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What is Probability?

1. Understanding without Definitions

Sometimes the best way to understand an idea is to have a definition that connects a new term to old, familiar phrases. If you understood "unmarried" and "man" but not "bachelor", then a definition--a bachelor is an unmarried man--might help you. But some ideas are so different from others that they can't be defined in ways that are likely to enlighten anyone who doesn't understand them to begin with. That doesn't mean the ideas have to remain completely mysterious. One way to understand them is to look at how the ideas are used in practice, how their use developed, and even to look at unsatisfactory attempts at defining them in more familiar terms. Definitions that don't really work, that don't really explain how a term is used in practice, may still reveal some important aspect of the idea. 

The idea of probability is like that. It is a central part of almost every contemporary science, and yet there is no obviously satisfactory definition. So we have to look to the history of the idea, to unsatisfactory definitions, and to how the idea is used nowadays, to do our best to understand it.

The idea of chance, or accident is ancient. Aristotle wrote about it in the 4th century B.C. But serious probability calculations did not appear until the 17th century and only early in the 19th century did probability come to have an important role in science, and then principally in astronomy. Probability slowly entered into other disciplines, but even late in the 19th century a serious scientific education in most subjects did not include anything about probability. Most of the natural laws you learn about in high school science--the periodic table in chemistry, the theory of evolution, the laws of mechanics, and so on--were discovered without the help of any ideas about probability. Times change, and science changes too. If you go to the library and look through scientific articles from a hundred years ago in almost any subject you will find very few that contain any calculations or reports about probability. If you look through articles in scientific journals published in the last year (or even the last forty years) you will find comparatively few that do not contain probability calculations or claims.

Probabilistic ideas in the 17th and 18th centuries had three sources, which in time yielded different attempts at defining probability. We will consider them one by one, and see why none of them quite fit the way the idea of probability is used in science and in everyday life.

2. Sources of the Idea of Probability: Physical Symmetry

Look at a fair die, the kind you use in board games. The die is a cube. If it is properly made, the center of mass of the die is at the geometrical center of the cube. Every face of the die is equidistant from the center of mass, all of the faces have equal areas, each face is at ninety degrees to four other faces. If you rotate the die ninety degrees around any axis that passes through the center of the cube and is perpendicular to two opposite faces, the remaining faces are rotated into the positions originally occupied by one another.  Of course the faces differ in some respects, for example they have different numbers painted or engraved on them. Look at a new deck of cards. All of the cards are of the same shape and composition--any card can be perfectly superimposed on any other. (Of course the cards differ in the colors and shapes on one of their sides.) Or consider a vase full of black and white marbles, all round, all glass, and all of the same radius. Each of them occupies the same volume of space, with the same internal geometry.

These are all examples of systems with physical symmetries; sometimes the symmetries are among properties of one object, as with ithe faces of a die, so that a rotation of the die maps the positions of the faces onto one another; sometimes the symmetries are between separate objects, as with cards or marbles, so that certain features are the same in all of the objects. The cards have the same shape and weight and weight distribution; so do the glass marbles.

Several seventeenth and eighteenth century mathematicans (Jacob Bernoulli, Abraham De Moivre, Pierre Simon de Laplace) thought of physical symmetry as the very essence of probability. Symmetric objects or aspects were treated as "equipossible" in the language of the time, meaning they have the same probability. The probability of an object or aspect was regarded as 1 divided by the total number of distinct "equipossible" objects or aspects. Thus the probability of the die face with "2" written on it is 1/6, and the probability of the king of spades in a deck of cards is 1/52.

The probability of any one of a collection of "equipossible" objects or aspects is just the number of objects or aspects in the collection divided by the total number of equipossible objects or aspects. Thus the probability of diamonds in a standard deck of cards is 13/52 = 1/4. 

Calculating probability in this way reduces to counting, but counting can be tricky. Seventeenth century mathematicians had developed a mathematics of counting--called combinatorics--a mathematics whose European roots began in the 6th century A.D., but which has a much older history in India and China.To illustrate, first lets count some feature of a pair of dice.

We will consider two dice, and consider every pair of faces, one from each die, as equipossible. If we think of throwing first one die and then the other we can calculate the number of ordered pairs of faces, one from the first die and one from the second die:

First die:  6 faces

Second die: 6 faces.

So there are six possible faces for the first die, and for every face for the first die, there are six possible faces on the second die with which it can be paired. So there are 6 X 6 = 36 distinct pairs of faces. These are ordered pairs <Face of die 1, Face of die 2>, and we counted in such a way that, for example, <1,4> was counted as a distinct pair of faces from <4,1>. 

Suppose we want to calculate the probability that the sum of the numbers of on a pair of faces equals 7. We can count the number of ordered pairs that add up to seven:

<6, 1>, <1,6>, <5,2>, <2, 5> <4,3> < 3, 4>

--there are six of them--and divide by the total number of unordered pairs, namely 36. We get: 6/36 = 1/6. Similarly, we can calculate:
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Notice that the total of all of the probabilities is 36/36 = 1. On reflection, that must always be true:

I. The sum of the probabilities of all of the equipossible events equals 1.

Further it is obvious that:

II. The probability of the set that contains no equipossible events is zero.

We could partition the set of all equipossible pairs into sets so that every equipossible pair is in one set, and no equipossible event is in two or more sets. For example, we could consider the set--call it Even--of all pairs whose faces add up to an even number, and the set of all pairs--call it Odd-- whose faces add up to an odd number. The probability of Even is the sum of all the probabilities of the pairs in it, which is 

1 + 3 + 5 + 5 + 3 + 1

___________________

  36

or 1/2. The probability of Odd is also 1/2, as you can easily calculate. You can easily see that the following must be true.

