 
units. It is a data-driven approach that, through finding a convex combination of untreated units 
such that the outcome of the synthetic control group closely represents the outcome of the 
treatment group in the pre-intervention periods. Since SCM constructs a synthetic set that is similar 
to the treated group, just as PSM, it also yields an ATT. To implement SCM, we used the 
Generalized Synthetic Control (Xu 2017) method since we have multiple treatment units. We used 
the R package ‘gsynth’ developed by Xu and Liu17 to implement the analysis. The estimation 
results of SCM are reported in Table S16. Observe that the estimates of both the average treatment 
effect (in column 1, b=5.471, p<0.001), and the differential effect (in column 2, b=7.577, p<0.05) 
are significant. This suggests that the reason why PSM did not yield a significant estimate of the 
differential effect is because PSM has lower statistical power.  
 

Table S16 Impact of Smart Pricing on Daily Revenue: A Generalized Synthetic Control 
Approach 

VARIABLES 
(1) 

Main Model 
(2) 

Interacting with Ethnicity 
 ESTIMATES S.E. ESTIMATES S.E. 
Smart Pricing 5.471128*** 1.285069794 4.584356*** 1.375587 
SmartPricing×Black   7.57656* 3.074063 
SmartPricing×Others   4.362226 2.679952 
log Number of Reviews 13.47936*** 0.805344 13.60937*** 0.824151 
log Number of Photos 7.160971** 2.232651 7.101532** 2.236745 
log Security Deposit 7.20503*** 0.14932 7.111945*** 0.143913 
log # Min. Stays -11.7408*** 1.117515 -11.9724*** 1.062721 
Instant Book Enabled 11.50455*** 1.215182 11.53208*** 1.264121 
Super Host 7.181684*** 1.214445 7.195109*** 1.249905 
Professional Host (log # 
listings) 2.097485 2.005196 2.181062 2.021605 
Host Effort (Response Rate) 0.16218 0.23975 0.15988 0.2261 
Fixed Effect Property Property 
Seasonality City-Year, City-Month City-Year, City-Month 
Cluster-robust Standard errors  
* p<0.05 ** p<0.01 *** p<0.001 

 
  

                                                 
17  The implementation and inferences details can be found at https://cran.r-
project.org/web/packages/gsynth/gsynth.pdf. 

https://cran.r-project.org/web/packages/gsynth/gsynth.pdf
https://cran.r-project.org/web/packages/gsynth/gsynth.pdf
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Section 7: Investigating Seasonal Price Correction as an Alternative Mechanism to Explain 
the Main and Differential Effects of Adoption 

 
In this section, we will investigate whether and to what extent can an alternative mechanism related 
to seasonal price correction can explain the average treatment effect of adoption (i.e., on an 
average, adoption of the algorithm leading to increase in revenues of hosts) as well as the 
differential effect of adoption (i.e., adoption of the algorithm benefiting black hosts more than 
white hosts). We will explore this alternative mechanism for the average treatment effect in section 
7.1 and for the differential effects in section 7.2.    
 
7.1 Whether and to What Extent Does Seasonal Price Correction Explain the Average 
Treatment Effect?  
Starting with understanding the mechanism for the average treatment effects, recall that in section 
3 of the main paper we regressed both prices and occupancy on adoption of the algorithm. We 
found that on average, adoption of the algorithm leads to decrease in prices and increase in 
occupancy rate of hosts, where the increase in occupancy offsets the decrease in prices, which 
thereby increases revenue. However, we did not investigate whether the downward price 
correction by the algorithm was the same throughout the year or whether it was more during certain 
seasons such as the off peak season. One possible reason why the algorithm’s downward price 
correction might be larger during the off-peak season is because the hosts by themselves may not 
decrease the prices enough when they move into off peak seasons. Thus in this section, we examine 
whether and to what extent did the algorithm introduce a seasonal price correction as opposed to 
a general price correction – where a general price correction refers to the case when adoption of 
the algorithm leads to a similar price correction across all seasons in the year, and seasonal price 
correction refers to the case when adoption of the algorithm leads to a downward price correction 
during off peak seasons only. 

To explore these reasons, we first regress property price (average nightly rate) on whether 
or not the host adopted the smart pricing algorithm in month t and its interaction with whether or 
not month t belongs to an off peak season.  

