
1

Resilience through Learning in Multi-Agent
Cyber-Physical Systems
Konstantinos Karydis,1,∗ Prasanna Kannappan,2 Herbert G. Tanner,2 Adam
Jardine,3 and Jeffrey Heinz3

1Department of Mechanical Engineering and Applied Mechanics, University of
Pennsylvania, Philadelphia, PA, USA
2Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
3Department of Linguistics and Cognitive Science, University of Delaware, Newark,
DE, USA
Correspondence*:
Konstantinos Karydis
Department of Mechanical Engineering and Applied Mechanics, University of
Pennsylvania, Philadelphia, PA, USA, kkarydis@seas.upenn.edu

ABSTRACT2

The paper contributes to the design of secure and resilient supervisory Cyber-Physical Systems3
(CPS) through learning. The reported approach involves the inclusion of learning modules in each4
of the supervised agents, and considers a scenario where the system’s coordinator privately5
transmits to individual agents their action plans in the form of symbolic strings. Each agent’s6
plans belong in some particular class of (subregular) languages which is identifiable in the limit7
from positive data. With knowledge of the class of languages their plans belong to, agents8
can observe their coordinator’s instructions and utilize the Grammatical Inference modules to9
identify the behavior specified for them. From that, they can then work collectively to infer the10
executive function of their supervisor. The paper proves that in cases where the coordinator11
fails, or communication to subordinates is disrupted, agents are able not only to maintain12
functional capacity but also to recover normalcy of operation by reconstructing their coordinator.13
Guaranteeing normalcy recovery in supervisory CPSs is critical in cases of a catastrophic failure14
or malicious attack, and is important for the design of next-generation Cyber-Physical Systems.15

16

Keywords: Multi-agent systems; leader decapitation; resilience; supervisory control; grammatical inference; cryptography17

1 INTRODUCTION

1.1 Context and motivation18

Cyber-Physical Systems (CPS)s encompass a wide range of networked software and control units, sensors19
and actuators, and the intrinsic communication channels among these components. Some application areas20
of CPSs include automated factories, smart and energy efficient buildings, the smart grid, and self-driving21
cars; Kim and Kumar (2012); Khaitan and McCalley (2014) provide additional application areas. As the22
domain of applicability of CPSs expands into security-sensitive areas such as automated highways, water23

1

Karydis et al. Resilience in Supervisory Multi-Agent Systems

and electricity distribution systems, as well as military command and control, it is critical to develop24
novel design and control paradigms that go beyond the traditional notions of robustness, reliability, and25
stability (Rieger et al., 2009). These novel paradigms—or elements of resilience—include cyber-security26
and privacy (e.g., Liu et al. (2012)), control system and information network robustness, and the ability to27
maintain normalcy and restore function following a failure or a malicious attacks.28

Making a system resilient to such events is nontrivial due to the high degree of inter-connectivity29
among the physical and software components, and the intricate cyber, cognitive and human inter-30
dependencies (Rieger, 2014). One way to approach this problem (Rieger et al., 2009) is by decomposing it31
into two broad research thrusts. One of them is State Awareness, which is related to efficient and timely32
monitoring for the purpose of ensuring normalcy. The other is Resilient Design, which is related to enabling33
the system to take the appropriate control actions to maintain normalcy. This paper focuses on the latter.34

Resilient Design is a broad field of research that requires novel design and control paradigms and35
creative integration of methodological elements borrowed from various—originally disjoint—control-36
theoretic areas. Examples of the former category include fault-tolerant control (Blanke et al., 2003),37
resilient control (Mahmoud, 2004), and robust control of networked systems (Hespanha et al., 2007;38
Schenato et al., 2007). The latter category is a novel, rapidly expanding area of research, and some recent39
examples involve secure control (Cardenas et al., 2008; Mo and Sinopoli, 2009), and modeling of attacks40
and their impact (Kundur et al., 2011; Cam et al., 2014). Recently launched research initiatives such as41
FORCES (CPS-FORCES, 2015) aim to increase the understanding of how to design resilient large-scale,42
human-in-the-loop systems by combining tools from resilient control with economic incentive schemes.43
Yet, although resilience can emerge as a result of judicious design of interacting agent objectives and44
incentives, Rieger et al. (2009) argue that, much like any organization will fail without organizational45
leadership, a supervisory design is still needed to ensure smooth operation. At this time, it is unclear what46
happens in cases where the supervisor ceases functioning, following a malicious attack or a catastrophic47
failure. How can one prevent the whole system from collapsing and recover normalcy of operation?48

