ROS-based Robot Vision and Control: "Catch me if you can!"

Prasanna Kannappan and Konstantinos Karydis

Kannappan and Karydis (Mech.Eng)

ROS-based Robot Vision and Control

CISC829 1/10

Introduction

Robot Vision and Control: Why so important?

- Vision:
 - Pattern and color recognition
 - Feature detection
- Control:
 - Path and trajectory planning
 - Coordination for task accomplishment

Kannappan and Karydis (Mech.Eng)

ROS-based Robot Vision and Control

CISC829 2 / 10

Introduction

Robot Vision and Control: Why so important?

- Vision:
 - Pattern and color recognition
 - Feature detection
- Control:
 - Path and trajectory planning
 - Coordination for task accomplishment
- Applications include:
 - Search and rescue missions
 - Inspection
 - Automated repairs

Kannappan and Karydis (Mech.Eng)

ROS-based Robot Vision and Control

CISC829 2/10

Outline

Outline

Problem Statement and Approach Overview

Implementation in ROS

Vision

Control

Results

Conclusions and Future Improvements

Kannappan and Karydis (Mech.Eng)

ROS-based Robot Vision and Control

CISC829 3/10

Robot Detection and Tracking

Goal:

• Detect and follow a randomly-moving miniature robot

The OctoRoACH results from a collaborative effort between U.C.Berkeley and Motile Robotics Inc The Create is designed and distributed by IRobot. Inc.

Kannappan and Karydis (Mech.Eng)

ROS-based Robot Vision and Control

CISC829 4 / 10

• • • • • • • • • • • •

Robot Detection and Tracking

Goal:

- Detect and follow a randomly-moving miniature robot Incorporate:
 - Integration in ROS environment
 - Visual detection using a built-in laptop camera
 - Path planning and collision avoidance control routines

The OctoRoACH results from a collaborative effort between U.C.Berkeley and Motile Robotics Inc. The Create is designed and distributed by IRobot. Inc.

• • • • • • • • • • • •

Robot Detection and Tracking

Goal:

- Detect and follow a randomly-moving miniature robot Incorporate:
 - Integration in ROS environment
 - Visual detection using a built-in laptop camera
 - Path planning and collision avoidance control routines

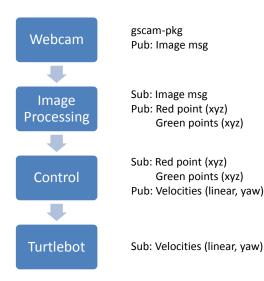
Hardware¹:

OctoRoACH

IRobot's Create

• • • • • • • • • •

The OctoRoACH results from a collaborative effort between U.C.Berkeley and Motile Robotics Inc. The Create is designed and distributed by IRobot, Inc.

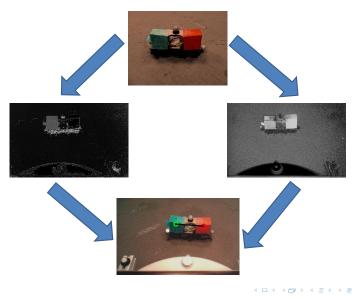

Kannappan and Karydis (Mech.Eng)

ROS-based Robot Vision and Control

CISC829 4 / 10

Implementation in ROS

Procedure in ROS

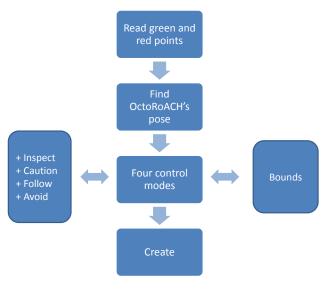


Kannappan and Karydis (Mech.Eng)

ROS-based Robot Vision and Control

Vision

Image processing flowchart


Kannappan and Karydis (Mech.Eng)

ROS-based Robot Vision and Control

CISC829 6 / 10

Control

Control policy flowchart

Kannappan and Karydis (Mech.Eng)

ROS-based Robot Vision and Control

CISC829 7 / 10

Results

Results

Observer's view

Robot's view

イロン イロン イヨン イヨン

Kannappan and Karydis (Mech.Eng)

ROS-based Robot Vision and Control

CISC829 8 / 10

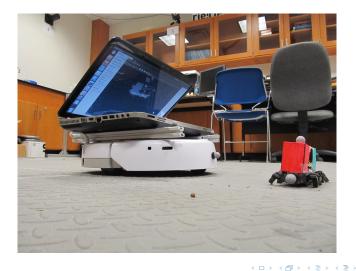
Conclusions and Future Improvements

All in all...

- Conclusions:
 - Used easily accessible tools
 - Implemented straightforward techniques
 - Detection and tracking achieved
 - · Can be adapted for other platforms as well

Conclusions and Future Improvements

All in all...


- Conclusions:
 - Used easily accessible tools
 - Implemented straightforward techniques
 - Detection and tracking achieved
 - Can be adapted for other platforms as well
- Improvements:
 - Robustification of image filtering
 - Adaptive control mode bounds
 - Completely random motion
 - Testing in more complex environments

Kannappan and Karydis (Mech.Eng)

ROS-based Robot Vision and Control

CISC829 9/10

Thank you!

Kannappan and Karydis (Mech.Eng)

ROS-based Robot Vision and Control

CISC829 10 / 10