 
 𝑁𝑁𝑛𝑛𝑔𝑔ℎ𝐸𝐸𝑙𝑙𝑛𝑛𝑡𝑡𝐿𝐿𝐸𝐸𝐿𝐿𝑖𝑖𝑡𝑡

= 𝛽𝛽 ∙ 𝑆𝑆𝑡𝑡𝐿𝐿𝑝𝑝𝐸𝐸𝑃𝑃𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑔𝑔𝑖𝑖𝑡𝑡 + 𝛾𝛾 ∙ 𝑆𝑆𝑡𝑡𝐿𝐿𝑝𝑝𝐸𝐸𝑃𝑃𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑔𝑔𝑖𝑖𝑡𝑡 × 𝑂𝑂𝑓𝑓𝑓𝑓𝑃𝑃𝐿𝐿𝐿𝐿𝑂𝑂𝑆𝑆𝐿𝐿𝐿𝐿𝑠𝑠𝑝𝑝𝑛𝑛𝑖𝑖𝑡𝑡 + 𝜆𝜆
∙ 𝐶𝐶𝑝𝑝𝑛𝑛𝐸𝐸𝑝𝑝𝑝𝑝𝑙𝑙𝑠𝑠𝑖𝑖𝑡𝑡 + 𝑆𝑆𝐿𝐿𝐿𝐿𝑠𝑠𝑝𝑝𝑛𝑛𝐿𝐿𝑙𝑙𝑛𝑛𝐸𝐸𝑛𝑛𝑖𝑖𝑡𝑡 + 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝐿𝐿𝑝𝑝𝐸𝐸𝑛𝑛𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑡𝑡 

 
(S21) 

 
In this regression, SmartPricingit is an indicator variable that takes the value of 1 if property i used 
the pricing algorithm in month t and 0 otherwise. 𝑂𝑂𝑓𝑓𝑓𝑓𝑃𝑃𝐿𝐿𝐿𝐿𝑂𝑂𝑆𝑆𝐿𝐿𝐿𝐿𝑠𝑠𝑝𝑝𝑛𝑛𝑖𝑖𝑡𝑡 is an indicator variable that 
takes a value of 1 if month t is in an off peak season and 0 if it is not. The parameter β captures the 
impact of adoption of the algorithm on prices during peak seasons, and the parameter γ captures 
the differential effect of the algorithm on prices during peak vs. non-peak seasons. For each city, 
we classified a given month into the peak season or the off-peak season category as follows. For 
each city, we first calculated the average occupancy rate in each month in our data for the full one 
year prior to the introduction of the algorithm (i.e., from Nov 2014 to Oct 2015)18. Following that, 
                                                 
18 Please note that we do have the occupancy data from AirDNA 18 months prior to the introduction of the algorithm. 
However we only used the AirDNA data from July 2015 to Aug 2017 in our analysis. The reason for that is because 
AirDNA only started collecting information on other dynamic variables (such as number of review, number of photos, 
property time-varying characteristics etc.) that we use in our analysis from July 2015 onwards.  
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we categorized the bottom three months with lowest occupancy for each city as the off peak season 
and the rest of the months as the peak season.  

The results of this regression are given in Column 1 of Table S17. The estimate of the main 
effect β is -6.277 (with p<0.05) and the interaction effect γ is -11.01 (with p<0.05). These estimates 
show that there are two mechanisms through which adoption of the algorithm leads to an increase 
in hosts’ revenues: (a) general price correction, whereby the algorithm brings prices down by 
$6.227 across all seasons during the year, and (b) seasonal price correction, whereby the algorithm 
brings prices further down by $11.01 during the off peak season as compared to the peak season, 
which stems from the fact that hosts do not drop their prices enough during the off-peak season. 

At this point, it is important to mention that the aforementioned results are robust to the 
following: 
(i) They are robust to the number of months that we include in the peak season and in the off-

peak season. In the present analysis, we have included 3 months in the off-peak season and 
9 months in the peak season. We have also done the analysis with including 6 months in 
the peak season and 6 months in the off peak, and also with 9 months in the off-peak season 
and 3 months in the peak season. The basic nature of results remains the same.  

(ii) They are robust to the number of seasons that we consider in our analysis. In the present 
analysis, we have considered only two seasons – peak and off-peak. We have also done the 
analysis with 4 seasons, and the basic nature of the results does not change.  

(iii) They are robust to the potential limitation of the AirDNA data. Note that the limitation of 
the AirDNA data is to do with the fact that AirDNA does not observe the true occupancy 
and it instead predicts it using its algorithm. However in the above regression, we are not 
working with occupancy. Instead, we are working with price as the dependent variable. As 
discussed earlier (section 2.5 of Web Appendix), AirDNA has accurate information on 
each property’s listing price. This information is publicly available on each host’s website 
and AirDNA got this information by scraping this information from each host’s webpage.  
 

