Scallops to Subway Cars -Detection and Counting

-Prasanna Kannappan
-Bert Tanner
Mechanical Engineering
University of Delaware

Outline

• Subway car Detection

- Scallop Detection and Counting
 - Visual Attention
 - Eigen value shape descriptors

Redbird Reef

- 1996-2009 objects added
 2001: First subway cars
- Over 900 NYC subway cars and other objects

*Slide adapted from Effects of Artificial Reef Structures on the Geology and Biology of the Seafloor: example from the inner continental shelf off Delaware, Raineault, Art Trembanis and Doug Miller.

Redbird Reef: Backscatter Image

Fig 1(top). Backscatter image **Fig 2(bottom).** Detected features

Detecting Subway Cars

- The problem of detecting subway cars can be simplified to
 - Segmenting objects with distinctive edges
 - Detecting rectangles among segmented objects
- Points that help segmentation of cars
 - Distinctive rectangular edges
 - The edges are fairly unbroken

Scallops

One way we think about scallops.

*http://www.myrecipes.com

Sea Scallops (Placopecten magellanicus)

*http://www.edc.uri.edu/

Scallop Counting

- Why count scallops?
 - Scallop counting is important in regulating the fishing areas and keep track of abundance of scallops.
- Tradition methods used for counting
 - Dredge the sea floor using a commercial dredge with a sieve. The sieve collects the scallops. The dredge sediment is then manually counted.
- Current counting method involves using images from an AUV
 - Its non-invasive compared to dredging
 - It might give a more complete idea on scallop densities

Scallops

Example image with scallops shown in red circles

Day and Night Illumination Variation and Vignetting effects

Daytime Image

Nighttime Image

Identifying Scallops

- Some possible features that can be used to identify scallops
 - Dark crescent on top
 - Bright crescent on the periphery
 - Yellowish color

Some sample scallop images

Difficulties in Identifying Scallops

- The images contain a lot of noise (grainy appearance) so edge detection or thresholding fail.
- The edges/crescents in the scallop are often not very distinct
- The crescents are often discontinuous due to noise
- Major part of the scallop looks texturally identical to the background
- They can often be partly or almost fully covered by sediments

Original Image

Thresholded

Edge Filtered

Visual Attention

- Information comes in through the optic nerve at the rate of 10⁷-10⁸ bits per second.
- We employ selective attention to process parts of the images preferentially over the others.

Example to illustrate visual attention

*Computational Architectures in Biological Vision, Itti

Visual Attention Mechanism Bottom Up vs Top Down

Example to illustrate the difference between bottom up and top down attention

*Attention, Effort, and Resource Allocation, Bauer R.

Computational Model of Visual Attention

Center-Surround differences and Feature Maps

• Feature Maps

$$I(c,s) = |I(c) \ominus I(s)|$$

where $s = c + \delta$, $c \in \{2,3,4\}$ and $s \in \{3,4\}$ and \ominus is the centersurround difference operator.

Similarly,

$$RG(c,s) = |(R(c) - G(c)) \ominus (R(s) - G(s))|$$
$$BY(c,s) = |(B(c) - Y(c)) \ominus (B(s) - Y(s))|$$
$$O(c,s,\theta) = |O(c,\theta) \ominus O(s,\theta)|$$

Where $\theta \in \{0^{\circ}, 45^{\circ}, 90^{\circ}, 135^{\circ}\}$

Conspicuity and Saliency Maps

• Conspicuity Map

$$\bar{I} = \bigoplus_{c=2}^{4} \bigoplus_{s=c+3}^{c+4} N(I(c,s))$$

$$\bar{C} = \bigoplus_{c=2}^{4} \bigoplus_{s=c+3}^{c+4} \left[N(RG(c,s)) + N(BY(c,s)) \right]$$

Where \bigoplus is the cross-scale addition operator and N is the map normalization operator.

• Saliency Map

$$S = \frac{1}{3} \left[w_1 \bar{I} + w_2 \bar{C} + w_3 \bar{O} \right]$$

 w_1 , w_2 and w_3 are the top-down weights.

Example Saliency Computation

Color CM

Winner Takes All Neural Network(WTA) and Inhibition of Return

WTA identifies the most salient region

Inhibition of return suppresses the recently attended fixation

Example: Filtering

Original image with fixations

Eigen Value Based Shape Descriptors

- Can one hear the shape of the drum? -Kac, 1966
- In other words, can we determine the shape of a drum membrane just by hearing the sound of the drum(i.e. by knowing the principle modes of vibration)
- Wave equation

$$\Delta w(x, y, z, t) - \frac{1}{v^2} \frac{dw(x, y, z, t)}{dt} = 0$$

• Helmholtz equation

$$\Delta u(x, y, z) - \lambda u(x, y, z) = 0$$

Eigen Value Based Shape Descriptors

By numerically solving the eigen value problem, we compute λs

$$0 < \lambda_1 \le \lambda_2 \le \lambda_3 \le \cdots \le \lambda_{\infty}$$

• Eigen value based descriptor,

$$F(\tau) = \left[\frac{\lambda_1}{\lambda_2}, \frac{\lambda_1}{\lambda_3}, \dots, \frac{\lambda_1}{\lambda_n}\right]$$

These descriptors are RST invariant

Best and Worst Features (compared to a rectangle)

Eigen Ratios

Curve Descriptors Index

Note: Closer the curves, better the match.

Conclusions and Future Work

- Visual attention helps in identifying 90% of the scallop locations.
- We are improving the algorithm to reduce the number of false positives which is 50%.
- We are working to improve the efficiency of the eigen value shape descriptors.

References

- A Demonstration Sea Scallop Survey of the Federal Inshore Areas of the New York, Bight using a Camera Mounted Autonomous Underwater Vehicle, Trembanis et. al.
- A model of saliency-based visual attention for rapid scene analysis, Itti et. al., 1998.
- Shape Recognition using eigen values of the Dirichlet Laplacian, Khabou et. al., 2007.
- Drums and Curve Descriptors, Zuliani et. al., 2004.
- All scallop and subway car data was provided by Dr. Trembanis, Univ of Delaware.