III. The probability of any set of equipossible events (including the empty set) is between 0 and 1, inclusive.

and the following as well:

IV. The sum of the probabilities of any collection of sets of equipossible events, such that every equipossible event is in one and only one set in the collection is 1.

You can also easily check that:

V. The probability of a set C of equipossible events whose members consist of the members of a set A and the members of a set B of quipossible events, is the sum of the probabilities of A and B provided that no equipossible event is in both A and B. 

Suppose we have two sets of equipossible events, and some equipossible events are in both sets. For example, let one set, call it A, be the set of all pairs of faces whose sum is less than 12, and let the other set, call it B, be the set of all pairs of faces whose sum is greater than 10. The pairs <5,6> and <6,5> are in both A and B. The probability of A is 35/36, the probability of B is 3/36, and the probability of the set of events of in both A and B is 2/36. 

You can check that for any sets A and B of equipossible events, the probability of the set--call it A ( B--of all equipossible events that are in A or in B (or in both A and in B) is the probability of A plus the probability of B minus the probability of the set of events in both A and B--call it A ( B.

VI. The probability of A ( B is the probability of A plus the probability of B minus the probability of A ( B.

Let's consider a slightly more complicated calculation. A poker hand consists of any five cards from a deck of 52. How many poker hands are there? First, how many distinct outcomes of shuffling the deck are there, that is, how many distinct orderings are there of 52 cards? The answer can be calculated this way: there are 52 choices for the first card, 51 for the second, 50 for the third, and so on. So there are 52 X 51 X 50 X...X 2 X 1 possible orderings, which is usually written 50! (read: 50 factorial). Now if we are only dealing 5 cards, only the first 5 of these factors occur, that is, there are 52 X 51 X 50 X 49 X 48 = 52!/47! = 311,875.200 different ways to deal 5 cards. But we aren't trying to find the number of different five card deals, we are trying to find the number of different five card hands. The same five card hand can be dealt in many different orders. In fact, applying what you just learned, you can see that the same five card hand can be dealt in 5! = 120 different ways. So our count of the number of deals is 120 times bigger than the number of hands. The number of different hands is 52! / (5! 47!) = 2,598,960.

There is nothing special about 52 and 5. The same reasoning applies to the number of ways of selecting k things from n things, for any positive n and any positive k not greater than n. The number of ways of taking k things from n things without regard to order--which we will write C(k,n)--is n! / [k! (n - k)!].

You can use these simple principles to calculate the probability of any poker hand. For example the probability of a hand containing exactly one pair can be calculated this way:

Number of ways of drawing the first card of a pair: 52

Number of ways of drawing the second card of a pair: 3

Number of ordered ways of drawing a pair: 52 X 3.

Number of distinct pairs: 52 X 3 / (number of orderings of two cards) = 52 X 3 / 2! = 52 X 3 / 2 = 78.

Now suppose you have drawn a pair.  

The number of ways of drawing a third card that does not match a given pair: 48.

Number of ways of drawing a fourth card that does not match a given pair or pair with the third card = 44.

Number of ways of drawing a fifth card that does not match a given pair or pair with the third or fourth cards: 40.

Total number of ways of drawing three cards that do not pair with each other or match a given pair: 48 X 44 X 40.

But there are 3! = 6 possible orderings of the 3 extra cards, all making up the same hand, so

Total number of 3 card hands that do not contain a pair and do not match a given pair = 48 X 44 X 40 / 6.

So the total number of 5 card hands containing exactly one pair is:

52 X 3 X 48 X 44 X 40 / [2 X 6] = 1,098,240.

So the probability of a 5 card hand containing exactly one pair is:

1,098,240/2,598,960= 0.423.

You might want to try calculating the probabilities of some other hands. Here are the answers:

No hand


.501

One pair 


.423

Two pair


.0475

Three of a kind: 
.0211

Straight


.00392

Flush


.00197

Full house

.00144

Four of a kind

.000240

Straight flush

.0000154

And, here's a question: We have calculated the probability of a hand with exactly one pair. Suppose two hands are dealt from a deck at once, say first a hand to another player and then a hand to you without replacing the first player’s cards in the deck. You don’t see the other player’s cards. Is the probability that your hand has exactly one pair still .423? And, whatever your answer, why?

The physical symmetry explanation of probability seems pretty good, but there are are some interesting difficulties:

Difficulty 1. Let's go back to our pair of dice. Suppose we don't care which die has which face--no matter to us whether the first die is a 4 and the second die a 2, or the first die a 2 and the second die a 4. Then we are interested in counting the number of unordered pairs, so that [1,2] will be counted as the same pair as [2,1]. 

To calculate the number of unordered pairs we have to first count the six ordered pairs that have the same faces for both die--<1,1> and so on, because there is only one pair among the 36 with a one on each face, and one pair with a 2 on each face, and so on. Each of the remaining 30 pairs of faces is twinned with another pair in reverse order--<2,1> goes with <1.2> for example. So if we want to disregard the order of the die and count <1,2> as the same as  <2,1>, and similarly for other twinned ordered pairs, then the number of objects we will have left is 30/2 or 15. So there are 15 + 6 = 21 unordered pairs altogether.

By listing all of the unordered pairs, it is easy but tedious to verify that we have found the right answer:

[1,1], [1,2], [1,3], [1,4],[1,5], [1,6], [2,2], [2,3], [2,4], [2,5], [2,6], [3,3], [3, 4], [3, 5], [3,6], [4,4], [4, 5], {4, 6], [5, 5], [5, 6], [6,6].