We next explore whether these price corrections lead to increase in occupancy and revenues. 
We performed two more regressions, which are the same as the aforementioned regression, except 
that in the first one, the dependent variable is the occupancy rate, and in the second one, the 
dependent variable is average daily revenue per month. The results of these two regressions are 
reported in columns 2 and 3 of Table S17 respectively. Starting with column 2, we see that 
adoption of the algorithm increased occupancy in peak as well as off-peak periods by 0.0710. Thus 
both price corrections led to increase in occupancy. Moreover note that the increase in occupancy 
as a result of adoption in the peak seasons and off peak seasons are not statistically different from 
each other. This result suggests that the demand of an individual Airbnb unit is more responsive 
to prices during peak seasons than during off peak seasons.19  

Moving on to column 3, we see that the increase in revenue is positive during both peak 
season (=$7.767) and for the off peak season (=$7.767-$3.352=$4.115) as a result of adoption, 
which shows that both mechanisms lead to an increase in revenue.  

In conclusion, the analysis shows that the algorithm increases revenues through both the 
following mechanisms: (a) general price correction, whereby the algorithm brings prices down by 

                                                 
19 A possible reason for that is because there are more active Airbnb listings during peak seasons than during off peak 
seasons (Farronato and Fradkin 2018). This leads to greater competition amongst Airbnb listings during peak seasons, 
which makes the demand of an individual unit more responsive to prices.  
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$6.227 across all seasons during the year, and (b) seasonal price correction, whereby the algorithm 
brings prices further down by $11.01 during the off peak season.  
 

Table S17 Effects of Using Smart Pricing on the Property Price, Occupancy, and Revenue 
in the Off-Peak Season 

VARIABLES 

ESTIMATES 
(1) 

Nightly Rate 
(2) 

Occupancy Rate 
(3) 

Daily Revenue 
Smart Pricing 
(non off-peak season as default) -6.277* 0.0710*** 7.467*** 
 (3.094) (0.00558) (1.492) 
Smart Pricing X Off Peak -11.01* -0.0110 -3.352* 
 (5.041) (0.00746) (1.326) 
log Number of Reviews 5.267 0.0458*** 11.91*** 
 (7.590) (0.00423) (1.181) 
log Number of Photos -49.13 0.0492*** 6.812* 
 (33.11) (0.0134) (2.929) 
log Security Deposit 1.544*** 0.0257*** 6.087*** 
 (0.447) (0.000938) (0.254) 
log # Min. Stays -3.601 -0.0520*** -10.44*** 
 (3.536) (0.00692) (2.292) 
Instant Book Enabled 0.761 0.0637*** 11.05*** 
 (2.071) (0.00602) (1.464) 
Super Host 4.605 0.0317*** 9.050*** 
 (3.001) (0.00597) (1.962) 
Professional Host (log # listings) 4.935 0.0131 0.351 
 (4.240) (0.0114) (4.264) 
Host Effort (Response Rate) 0.105 -0.000530 0.0261 
 (0.0655) (0.00146) (0.0288) 
Fixed Effect Property Property Property 

Seasonality 
City-Year, City-

Month 
City-Year, City-

Month 
City-Year, City-

Month 
Observations 162617 162617 162617 
R-squared 0.85 0.56 0.51 
Cluster-robust standard errors at individual property level in parentheses 
* p<0.05   ** p<0.01   *** p<0.001 

 
 
7.2 Whether and to What Extent Does Seasonal Price Correction Explain the Differential 
Effect?  
Moving on to understanding the mechanism for the differential effect, recall that in section 3 of 
the paper we regressed both prices and occupancy on the two-way interaction between adoption 
of the algorithm and ethnicity of the host. We found that while adoption of the algorithm led to a 
similar magnitude of downward price correction across black and white hosts, it led to a much 
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greater increase in occupancy for black hosts as opposed to white hosts. Based on this result we 
concluded that the reason why black hosts benefitted more than white hosts is because black and 
white hosts face different demand curves (all else being the same), with the demand of black hosts 
being more responsive to prices as compared to the demand of white hosts.  

However, there can be an alternative explanation that does not require the demand curves 
for black and white hosts to be different. The alternative explanation is that even though the 
downward price correction (averaged over the entire year) is the same across black and white hosts, 
it could be larger for black hosts as compared during the seasons when the Airbnb demand is more 
responsive to prices, and vice versa for white hosts. As a result, adoption of the algorithm will lead 
to a greater increase in occupancy over the entire year (and thereby the revenue) for black hosts as 
compared to white hosts. In this section, we will explore this alternative mechanism.  

