Identifying sea scallops from benthic camera images

Prasanna Kannappan, Justin H. Walker, Art Trembanis and Herbert G. Tanner Cooperative Robotics Laboratory, Department of Mechanical Engineering, University of Delaware

Introduction

US Scallop fishery 58 million pounds, >\$500 Million

Background on Scallop Survey Efforts

- NEFC scallop survey conducted annually since 1979.
- Dredges are on the order of 30-45% efficient (NOAA NMFS, 2010)
- Dredges impact the seabed and integrate over the entire tow area.
- Utilizing images has a theoretical 100% efficiency.
- However performing manual scallop counts on hundreds of thousands of images is a time consuming process.

Automated counting of scallops

- AUVs mounted with cameras provide a non-invasive alternative to dredge surveys.
- We developed an automated scallop detection framework using computer vision tools.

Scallops shown in red circles

Original

Thresholded Edge Filtered

Conventional image processing tools are ineffective.

Control Planes and shrouded propelle

Scallop appearance cues: Yellowish color, dark crescent at top, bright crescent at lower rim and sometimes no crescent features.

IVERSITY OF ELANARE.