Now suppose we calculate the probability of a pair whose faces add up to 7. Those unordered pairs are [1,6], [2,5], [3,4]. So the probability of a pair whose faces add up to seven is 3/21 = 1/7 when we take the equipossible events to be the unordered pairs. But the probability we found for the faces to add up to 7 when we took the equipossible events to be ordered pairs was 1/6. Basing probability on equipossibility seems to produce a contradiction. Which probability is right, and why? 

The answer depends on which way--ordered pairs or unordered pairs--is the right way to determine equipossibility. A practical version of the question is this: in a game of dice, what probability should you assign to a 7 coming up, 1/6 or 1/7?  

Probabilists like Bernoulli had an implicit answer to this difficulty. The answer ties ideas about probability to ideas about causation. Any event should be analyzed into simpler events that constitute it, where the simpler events making up a complex event have no causal connection with one another. Thus the event of getting snake eyes on the dice consists of two events: one die having face 1 up and the other die also having face 1 up. In a fair role of the die, one assumes, the face that comes up on any one die has no influence on the face that comes up on the other die. Further, in a fair role of the die, one assumes, there is no third factor that influences which faces come up on both die. In such circumstances, Bernoulli postulated a principle that has remained fundamental to applications of probability, no matter how probability is interpreted:

VII. The probability of the occurrence of two events that are not causally connected is the product of the probabilities of each of the events. 

Events whose joint probability is the product of their individual probabilities are said to be independent., so Bernoulli's principle could be rephrased this way: causally unconnected events are independent.

Let's apply Bernoulli's principle to our dice problem. In rolling dice, the event [1,1] is composed of two other events, one die having face 1 up, and the other die having face 1 up. The event [1,1] just is  the compound event in which both die 1 has face 1 up and die 2 has face 1 up as well.  The probability of each component event is 1/6. We assume (or at least hope) these events are not causally connected. So, by principle VI, Bernoulli's principle, the probability of both occurring is 1/6 X 1/6 = 1/36, which must be the probability of the event [1,1]. But treating the unordered pairs as equipossible means assigning [1,1] the probability 1/21, so on Bernoulli’s principle the unordered pairs are not equipossible. 

This answer, using Bernoulli's principle, provides a hypothetical solution to the puzzle about how to determine equipossibility. It tells us how to count equipossible cases if we know whether and how events can be decomposed into causally unconnected component events. Unfortunately, we often don't know any such thing. To compute the probability of life on Mars, for example, we would have to know how to analyze the event of life on Mars and the event of no life on Mars into causally unconnected components that are equipossible, and we haven't a clue how to do that. In practice, the use of the understanding of causation based on physical symmetries is confined to situations where we have some good idea of the relevant physical symmetries, and in many complex situations in which probability is nowadays applied--for example in studying features of human relations--we have no such idea. Which brings us to another difficulty.

Difficulty 2.  Consider a die whose center of mass is off-center, a weighted die. Then the faces will not be equally probable--rotating the cube will take one face into the place of another, but each face will retain its distance from the center of mass. So the mathematics of counting "equipossible" cases won't work. 

The essential idea that probability is measured by physical symmetries doesn't change if we consider a weighted die; and neither does the mathematics by which probabilities of complex events are calculated from probabilities of simpler events. All that changes is the probabilities of the basic possible cases. Instead of each face have probabilty 1/6, the faces may have different probabilities, still adding up to 1 altogether. The thing that is unclear is how broken symmetries determine unequal probabilities. If we weight a die so that the center of mass, instead of being half way between face 1 and face 6, is twice as far from face 1 as from face 6, what are the probabilities of the faces? Will face 6 be twice as probable as face 1, or will their probabilities be in some other ratio?  The only answer seems to be the hope that when the physics of a set-up such as dice rolling is properly understood, the physics will show how much probability to assign to each elementary case.

Difficulty 3. What is the connection between probabilities conceived as proportions among physically symmetric cases, and what happens in the world--what connections are there between such measures and what happens when we flip a coin, or throw a die, or draw marbles from an urn, or make scientific measurements? 

The physical symmetries used in calculating probabilities don't themselves imply anything about what happens, but they do imply that in appropriate circumstances what happens cannot depend on any of the symmetrical features. If you throw an unbalanced die on a flat surface, the number that turns up depends on a few things: the initial position of the die in your hand the linear and angular momentum you give to the die as you throw it, characteristics of the surface the die strikes, and which faces the die is weighted towards. But with a fair die, because of the physical symmetries the last factor vanishes: what side turns up does not depend on any characteristics of the faces other than how the die was held initially. As the 17th and 18th century writers put it, all sides of a fair die are "equipossible." But of course this fact doesn't determine what will happen on any individual throw or even on any sequence of throws, since that will be influenced by how the die is held and thrown.

Early in the 17th century, Abraham De Moivre gave a dramatic answer to the question of what probabilities say about what happens:

Probability says nothing about what happens.

Any claim about the probability of heads in a flip of a coin is consistent with either heads coming up or with tails coming up. The same is true for any claim about the outcome of any finite sequence of flips, no matter how large. So it is perfectly consistent to say

"The probability of heads on any flip is 1, and heads never came up even once in a billion tosses."

Now this seems very unsatisfactory. What is the use of a theory derived from studying games of chance that says absolutely nothing about what happens?  Not much, it would seem, and in fact the theory of probability played almost no role in science until early in the 19th century. We will see how that came about later. 

De Moivre's remark formulates a fundamental problem for the theory of probability--what rational use can probability calculations have in predicting or explaining events?  The question has received lots of different answers, many of which we will consider. 

Even if probability says nothing about what happens, what happens might tell us something about probability. Bernoulli thought he could show that it does. Bernoulli considered sequences of actions such as drawing a marble from an urn, replacing it, drawing again, and so on. Bernoulli assumed the part of the action consisting of drawing the marble and observing the outcome--a part now usually called a "trial"-- has three properties: 

Bernoulli's assumptions:

(i) Each trial has one of two possible values or "outcomes" (for example, black or white)

(ii) The probability of any one outcome is the same for any two trials (for example, the probability that the first marble drawn is black is the same as the probability that the tenth marble drawn is black).