To explore the different mechanisms, we extend the regressions in equation (S21) by adding 
a three-way interaction involving host’s ethnicity. We start with the regression (equation S22) in 
which price is the DV, where we categorize ethnicity by White, Black or Others, and set White as 
the reference group:    
 

𝑁𝑁𝑛𝑛𝑔𝑔ℎ𝐸𝐸𝑙𝑙𝑛𝑛𝑡𝑡𝐿𝐿𝐸𝐸𝐿𝐿𝑖𝑖𝑡𝑡
= 𝛽𝛽 ∙ 𝑆𝑆𝑡𝑡𝐿𝐿𝑝𝑝𝐸𝐸𝑃𝑃𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑔𝑔𝑖𝑖𝑡𝑡 + 𝛽𝛽1 ∙ 𝑆𝑆𝑡𝑡𝐿𝐿𝑝𝑝𝐸𝐸𝑃𝑃𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑔𝑔𝑖𝑖𝑡𝑡 × 𝐸𝐸𝐸𝐸ℎ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝐸𝐸𝑛𝑛𝑖𝑖 + 𝛽𝛽2
∙ 𝑆𝑆𝑡𝑡𝐿𝐿𝑝𝑝𝐸𝐸𝑃𝑃𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑔𝑔𝑖𝑖𝑡𝑡 × 𝑂𝑂𝑓𝑓𝑓𝑓𝑃𝑃𝐿𝐿𝐿𝐿𝑂𝑂𝑆𝑆𝐿𝐿𝐿𝐿𝑠𝑠𝑝𝑝𝑛𝑛𝑖𝑖𝑡𝑡 × 𝐸𝐸𝐸𝐸ℎ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝐸𝐸𝑛𝑛𝑖𝑖 + 𝛾𝛾
∙ 𝑆𝑆𝑡𝑡𝐿𝐿𝑝𝑝𝐸𝐸𝑃𝑃𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑔𝑔𝑖𝑖𝑡𝑡 × 𝑂𝑂𝑓𝑓𝑓𝑓𝑃𝑃𝐿𝐿𝐿𝐿𝑂𝑂𝑆𝑆𝐿𝐿𝐿𝐿𝑠𝑠𝑝𝑝𝑛𝑛𝑖𝑖𝑡𝑡 + 𝛾𝛾1 ∙ 𝑂𝑂𝑓𝑓𝑓𝑓𝑃𝑃𝐿𝐿𝐿𝐿𝑂𝑂𝑆𝑆𝐿𝐿𝐿𝐿𝑠𝑠𝑝𝑝𝑛𝑛𝑖𝑖𝑡𝑡
× 𝐸𝐸𝐸𝐸ℎ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝐸𝐸𝑛𝑛𝑖𝑖 + 𝜆𝜆 ∙ 𝐶𝐶𝑝𝑝𝑛𝑛𝐸𝐸𝑝𝑝𝑝𝑝𝑙𝑙𝑠𝑠𝑖𝑖𝑡𝑡 + 𝑆𝑆𝐿𝐿𝐿𝐿𝑠𝑠𝑝𝑝𝑛𝑛𝐿𝐿𝑙𝑙𝑛𝑛𝐸𝐸𝑛𝑛𝑖𝑖𝑡𝑡 + 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝐿𝐿𝑝𝑝𝐸𝐸𝑛𝑛𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑡𝑡 

 
 
(S22) 

 
The results are reported in column 1 of Table S18. The estimates of the coefficients of 

SmartPricing (=-7.411) and SmartPricing×OffPeakSeason (=-12.09) are statistically significant at 
p<0.05, which implies that adoption of the algorithm led to a significant downward general as well 
as seasonal price correction for white hosts.   

We next examine whether the differences in seasonal price correction can explain why 
adoption of the algorithm benefits black hosts more than white hosts. The coefficient of interaction 
term, Off Peak Season×Black is not statistically significant. This implies that prior to adoption of 
the algorithm, both black and white hosts behaved similarly in terms of managing their prices in 
periods of low demand. The coefficient of the interaction term, SmartPricing ×Black is statistically 
insignificant. This implies that that adoption of the algorithm led to a similar magnitude of price 
correction across black and white hosts during the peak season.  The coefficient of the three-way 
interaction, SmartPricing×Black×OffPeakSeason, is also not statistically significant, which 
implies that adoption of the algorithm led to a similar magnitude of downward price correction 
between black and white hosts during off-peak season.  

