Probability and AI - Syllabus, Spring 2002
80-316 and 80-616
http://www.andrew.cmu.edu/user/ps7z/syll2002.html
Instructor:  Peter Spirtes           
Office:  135D BH
Telephone:  x88460
Office
Hours:  T,Th 
e-mail:
ps7z@andrew.cmu.edu
Texts:  An
Introduction to Bayesian Networks by F. Jensen
various articles handed out in class
for graduate students: Causality by
Judea Pearl
http://www.hugin.com/news/Demo_HDE.article
http://www.phil.cmu.edu/courses/csr/
               60% Homework Assignments
              
20% Final
1.      Introduction
2.      Causation 
            Jensen 1.1.-1.2
http://www.phil.cmu.edu/courses/csr/ Causation Among Variables
http://www.phil.cmu.edu/courses/csr/
Indeterministic Causation 
3.      Causation – 
http://www.phil.cmu.edu/courses/csr/
– Causation – Causal graphs
http://www.phil.cmu.edu/courses/csr/
– Causation – Interventions
4.      Approaches to Uncertainty
            http://developer.hugin.com/Getting_Started/
Paradigms
5.      Probability I
            Jensen, 1.3,
http://www.math.uah.edu/stat  Probability -
Probability Spaces, 1 – 5
6. Probability II
           Jensen, 1.3,
           http://www.math.uah.edu/stat/  Probability
- Distributions, 1 – 6
7.      Probability III 
           Jensen, 1.3,
           http://www.math.uah.edu/stat/  Probability
– Expected Values, 1 – 3, 5 – 6
8.      Probability IV –  
           http://www.math.uah.edu/stat/   Probability – Probability Spaces, 6 
Online Causal Course – Association – Independence and Association
                 Online Causal Course –
Association – Conditional Independence
9.      Interpretations
of probability 
10.    Bayesian Networks –  
            Jensen, 1.4.
http://developer.hugin.com/Getting_Started/
Bayesian Networks 
11.    Causality and Probability 
http://www.phil.cmu.edu/courses/csr/
Causation to Association –
Unconditional association
http://www.phil.cmu.edu/courses/csr/
Causation to Association –
Conditional 
            association
http://www.phil.cmu.edu/courses/csr/ Course – Causation to Association – d-
                  separation
12.    Constructing Bayesian Networks 
           Jensen, 2 
           http://developer.hugin.com/Getting_Started/  Tutorials – Building a Bayesian 
           Network
13.    Updating 
                 Jensen, 5.7
                 handout
                
Hugin exercises
14.    Manipulating and Predicting 
            http://www.phil.cmu.edu/courses/csr/
Interventions
15. Parameter Estimation and Sampling Distributions
            http://www.math.uah.edu/stat/
Random Samples, sections 1-6, 9 
16.    Parameter Estimation and Sampling Distributions 
            http://www.math.uah.edu/stat/
Point Estimation, sections 1, 3-6 
17.    Applications 
            http://www.research.microsoft.com/~heckerman/default.htm
18.    Other Approaches to Classification: Regression 
            handout
19.    Other Approaches to Classification 
20.    Causal inference 
http://www.phil.cmu.edu/courses/csr/ Association to Causation – Problems 
            with
Causal Discovery
http://www.phil.cmu.edu/courses/csr/
Association to Causation –
Confounding
21.    Constructing Bayes Networks – Bayesian methods
            http://www.research.microsoft.com/~heckerman/default.htm
22. Constructing Bayes Networks: Constraint Based Methods
            Handout 1  for Constraint
Based Methods
            Handout 2  for Constraint
Based Methods
            Handout 3 for
Constraint Based Methods
23.    Latent Variable Inference I
            Handout for
Latent Variables Methods
24.    Latent Variable Inference II