(iii) The probability of any particular outcome on one trial and any particular outcome on another trial is the product of the probabilities of the respective outcomes. (for example, if the probability of drawing a black marble is p and the probablity of drawing a white marble is (1-p), then the probability of drawing a black marble on the first trial and drawing a white marble on the eighth trial is p(1-p).
Now think of a sequence of such trials--called, unsurprisingly, Bernoulli trials--as many as you want, and let the probability of one value or outcome, drawing a black marble for example, be any number p between 0 and 1. Consider the following rule for guessing p from what happens on any sequence of trials: 

Guess that p is equal to the number of trials in which a black marble has come up divided by the total number of trials. 

It would be nice if it could be shown that this rule (or some other rule) for guessing p always gets the right answer for p, but of course that is not true. If the probability of a black marble is 1/2, you may very well draw a white marble on the first trial, and then, following the rule, your guess would be that p = 0. Well, at least it would be nice if it could be shown that the rule is always gets the right answer, if not at first, then eventually. But that is not true either. If the probability of drawing a black marble is 1/2, then no matter how many times you draw, it is possible that you always draw a white marble, and your guesses, according to the rule, would always be that p = 0. 

What Bernoulli could show is that by choosing a sufficiently large number of trials, you can make it as probable as you want that, using the rule for guessing italicized above, your guess for the probability is as close as you want to the true value, p. That is, however close you want your guess to be to the true value of the probability p, for any probability 1 - , there is a number of trials, such that the probability that your guess is at least as close to the truth as you require is no less than 1 - . 

The probability in question is just the probability, assuming Bernoulli trials, of getting a proportion of black marbles that is at least as close to p as you have specified. We won't prove Bernoulli"s theorem, but we will give a simple example. 

Suppose you want the probability to be at least .75 that your guess for the value of p is within 1/4 of the value of p, that is Prob(|(your guess for p) - p| ≤ .25) ≥ .75, where the vertical bars are absolute value signs. Suppose, unknown to you, the true value of p is 1/2. Then the probabilities for the first seven trials (all of which you can compute using the principles we have already discussed) work out this way:
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Notice that on trial 4, but not on trial 5, the probability that the average number of black marbles drawn lies within .25 of the true value is greater than .75. Bernoulli's theorem says that eventually--after some point or other--the probability that the average lies within .25 of the true value of p will always be greater than .75, but Bernoulli's theorem doesn't say that the critical point is necessarily the first trial (or the second or...) at which the probability that the average lies within .25 of p is greater than .75. Remember that .5, .25 and .75 are just numbers we chose for illustration. Bernoulli's theorem holds for any value of p and any interval around p and any probability that the average should be within that interval around p.

Bernoulli's result says something about the connection between what happens and the theoretical idea of probability based on equipossibility derived from physical symmetry. But it says less than it appears to. Bernoulli's theorem doesn't tell us that the average number of black balls will eventually be as close as we want to the true probability of drawing a black ball. The theorem only says that by conducting a sufficient number of trials we can make it as probable as we want that the average is as close as we want to the true probability of a black marble on any individual trial--and it doesn't even tell us how big "sufficient" is.  But probable was just what we wanted to have explained. As a way of connecting probability with what happens, Bernoulli's result has a kind of circularity. So Bernoulli's result tells us something, but De Moivre's remark--that probability says nothing about what happens--is not at all refuted by the theorem.

3. Sources of the Idea of Probability: Decision Theory

Blaise Pascal was one of the greatest mathematicians of the 17th century, and not a bad physicist and engineer besides. Pascal sometimes decided that scientific work was irreligious, and in those periods he retreated to a convent in Port Royal, outside of Paris, where his sister was a nun, and refused to do mathematics or science, or to talk with those who did. Pascal wrote a book,Thoughts on Religion, or the Pensees as it is generally known. The book is mostly tedious denunciations of everyday pleasures. But great minds have difficulty being thoroughly stupid even when they try, and Pascal's Pensees contains a brief passage that eventually had an enormous scientific and practical influence.

Pascal does not give us a new conception of probability different from the combinatorics of symmetries--in fact, Pascal's work on combinatorics aided probability calculations of that kind. Instead, Pascal illustrates a new use of probabilities. In keeping with De Moivre's later remark that probabilities say nothing about what happens, Pascal does not propose to use probabilities for prediction. Instead, probabilities are used to decide what to do, what actions to take. 

Pascal asks the reader to consider whether or not one should act so as cause oneself to believe in God. Pascal realized that if you don't believe something, you can't make yourself really believe it simply by choosing to believe (try to make yourself believe your computer is an elephant), but you can sometimes act so that you will be more likely to come to believe. If you are an unbeliever about God, you will be more likely to be genuinely converted if you spent time with the devout, act as they do, go to church, pray, and so on. That sort of behavior means going to some trouble, and giving up the pleasures of drinking, gambling and sexual dalliance. Why should you do any such thing? Why forsake those pleasures in order to cause yourself to believe in God (Pascal meant the Roman Catholic God, by the way.). 