Thus we see that across all seasons of the year, there is no significant difference in the extent 
of downward price correction by the algorithm between black and white hosts. This shows that 
differences in seasonal price correction between black and white hosts does not explain the 
differential effect of the algorithm. At this point, it is important to mention that the aforementioned 
results are robust to the following: 
(i) They are robust to the number of months that we include in the peak season and in the off-

peak season. In the present analysis, we have included 3 months in the off-peak season and 
9 months in the peak season. We have also done the analysis with including 6 months in 
the peak season and 6 months in the off peak, and also with 9 months in the off-peak season 
and 3 months in the peak season. The basic nature of the results does not change.  
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(ii) They are robust to the number of seasons that we consider in our analysis. In the present 
analysis, we have considered only two seasons – peak and off-peak. We have also done the 
analysis with 4 seasons, and the basic nature of the results does not change.  

(iii) They are robust to the potential limitation of the AirDNA data. Note that the limitation of 
the AirDNA data is to do with the fact that AirDNA does not observe the true occupancy 
and it instead predicts it using its algorithm. However in the above regression, we are not 
working with occupancy. Instead, we are working with price as the dependent variable. As 
discussed earlier, AirDNA has accurate information on each property’s listing price. This 
information is publicly available on each host’s website and AirDNA got this information 
by scraping this information from each host’s webpage.  

 
Finally, we investigate whether the mechanism that we have discussed in the main paper 

(which is that the demand of black hosts is more responsive to price changes as compared to that 
of white hosts) explains the differential effect of the algorithm. To do so, we run the same 
regression as in equation (S22), except that the DV is now occupancy rate. The results of this 
regression are reported in column 2 of Table S12. The estimate of the coefficient of SmartPricing 
is 0.0639 with p<0.01. The estimates of the coefficients all the interaction terms involving 
Ethnicity are statistically non-significant, except that of the interaction term, SmartPricing×Black. 
The estimate of the coefficient of this term is 0.0763 (with p<0.01). Thus we see that adoption of 
the algorithm increased the occupancy of white hosts by 0.0639 and that of black hosts by 0.1402 
(=0.0639+0.0763). This shows that the reason why adoption of the algorithm benefitted black hosts 
more than white hosts is because the demand of black hosts is more responsive to price changes 
as compared to that of white hosts.  

 

Table S18 Effects of Smart Pricing on Property Price and Occupancy: Ethnic Groups of 
Hosts in Off-peak Season 

VARIABLES 

ESTIMATES 
(1) 

Nightly Rate 
(2) 

Occupancy Rate 
Smart Pricing 
(non off-peak season as default) -7.411* 0.0639*** 
 (3.659) (0.00608) 
Smart Pricing X Off Peak -12.09* -0.0140 
 (5.744) (0.00819) 
Smart Pricing X Black  
(white ethnicity as reference) 5.003 0.0763*** 
 (5.388) (0.0202) 
Smart Pricing X Other  6.875 0.0205 
 (4.985) (0.0156) 
Off Peak X Black  -0.586 -0.0181 
 (1.028) (0.00988) 
Off Peak X Other  3.073 0.00390 
 (2.690) (0.00935) 
Smart Pricing X Off Peak X Black 15.00 -0.0195 
 (8.112) (0.0289) 
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Smart Pricing X Off Peak X Other 1.737 -0.0381 
 (7.039) (0.0250) 
log Number of Reviews 5.238 0.0456*** 
 (7.582) (0.00424) 
log Number of Photos -49.13 0.0491*** 
 (33.09) (0.0133) 
log Security Deposit 1.540*** 0.0257*** 
 (0.448) (0.000938) 
log # Min. Stays -3.595 -0.0521*** 
 (3.536) (0.00694) 
Instant Book Enabled 0.740 0.0640*** 
 (2.069) (0.00603) 
Super Host 4.691 0.0321*** 
 (3.029) (0.00599) 
Professional Host (log # listings) 4.920 -0.0132 
 (4.231) (0.0114) 
Host Effort (Response Rate) 0.105 0.000529 
 (0.0654) (0.00146) 
Fixed Effect Property Property 
Seasonality City-Year, City-Month City-Year, City-Month 
Observations 162617 162617 
R-squared 0.85 0.56 
* p<0.05   ** p<0.01   *** p<0.001 
Cluster-robust standard errors at individual property level in parentheses 
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Section 8. Exploring Policy Implications 
 
We present analyses for two policy recommendations for Airbnb that would help reduce the 
revenue disparity between the white and black hosts: 1) instead of including race directly in the 
algorithm, which specific non-race characteristics (that are correlated with race) can Airbnb add 
in their algorithm? 2) Which socioeconomic segment(s) of black hosts Airbnb can target in order 
to encourage them to adopt the algorithm?  
 