To answer this question, the paper proposes a different resilient design paradigm that incorporates learning49
to enable the system to recover normalcy of operation following a coordinator decapitation. It considers50
a class of supervisory systems,1 and integrate machine learning modules based on formal languages and51
Grammatical Inference (de la Higuera, 2010) within the subordinate control units (agents). The idea is52
that agents keep track of the commands sent by the coordinator during normal operation, and through a53
particular machine learning procedure they can infer the plan(s) that the supervisor instructs them to execute,54
even if the agents themselves have no prior knowledge of those specific plans. The paper shows that agents55
can work together to ensure four key elements that prevent destabilization after coordinator decapitation:56
information flow, consensus-reaching ability, functional capability, and information interpretation (Jordan,57
2009). Finally, it is shown how the various aspects of the coordinator’s language that each agent has58
individually learned, can be used to recover the behavior of the coordinator and thus maintain normalcy.59

The work that originally motivated this study has been in the context of emergency response (Kendra and60
Wachtendorf, 2003) that documented how New York City’s emergency management center was recreated61
on site by means of grass-root, spontaneous efforts of citizens, after it had collapsed with the twin towers.62
Studies on networked system resilience after leader decapitation have also been conducted within social63
and political sciences, focusing on counter-terrorism tactics (Jordan, 2009). The question of why not64
ensuring resilience after decapitation in applications mentioned (Kim and Kumar, 2012; Khaitan and65

1 Examples of such systems may be Supervisory Control and Data Acquisition (SCADA) systems or separation kernel architectures.

This is a provisional file, not the final typeset article 2

Karydis et al. Resilience in Supervisory Multi-Agent Systems

McCalley, 2014) by merely maintaining a copy of the coordinating element’s function in each of the66
subordinate agents becomes clearer if one starts considering the risks and costs related to cyber security and67
privacy, in private, public, and military networks, the vulnerabilities of which to deliberate cyber-attacks68
are highlighted in the news (Bruni, December 21 2014). In light of these developments, a counter-question69
to the one raised just above is why would anyone create multiple security liabilities by distributing copies70
of sensitive information and procedures.71

The proposed approach complements existing ones by providing an additional feature to include72
in the resilient design of the next generation CPSs. This feature is important because in essence,73
equipping the agents with a learning module allows them to learn features of the organizational patterns74
of their supervisory system and the role assignment during normal operation. Preservation of these75
features following coordinator decapitation has been found to be an important factor that contributes76
to resilience (Kendra and Wachtendorf, 2003). Additionally, the tools developed in this work are77
general, and can be used in a variety of applications such as emergency response, privacy, security78
and counter-intelligence, command and control, and learning through human-robot interactions.79

1.2 Problem description80

More technically, the problem considered is the following. A system consists of a coordinator (leader),81
indexed by 0, and κ ∈ N+ subordinate autonomous agents. The group coordinator is a processing unit that82
broadcasts instructions to all other members, and its messages have a structure that dictates unambiguously83
which agent is to execute which plan of action. A plan is understood as a temporal sequence of actions.84
Communication between the coordinator and each agent is private. The agents do not need to communicate85
with each other, but they are assumed capable to establish an all-to-all ad-hoc network in cases of emergency86
in order to recover normalcy.87

The group operates in an environment that imposes conditional effects upon which agent actions can be88
executed at any given environment state; it is important to notice here that agent actions may not necessarily89
change the state of the environment. The dependence between agent actions and environment states is90
assumed Markovian. Agent actions that are compatible with a given world state depend only on the current91
state, while the next environment state depends entirely on how the agents act at the current state. Further,92
the coordinator is designed so that the generated plans can be executed by the subordinate agents; in other93
words, commanded agent actions are guaranteed to be implementable at the current world state.94

The controlled (desired) behavior of agent i ∈ {1, . . . , κ} is captured by a formal language Li over95
a particular alphabet of symbols, Σi. The language of agent i is a set of finite combinations of letters96
(or symbols) from Σi which are called words (or strings). Li is the specification language of agent i,97
and expresses what the agent is tasked to do. Note that the specification language of an agent is in98
general different from its capacity; the latter is a superset of Li expressing everything that this agent is99
capable of doing. The plans issued by the coordinator to agent i are words that belong in Li, however the100
subordinate agents do not know a-priori what their specification language is. What is known to them is101
that the specification language belongs to a particular class of languages, and that this class is identifiable102
asymptotically from examples of elements from this language—such a language is called identifiable in the103
limit from positive presentations; this notion of learning is defined formally in Section 2.104