Pascal advanced the following considerations: Surely the unbeliever assigns some probability to God's existence. Assuming God's existence and non-existence are equipossible, the probability of God's existence is 1/2. If God exists, and one believes in Him and acts piously, one goes to Heaven, which is an infinite benefit; if God exists and one does not believe and act piously, one goes to Hell, which is an infinitely negative benefit. If God does not exist, and one believes in Him, one foregoes various Earthly pleasures during one's lifetime; if God does not exist and one does not believe, one gains those Earthly pleasures. We can put these claims in a table:




God exists


God does not exist
__________________________________________________________



Believe

in God       

 Heaven:


Loss of Earthly pleasures

and act       

 Infinite benefit

piously

__________________________________________________________

Disbelieve

in God and

Hell:



Gain of Earthly pleasures

do not act

Infinitely negative

piously

benefit or loss

__________________________________________________________

Now, Pascal claims, if one is rational one will choose the action that has the greatest expected benefit., where the expected benefit of an action is calculated by multiplying the probability of a state of the world (the states in this case are: God exists, God does not exist) by the benefit of the action in that state, and adding these products for all of the possible states of the world. Thus the expected benefit of believing in God is:

(Probability that God exists X Infinite benefit) + (Probability that God does not exist X negative benefit of loss of Earthly pleasures.)

Substituting approximate numbers we get:

Expected benefit of belief that God exists =

(1/2)  X ( + (1/2) X (- Something finite) = (
The expected benefit of not believing is

(Probability that God exists X Negative Infinite benefit) + (Probability that God does not exist X gain of Earthly pleasures).

Or:

(1/2)  X ( - () + (1/2) X (Something finite) = - (
So, one ought to act so as to cause oneself to believe in God. 
Pascal also notes that you get the same result even if you think it very improbable that God exists, so long as that probability is some finite positive value.

There are several interesting things to note about Pascal's use of probability to guide choice of action. His argument requires two connected kinds of knowledge--or assumptions--and if the assumptions are unwarranted, the argument fails altogether. 

First, Pascal's set up requires that we know how to divide the possible states of the world into mutually exclusive and exhaustive alternatives. A collection of possible states of the world are mutually exclusive if no more than one can be true; they are exhaustive if every possible state of the world is in the collection. In the case of Pascal's argument for believing in God, it is easy to think of possibilities he did not include, possibilities that might radically change the conclusion. For example, one can imagine that God does not exist, but a Sub-God does exist, and the Sub-God has the following powers and possibilities: if you believe in God, the Sub-God will damn you to Hell for Eternity; if you don't believe in God, the Sub-God will send you to Heaven for Eternity. If you work out Pascal's argument but give some finite probability, however small, to the existence of the Sub-God, it no longer follows that you should believe in God.

Second, Pascal's set up requires that you know the benefits each action will produce in each possible state of the world. That is causal knowledge, and its not at all clear how we get it. Leave out the Sub-God, and consider the possibility that Roman Catholic doctrine is right about everything about God, except for one thing: suppose in fact, God Himself will condemn to Hell those who believe in Him, and send those who do not believe to Heaven. Pascal avoided attempting to prove that God exists, and argued instead that we best serve our own interests by causing ourselves to believe in God. But his argument requires that we know God's preferences about our beliefs, and it seems as difficult to know God's preferences about our beliefs as it is to know that God exists. 

Another interesting thing about Pascal's argument is the principle of choosing the action that maximizes the expected benefit. Pascal doesn't say why we should use this principle, and it is easy to imagine alternatives. For example, we could choose the action with the greatest benefit in whatever state is most probable; if there are two or more equally probable most probable states, we could choose the action with the greatest benefit in the second most probable state, and so on, or if there are ties everywhere, we could flip a coin. Or we could ignore the probabilities altogether and choose the action in which, in the state of the world in which that action is least beneficial, we are better off than we would be in the least beneficial state of any alternative action. In Pascal's set up this alternative rule--often called Minimax--gives the same result as the expected benefit calculation (which Pascal notes). We will see later that there is an interesting justification for chosing the action with the greatest expected benefit.

Finally, in order to use Pascal's set up we have to assign probabilities to the possible states of the world. In Pascal's argument for believing in God, it makes little difference how we assign probabilities as long as they are not zero (we say the argument is robust to different probability assignments). But in other applications of decision theory we might very well get different recommendations for action if different probabilities are used. How are we to assign the probabilities? That is the problem with which we began.

All that said, it remains true that if when faced with a decision we know the relevant alternative actions, we know a relevant division of the possible states of the world, and we know the benefit of each action in each possible state of the world, and we know the probabilities of the various states of the world, and we subscribe to choosing the action that maximizes our expected benefit, then we have a way to make use of our probability judgements, not for prediction, but for deciding what to do. 

4. Sources of the Idea of Probability: Betting Odds and Degrees of Belief

Pascal's contemporary, Gottfried Leibniz, the great German mathematician and philosopher, thought that probability had a place in legal disputes. Probability, he suggested, is a measure of opinion or judgement. David Hume, the great 18th century philosopher whose skeptical views about the rationality of science stimulated important mathematical work on probability, thought that probability is simply a measure of personal opinon.  Laplace, who subscribed to the view of probabilities as proportions of equipossible cases, also claimed that probability is a "measure of ignorance." 

The idea that probability judgements are nothing more than a kind of report of the opinions, or degrees of belief, of whoever or whatever makes the judgements, sounds quite radical. The idea is, however, in complete accord with De Moivre's remark that probability claims say nothing about what happens, and in the 20th century it has become a very popular understanding of what probability claims mean. That popularity is due in part to work that made the idea of a measure of opinion seem respectable.

The idea is that your degree of belief in a proposition can be measured by the odds you are willing to take for lotteries based on the truth or falsity of the proposition. Suppose someone credible offers to sell you a ticket for a lottery. Tickets for the lottery are marked "heads" or marked "tails" or marked "either heads or tails" or are unmarked. A coin will be flipped, and if the side up matches what is written on a ticket, the owner of the ticket wins $1.00. You can, if you choose, turn the tables and sell tickets yourself, for which you promise to pay $1 if the side that turns up on the same coin flip matches the mark on the ticket you have sold. 