8.1. Adding characteristics that are correlated with race into the pricing algorithm 
Instead of directly including race in the algorithm, Airbnb can include alternative 
demographic/socio-economic/non-race variables that are correlated with race in their algorithm.   

In order to know which non-race variables are correlated with ‘Black’, we performed a 
logistic regression in which we regressed Black on the entire set of covariates that we had used in 
our propensity score estimation. We report the results in Table S19 below. Some of the key 
covariates that are significantly correlated with Black are: (i) % of adults in the same zip-code with 
a bachelor’s degree, (ii) number of Airbnb properties listed by the host, (iii) median household 
income in the zip-code, (iv) whether or not the entire home was available for rent, (v) average 
number of blocked days in a month set by the host, (vi) number of minutes to drive to downtown, 
(vii) transit score (which captures how well the area near the property is served by public 
transportation), and (viii) whether or not the property had a heating and a refrigerator. This would 
suggest that these adding these variables in the algorithm can reduce the racial gap.  

However, there are two caveats in place here. First, the McFadden’s pseudo 𝑡𝑡2 for this logit 
regression is 0.1. Although it not very low20, is not large either. This suggests that while including 
these covariates in the algorithm will reduce the revenue gap, however the reduction will be much 
smaller than if Airbnb were to include race in its algorithm. Second, including these socioeconomic 
variables in the algorithm can also run into legal problems because it will result in disparate impact 
across different races (Barocas and Selbst. 2016). Note that both disparate treatment by the 
algorithm (which results from including race in the algorithm) as well as disparate impact by the 
algorithm (which results from including socioeconomic characteristics that are correlated with race 
in the algorithm) are illegal.  

Table S19 Regressing Race Variable (Black) on Covariates 

VARIABLES Estimate Std. Err. 
# Bedrooms -0.0724 (0.0578) 
Apartment 0.00660 (0.0984) 
Entire Home -0.217* (0.0856) 
Listing Title Length -0.0248*** (0.00560) 
Number of Photos 0.00191 (0.00352) 
Number of Reviews -0.00441* (0.00173) 
Listing Nightly Rate 0.000121 (0.000337) 
# Minimum Stay -0.00683 (0.0146) 
Security Deposit -0.000165 (0.000134) 

                                                 
20 The reason why the pseud R2 of 0.1 if not very low is because black hosts only constitute 10% of the hosts in the 
population. It is difficult to get high values of pseudo R2 with such extreme proportions of ethnicities in the population,   
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# Blocked Days in a month -0.0292*** (0.00356) 
# Reservation Days -0.0412*** (0.00536) 
Median Home Earning (1000 USD) -0.00426* (0.00214) 
Private Parking 0.0770 (0.0932) 
Pool -0.157 (0.187) 
Iron 0.0225 (0.140) 
Internet -0.606* (0.273) 
TV 0.359*** (0.0884) 
Dryer -0.184 (0.132) 
Washer -0.0407 (0.119) 
Beach nearby -0.173 (0.480) 
Essentials -0.125 (0.137) 
Heating -0.484*** (0.138) 
Microwave 1.023 (0.577) 
Refrigerator -1.010** (0.371) 
Laptop friendly -0.111 (0.133) 
Fireplace 0.177 (0.124) 
Elevator 0.177 (0.100) 
Gym -0.0404 (0.160) 
Family friendly 0.0608 (0.0982) 
Smoker detector 0.344** (0.128) 
Shampoo -0.191 (0.117) 
Breakfast 0.00380 (0.149) 
AC 1.507 (0.866) 
# Photographed Faces 0.142*** (0.0414) 
Walk Score -0.00198 (0.00255) 
Transit Score 0.0185*** (0.00345) 
Drive to Downtown (min) 0.0169*** (0.00400) 
Population Density (Per Sq. Mile) -0.00000160 (0.00000159) 
Graduate (%) 0.0318 (0.113) 
Bachelor (%) -0.0283*** (0.00682) 
Host Age -0.0327*** (0.00424) 
Home Value (1000 USD) -0.0000422 (0.000104) 
Number of months since the property has been listed 0.00670* (0.00262) 
Number of properties owned by the host -0.0166** (0.00567) 
McFadden's R2 0.100 
Note: the D.V. is a binary variable Black, the model is a logits regression. The estimation was done 
on sample excluding properties with Others ethnicity. The same set of variables used in the 
propensity score model is used. 
Standard errors in parentheses. * p<0.05 ** p<0.01  *** p<0.001 