What is the most you are you willing to pay for a lottery ticket marked "heads"? Whatever it is, that amount in pennies, divided by 100, will be taken the measure of your degree of belief that a head will come up when the coin is flipped. So if you are willing to pay up to but no more than 50 cents for a lottery ticket marked "heads," your degree of belief that a head will turn up when the coin is flipped is 1/2.

Why should this sort of measure be thought of as a probability?  Let's make one assumption: 

Assume that the most you are willing to pay for a lottery ticket is also the lowest price for which you are willing to sell a lottery ticket with the same mark.
With that assumption, it can be proved that your degrees of belief, as measured by what you are willing to pay for such lottery tickets, had better satisfy principles analogous to those for probabilities calculated on the basis of physical symmetries. Your prices in pennies for $1 lottery tickets, divided by 100, had better satisfy analogues of Principles I through VI. Why had better? What trouble will you get into if your prices for buying and selling lottery tickets don't satisfy these principles? Let's see for a few of the principles:

Suppose your prices contradict the analogue of Principle III, which is: The maximum price you are willing to pay for any lottery ticket is between 0 and 1, inclusive.

Its not clear what it means for the price you are willing to pay to be less than zero. Perhaps it means you are willing to pay me to take a lottery ticket you make. In that case, I can win money from you for sure by having you pay me to take a lottery ticket off your hands. 

Suppose you are willing to pay me more than $1 for a lottery ticket. In that case I can make money for sure--and you will lose money for sure--by selling you lottery tickets at $1 + each. For each ticket you buy, I win at least the difference between $1 and your price, no matter which side of the coin turns up. 

So if your prices contradict Principle III, you are sure to lose, no matter what happens with the coin.

Suppose your prices contradict the analogue of Principle II, which is: The maximum price you are willing to pay for a  blank lottery ticket is zero.

Then you are willing to pay something for a ticket that cannot win.. You are a sure loser. 

Suppose your prices contradict the analogue of Principle IV, which is: The sum of the prices you are willing to pay for a lottery ticket marked "heads" and for a lottery ticket marked "tails, " or the price you are willing to pay for a lottery ticket marked "heads or tails," is $1.

We've just seen that if these prices are more than $1 I can make you a sure loser. Suppose then they are less than $1. Instead of selling to you, I buy from you at the same price. So for less than $1 I buy from you either a ticket marked "heads or tails," or else I buy from you two tickets, one marked "heads" and one marked "tails." However the coin turns up, you will have to pay me $1, and you lose money for sure.

Arguments of the same kind can be constructed when there are more than two outcomes--for example if we are rolling dice rather than flipping a coin, and analogues of the other principles can be proved in a similar way. (Except for Bernoulli's Principle VII, which has to be carefully qualified on a betting interpretation of probability.) The moral is this: if your prices don't satisfy the six principles that are analogous to the principles of probability we obtained from counting "equipossible cases", there is a combination of ticket sales and purchases for which you are a sure loser. The reverse is also true: if your prices do satisfy the analogues of the six probability principles, then you may win or lose depending on what tickets you bought and sold and how the coin flip or dice roll turns out, but you will not lose in every possible outcome. Presumably a rational person would not use betting odds in which he or she was sure to lose, no matter what. So a rational person should have degrees of belief--as measured by betting odds he or she is willing to give--that satisfy the analogues of the six probability principles. 

This argument was first sketched by Frank Ramsey, a philosopher and logician who died young early in the 20th century. For reasons we do not know, this and arguments like it are usually called Dutch Book arguments. Subjective probability advocates say that any collection of degrees of belief that do not satisfy the probability principles is incoherent. 

The Dutch Book argument does not require or assume or conclude that "rational" prices or betting odds correspond to counting equipossible cases; the argument only establishes that "rational" prices or betting odds satisfy the six analogues of the principles satisfied by counting equipossible cases.

Now some difficult questions arise: If probabilities are anyone’s degrees of belief that can be measured by betting odds that satisfy the probability principles, does anyone actally have such degrees of belief? That is, do are real people actually disposed to accept or reject bets in such a way as to satisfy the analogues of principles I through VI? The answer is that, almost certainly, no one's degrees of belief measured in this way satisfy the probability principles. Your degrees of belief about various small collections of propositions may satisfy the probability axioms, but almost certainly your degrees of belief about all of the propositions you could produce opinons about do not satisfy the probability principles. The reason is that unless you are extremely dogmatic, and give an infinity of logically possible propositions probability zero, it is extremely hard to calculate numbers that satisfy the probability axioms. This difficulty is an immediate consequence of one of the fundamental results in the theory of the complexity of computations. The theoretical result has ample empirical verification. Cognitive psychologists have confirmed over and over that even in comparatively simple cases, most people's judgements don't agree with the probability principles. Of course, in restricted contexts experts can and do use probability principles correctly in reasoning, but if the experts are taken outside of the mathematical probabilistic model developed for a particular scientific or engineering problem, the experts are as incoherent as anyone else.

So if probabilities are a person's degrees of belief, satisfying the probability principles, and people don't generally have such degrees of belief, probability seems, once more, to be about nothing at all, or at most about nothing much.

5: Sources of the Idea of Probability: Logic

So far as we know, the study of logic began with Aristotle in the 4th century B.C., and almost ended there. For two millenia, modest changes were made to Aristotle's theory of logical inference, until, in the middle of the 19th century, George Boole made important new contributions. Then, in 1879, Gottlieb Frege created the basis for modern logic. Later, in the 20th century, modern logic generated the theory of computation and the subject of computer science.

Boole at first thought that the laws of logic he had discovered are the natural laws governing how humans think (some cognitive psychologists still do), but Boole had second thoughts. People make logical errors all the time, so the relation of the laws of logic to how humans think can't be like the relation of the laws of gravitation to the way bodies fall: falling rocks don't make mistakes. 

In the 20th century, logic came to be seen as as a kind of tool for analyzing and criticizing mathematical theories. Logic, and mathematical theorems about logic, could be used to study the consistency of mathematical theories, their expressive power, their equivalence or inequivalence, to check informal proofs, and, with the development of powerful computers and artificial intelligence heuristics, logic could even be a tool for mathematical discovery. Rather than a theory of how anyone's mind works, logic became instead a tool for mathematical inquiry. 

One view of the theory of probability is that it plays--or should play--a role in scientific inquiry analogous to the role of logic in mathematical inquiry. The probability principles, and refinements of them, should enable us to investigate whether a set of probability numbers are coherent, and to study special probability distributions, and to draw consequences from them, and so on. If we take seriously the conclusion of the Dutch Book argument, we should think it is rational to have degrees of belief that satisfy the probability principles, and irrational not to. Even if in everyday life and in the informal conduct of science we can't succeed in being completely rational, in well defined theoretical contexts we can think and prove things about what would follow if one had a coherent set of degrees of belief, even if we don't actually have them. 

The view that the theory of probability is a tool for studying the implications of possible coherent degrees of belief is a lot more plausible than the idea that probability is a description of our actual degrees of belief. It still has one important difficulty. Probability doesn't seem to be used only as a tool for studying hypothetical degrees of belief; unlike logic it seems to be part of what science says about nature and society. No empirical scientific theory makes claims about logical relations. Theories in physics and psychology don't say that one proposition logically entails another, or that two propositions are logically equivalent, or any such thing. Logic isn’t part of what physics or psychology say about the world. With probability, things are otherwise. There are theories in physics, economics, psychology and elsewhere, that postulate probabilities for events. Our fundamental theory of matter, the quantum theory, specifies probabilities for electrons to move from one state to another, or for radioactive nuclei to decay, and so on. It doesn't seem at all plausible--or even intelligible--that these probabilities are simply hypothetical degrees of belief of a non-existent person. Why would physicists be interested in the hypothetical degrees of belief of a non-existent person? Another example: One of the most influential models of how people give answers in certain kinds of tests--such as intelligence tests--postulates that the probability of a correct answer by a particular test taker depends only on two factors, the difficulty of the question, which is the same difficulty for all test takers, and the skill of the particular test taker, which is the same for all questions. Now this theory--called the Rasch model--may or may not be true, but it doesn't seem plausible that what it says is  something about the degrees of belief of some hypothetical, non-existent person.

6: Sources of the Idea of Probability: Frequencies

Flip a coin ten times and count how many times heads come up. 

HHTHTTTHHH
In this case heads came up six times in ten tosses. We say that the ratio of the number of heads to the total number of tosses is the relative frequency of heads in the set of tosses. Relative frequencies also satisfy analogues of the principles for equipossible events. For example, the relative frequency of a kind of event--say heads--must be between 0 and 1. The relative frequency of all possible kinds of events in a collection (heads or tails) must be 1. The sum of the relative frequencies of two kinds of events that together include all possible events (the relative frequency of heads plus the relative frequency of tails) must equal 1. And so on. From a formal point of view, relative frequencies behave like probabilities.

Should we think that the probability of a kind of event just is the relative frequencies of that kind of event in a collection of events? The suggestion is appealing because it is the first proposal we have considered that disagrees with De Moivre's remark that probabilities say nothing about what happens. Relative frequencies say something quite definite about what happens, or did happen. In the sequence above, six of the ten letters are "H." That's a fact. Relative frequencies aren't obscure. 

The only important objection to this idea--and its a very important objection--is that it doesn't agree with our practice in using probabilities. In most scientific cases, the relative frequencies of kinds of events aren't used to describe the probabilities of various kinds of events in a collection; instead, the relative frequencies in a collection are used to estimate probabilities of various kinds of events both in and not in the collection, and the estimated probabilities are generally different from the relative frequencies. Let's consider an example. 

Jessica Utts gives a graph showing the distribution of heights in a collection of 199 British men. It looks like this.




If we redraw the graph using relative frequencies of each height--instead of the actual numbers of men of each height among the 199,as in the graph above, the graph looks like this.




Notice that the two graphs--the first giving the actual numbers of men of each height, the second giving the relative frequency of men of each height--have the same shape, but the vertical axes have different units.

Now if the 199 men in the collection were obtained as a random sample of British men (we'll worry about what that means later) a typical statistical estimate of the probability that a British man is no taller any given height would not be the same as the relative frequency of men no taller than that height in the collection of 199 men.  For example, the statistician would estimate that the probability that a British man has a height of 1600 mm or less is about .0273, but the frequency of men of that stature among the collection of 199 men is more than twice that: 13/199 = .065. We can more thoroughly compare the statistician's probabilities and the relative frequencies in the collection:

Height        Probability        Relative frequency in collection of 199 

less than

or equal 

to

  1550
  
0.0041


 .005

  1600
  
0.0273


 .065




  1650  
0.1150


 .166

  1700
  
0.3160


 .472

  1750  
 0.5958


 .754

  1800
 
 0.8324


 .904

  1850   
 0.9540


 .975

  1900           0.9920


 .995

  1950   
 0.9991

         
  1.0

The statisticians numbers are different from the relative frequency because the statistician would very likely assume that the probability distribution for men's heights is a normal probability curve. There are an infinity of different normal curves. Here's an example of just one of them.