 
 
8.2. Targeting/encouraging black hosts to adopt the pricing algorithm 

To identify which socioeconomic segment(s) of black hosts should Airbnb target in order to 
encourage them to adopt, we segmented the hosts into four quartiles based on their socioeconomic 
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status. We use education as a measure of the socioeconomic status, which we operationalize as the 
percentage of adults within the same zip-code with the same ethnicity who have a bachelor’s 
degree. We collected the information on the percentage of adults with a graduate and bachelor’s 
degree from US Census data (ACS—American Community Survey).  

We assigned each property into one of the following four quartiles, where the quartile 
categorization were was done separately for each city: quartile q=1 as the bottom quartile (lowest 
end in the distribution of education), quartile q=2 as the second from the b7ottom bucket, quartile 
q=3 as the second from the top bucket, and quartile q=4 was the top quartile (highest end in the 
distribution of education). This yields a four quartile categorization, q=1..4, for education. Next 
we did the following analysis: 
(a) We performed a separate IPTW+DiD regression for each quartile of education. In the DiD 

regression for each quartile, we regressed revenue over a two-way interaction between 
adoption and race.21  

(b) We performed a logit regression, where we regressed adoption of the algorithm over a two-
way interaction between the different quartiles of education and ethnicity, where controlling 
for all other variables that we had used in the adoption model.  
 

The results of the DiD regression in (a) are reported in Table S19 below. The main effect of 
adoption (i.e., the coefficient of SmartPricing) is positive and significant for quartiles q=1, 2 and 
3, but not significant for the topmost quartile q=4. The differential effect of adoption (i.e., the 
coefficient of SmartPricing×Black) is positive and significant for q= 3 only. The magnitudes of 
these effects imply that amongst the black hosts, the treatment effect of adoption is the highest for 
quartile q=3 of education, followed by quartiles q=1 and 2, and is non-significant for q=4. A 
possible reason why the treatment effect is non-significant for q=4 is that these hosts are in the 
upper most quartile of education and would as such be proficient in pricing their properties – thus 
adopting the algorithm does not lead to any significant increase in revenues for them.  

We next discuss the logit regression in (b). The results are reported in Table S20 below. The 
main effect of Black is negative and significant. However most of the interactions of Black with 
the quartiles of either of the two socioeconomic variables are not significant – the only significant 
one is the interaction of Black with the upper most quartile q=4. Based on the magnitudes of these 
effects, we see that as far as the adoption rate amongst black hosts is concerned, it is highest for 
quartile q=1 of education, followed by q=2, then followed by q=3, and finally followed by q=4. 

There are two implications that follow from the above discussion. First, even though black 
hosts in q=4 have the lowest rate of adoption, it does not make sense for Airbnb to target them in 
order to encourage them to adopt the algorithm. This is because black hosts in quartile q=4 do not 
stand to monetarily gain by adopting the algorithm.22 Second, amongst the other three quartiles of 
education, the adoption of black hosts is lowest in q=3, but black hosts in this quartile stand to gain 
the most by adoption. This implies that it is especially important for Airbnb to target black hosts 

                                                 
21 We also performed a single IPTW+DiD regression with all four quartiles together, where we regressed revenue over 
a three-way interaction of the different quartiles of the given socioeconomic variable, race and adoption. The results 
were qualitatively similar to the results presented here.  
 
22 A possible reason why hosts in this quartile may be adopting the algorithm is because of the convenience that they 
do not have to decide and manually set prices every day. 
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in q=3 in order to encourage them to adopt. The other two quartiles q=1 and 2 of black hosts are 
also important to target, although to lesser extent as compared to q=3.  

 

Table S19 Impact of Pricing Algorithm on Average Daily Revenues: A separate IPTW and 
DiD regression for each quartile of % of Bachelor’s Degree 

 

VARIABLES 
Quartile: 

q=1 (bottom) 

Quartile: 
q=2 (2nd 

bottom) 

Quartile: 
q=3 (2nd top) 

Quartile: q=4 
(top) 