[image: image1.wmf]
What the statistician does with the data on the heights of 199 British men is find the normal curve that best fits that data. The "best fitting" normal curve won't reproduce the relative frequencies in the data perfectly, which is why the two lists above--the calculated probabilities and the relative frequencies--don't agree. 

The probabilities that are obtained using the normal curve that best fits the data on the sample of heights of 199 British men aren't supposed to be the relative frequencies of heights of all British men. The statistician will tell you that the probabilities given by the normal curve may be the best estimate of the relative frequencies of heights of all British men, but the relative frequencies are almost certainly different from from the probabilities, and, further, if in fact the relative frequencies of heights of all British men and different from those estimated from the normal curve that best fits the data for only 199 men, that doesn't itself mean the probabilties so obtained are wrong.

So statisticians and scientists who use statistics don't treat relative frequncies as probabilities, but rather as estimates of probabilities, well founded guesses at probabilities. 

7. Instrumental Probability

Scientific regularities often have three features: first, they are not about numbers for a single quantity, they are about relations among sets of numbers for two or more quantities measured in different circumstances; second, they are false, often very false, sometimes literally true of nothing; and, third, just when a false regularity is close enough to the truth to be good enough to use in a scientific application is vague--there aren't any rules for it, and competent scientists may disagree.

The ideal gas law illustrates both features. The ideal gas law says that for any state of a sample of gas, the pressure of the gas times the volume of the gas is equal to a constant (the same constant for all states of the gas sample) times the temperature of the gas sample:

PV = kT

This "law" says nothing about the measurement of pressure, temperature and volume of a gas sample in a single state of the gas. Until k is specified, those numbers can be anything at all. The law says something however, about the distribution of measures of pressure, temperature and volume over any number of states. It says that for any two states of the gas sample, the ratio:

PV / T

is always the same.

Further, the ideal gas law is false. It isn't strictly true of any gas sample. For some gases, such as mercury, its a pretty good approximation; for others, such as carbon dioxide gas its a pretty poor approximation. Ideal gases are a fiction.

But a very useful fiction. The ideal gas law is frequently used in scientific calculations where the numbers it gives are close enough for whatever purpose is at hand. 

One way to understand what statisticians and others are doing when they use the theory of probability is to think of it as almost exactly like what chemists and other scientists are doing when they use the ideal gas law. A probability claim is like the ideal gas law (and many other laws) in that it doesn't say what measure any particular thing (compare 'state") will have; instead the probability claim is about how the measures of a collection of things are, or will be, or would be distributed: what proportion will be at least this tall, what proportion will be at least that tall, and so on. And probability claims are like the ideal gas law in that they almost never perfectly describe the data--or larger populations from which the data are selected. And, finally, probability claims are like the ideal gas law because just how well a probability distribution must approximate the relative frequencies in a data set, or in a larger population about which inferences are to be made, is vague. 

But we noted that the ideal gas law, although false, is useful. Why is probability useful? Probability is useful because there seem to be a great many processes in nature and society that do not even approximately conform to simple regularities like the ideal gas law, but do generate relative frequencies of values of quantities, relative frequencies that are sufficiently well approximated by some well understood, mathematical described probability distribution, such as a normal probability distribution. Cards distribute themselves pretty close to a probability distribution (called the multinomial distribution) when shuffled and dealt, and dice when rolled over and over; large populations of people do when selecting mates; economies do; infections do. 

This account of what we are saying and doing (at least most of the time) when we talk of probability has its own difficulties. When we have only a small sample and it is described by a probability distribution that is supposed to approximately describe a larger population, what does "larger" mean? How large is large? The instrumentalist answer that "large" is vague, just as how close a probability curve must come to the histogram of actual data is vague. 

What can it mean, according to the instrumentalist account, when Bernoulli claims that the probability of drawing a black marble is 1/2? Only that drawing marbles of that kind in that way is the sort of process that, if done a large number of times, is well approximated by a probability distribution—in this case called the binomial distribution. 

Finally, what use is probability on the instrumentalist account? By approximating the relative frequencies observed samples with a mathematically ideal probability distribution, we can often make better guesses about the distribution of features in a larger population from which the sample is taken. And, equally important, we can often identify and estimate the strengths of causal relations that would otherwise be completely mysterious. How we can use probability to do that is the subject of the rest of this course.

8. Conclusion

Probability is elusive: On most interpretations, De Moivre was right: probability claims say nothing about what happens, or will happen or has happened. Probability based on symmetry considerations literally does say nothing about what happens. Probability understood as subjective degree of belief says nothing about what happens, isn't possible for us to abide by in complex cases, and doesn't agree with many of our uses of probability in science. Even so, in many simple situations, our degrees of belief may be well described as probabilities, and the probability calculus gives us guidance in finding the implications of our degrees of belief and for changing our degrees of belief as we acquire new evidence. Moreover, if we think about the design of intelligent computing systems--artificially intelligent systems,--we may very well want to design them to be as rational as they can be. How that works we will soon see. The one interpretation which understands probability claims as about definite actual facts--the finite frequency interpretation--doesn't agree at all with our use of probability in games of chance, in science, and elsewhere. The instrumentalist interpretation understands probability claims as loosely about actual facts and possible facts, and it shares part of the spirt of the symmetry interpretation, since it regards various physical systems are disposed to create large samples that are approximated and idealized by the mathematics of probability distributions. And the instrumentalist view agrees with a lot of our scientific practice; it does, however, require us to understand probability claims about particular events, or small sets of events, in a way that statisticians are not used to. 

Most of these interpretations of probability involve ideas about causation in one way or another, and, we have not tried to give a definite interpretation of what causation means. For a while, we will leave that to your native understanding about interventions and maipulations, and focus instead on how probability can be used as a tool in discovering and measuring causal connections in the world. 
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