Smart Pricing 6.751* 5.664* 9.216*** 3.244 
 (3.353) (2.463) (2.701) (4.478) 
SmartPricing×Black 0.132 2.814 15.22* 14.41 
 (4.928) (4.321) (6.245) (17.58) 
SmartPricing×Others 7.695 4.902 2.933 12.00 
 (5.235) (6.054) (7.671) (9.696) 
Log Number_of_Reviews 9.353*** 11.98*** 9.856*** 14.25*** 
 (1.588) (2.099) (2.608) (3.027) 
Log Number_of_Photos 1.788 5.975 15.05*** 10.76 
 (2.669) (5.064) (4.285) (7.273) 
Log Security_Deposit 6.167*** 5.192*** 6.351*** 6.201*** 
 (0.465) (0.460) (0.423) (0.538) 
Log #Min. Stays -15.87*** -13.42*** -3.010 -11.66* 
 (3.916) (3.042) (6.641) (4.756) 
Instant_Book_Enabled 7.299** 16.80*** 13.62*** 10.74 
 (2.299) (2.849) (2.781) (6.926) 
Super_Host 8.747*** 4.259 7.017 19.24* 
 (2.244) (2.734) (3.964) (7.530) 
Log #host-owned listings  17.56* -1.008 3.917 -16.51 
 (8.067) (4.761) (5.189) (12.30) 
Host_Effort 
(Response_Rate) 0.0637 -0.0887 -0.0868 0.101 
 (0.0547) (0.0842) (0.0501) (0.0760) 
Fixed Effect Property Property Property Property 

Seasonality 
City-Year, 
City-Month 

City-Year, 
City-Month 

City-Year, 
City-Month 

City-Year, 
City-Month 

Observations 46217 39712 40540 36148 
R-squared 0.55 0.61 0.47 0.49 
Note: These are the IPTW and DiD regression results for each quartile of the given socioeconomic characteristic. 
The categorization into the four quartiles was performed within each city separately. The number of observations 
vary because 1) number of units used in each regression, and 2) observations where a property that had full month 
blocked in a month are automatically dropped from regressions (as the revenue=price*occupancy would be 
undefinable).  
Cluster-robust standard errors at individual property level in parentheses 
* p<0.05   ** p<0.01   *** p<0.001 
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Table S20 Impact of Race and its Interaction with the different Quartiles of Education on 

Adoption of the Algorithm 

 

q=Education (% bachelor) 
as quartiles 

Estimate (Std. Error) 
black -0.535*** (0.148) 
others -0.227 (0.160) 
q=2 -0.162* (0.0822) 
q=3 -0.257** (0.0831) 
q=4 -0.128 (0.0875) 
black # q=2 -0.106 (0.244) 
black # q=3 0.0739 (0.272) 
black # q=4 -1.100** (0.377) 
others # q=2 -0.120 (0.235) 
others # q=3 -0.127 (0.244) 
others # q=4 -0.488 (0.255) 
Bedrooms -0.0819 (0.0460) 
Apartment -0.167* (0.0708) 
EntirePlace -0.356*** (0.0678) 
Title_Length 0.0129** (0.00410) 
NumberofPhotos 0.00716** (0.00247) 
NumberofReviews 0.00000811 (0.000960) 
NightlyRate -0.000101 (0.000386) 
MinimumStay -0.00257 (0.0116) 
SecurityDeposit 0.0000367 (0.0000919) 
BlockedDays -0.0268*** (0.00295) 
ReservationDays 0.000811 (0.00372) 
parking 0.156* (0.0685) 
pool 0.0970 (0.128) 
iron 0.494*** (0.0985) 
internet 0.0806 (0.284) 
tv -0.0893 (0.0649) 
dryer 0.0893 (0.0990) 
washer -0.188* (0.0784) 
beach -0.0892 (0.214) 
essentials 0.346** (0.111) 
heating 0.375** (0.140) 
microwave 0.0460 (0.162) 
refrigerator 0.178 (0.157) 
laptop_friendly 0.149 (0.0920) 
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fireplace -0.162 (0.0855) 
Elevator -0.147 (0.0837) 
Gym -0.0999 (0.130) 
family_friendly 0.219** (0.0814) 
smoke_detector 0.332** (0.102) 
Shampoo -0.0459 (0.0853) 
Breakfast 0.0273 (0.110) 
Ac 0.137 (0.571) 
num_faces_mean 0.0190 (0.0361) 
WalkScore -0.00278 (0.00165) 
TransitScore 0.00751*** (0.00227) 
DriveTime -0.00165 (0.00300) 
Population Density (Per Sq. Mile) 0.00000025 (0.00000125) 
age_mean -0.00706* (0.00278) 
listing_month -0.00469* (0.00207) 
num_listings -0.0392*** (0.00769) 

Standard errors in parentheses, * p<0.05  ** p<0.01  *** p<0.001 
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