There are several reasons for withholding from agents information about local objectives or the105
specifications, despite that the release of such information would seem to naturally endow the system106
with resilience properties and obviate the need for learning—agents could then operate in a completely107
decentralized fashion. To see this, take for example the common method for adding robustness (and in108

Frontiers 3

Karydis et al. Resilience in Supervisory Multi-Agent Systems

some sense resilience) to a distributed system: equipping every agent with a copy of the decision making109
algorithm. This strategy is effective if agent behaviors are not interdependent, in the sense that that action110
or inaction on behalf of one agent can not block execution for the remaining system. This condition holds111
in instances where agents swarm or flock (Tanner et al., 2007), but not when team behavior is carefully112
sequenced and scheduled in an orchestrated fashion as in the application context considered here.113

Indeed, in the scenario considered, distributing the planning capability among the agents does not114
improve robustness: it is equally bad if either the coordinator or any of the agents fails. In fact, as the115
paper suggests, it is probably better if the coordinator—rather than any of the agents—fails, because116
the function of the former can be recovered by the latter. In addition, there may be privacy (and) or117
security reasons why the global strategy generation mechanism should not be proliferated across the system118
components: an attacker would then be able to exploit vulnerabilities at any of the distributed agent sites to119
gain access and insight into how the whole organization is structured and controlled. Alternatively, the120
strategy algorithm can be maintained in a single, remote, and secured physical device. Such distributed121
architecture, including physically separate, private communication channels between unsecured and trusted122
processes, (cf. Figure 1) is the hallmark of separation kernels used in cryptography and secure system123
design (Rushby, 1981). In addition to enhancing security, it is argued (Rushby, 1981) that these distributed124
architectures facilitate formal verification, especially in contexts with isolated channels of different security125
levels (Martin et al., 2000), which become more increasingly prevalent given the trend for miniaturization126
of communication devices.127

A first question raised now is whether an agent can learn its specification language if it observes the128
instructions given by its coordinator for sufficiently long time. The answer to this question is straightforward129
and is affirmative; this is a direct consequence of known results in the field of Grammatical Inference that130
deals with properties of classes of formal languages and associated learning techniques (more on that in131
Section 2). What is not so clear is whether the agents can reconstruct the language of their coordinator132
once they learn their own specification language. The distinction is subtle, and it involves a certain type of133
synchronization that needs to occur between the strings in the individual specification languages—not every134
combination works. The paper shows that the answer to this question is also affirmative, and proceeds to135
note that these two simple facts directly bring about the seemingly surprising realization that the mechanism136
by which the coordinator devised plans for its group, although originally private, can be revealed within the137
organization. The agents can reconstruct faithfully the function of their coordinator, should the latter ceases138
to exist, through decentralized inference and inter-agent communication.139

1.3 Organization140

The rest of the paper is organized as follows. Section 2 presents the necessary technical preliminaries on141
Grammatical Inference. Section 3 develops the technical machinery for learning elements of resilience in142
CPS, and in Section 4 the results and potential avenues for future research are discussed. Finally, Section 5143
concludes.144

2 MATERIAL & METHODS

What follows is a brief description of formal languages and learning techniques for a class of languages we145
consider in this work. The introduced terminology is then used to provide a technical description of the146
problem tackled here.147

This is a provisional file, not the final typeset article 4

Karydis et al. Resilience in Supervisory Multi-Agent Systems

2.1 Formal languages148

An alphabet is a finite set of symbols; here, alphabets are referred to with capital Greek letters (Σ or ∆).149
A string is a finite concatenation of symbols σ, taken from an alphabet Σ. In this sense, strings are “words,”150
formed as combinations of “letters,” within a finite alphabet. A string u is of the form151

u = σ0 σ1 σ2 · · · σn such that each σi ∈ Σ .

For a string w let |w| denote its length. The empty string λ is the string of length 0. For two strings u, v,152
uv denotes their concatenation. Let Σ∗ denote the set of all strings (including λ) over alphabet Σ, and Σn153
all strings of length n over Σ. For strings v, w ∈ Σ∗, v is a substring of w if and only if there exist some154
u1, u2 ∈ Σ∗ such that u1vu2 = w. The k-factors of a string w, denoted fk(w), are its substrings of length155
k. Formally,156

fk(w) =

{
{u ∈ Σk| u is a substring of w}, if |w| ≥ k

{w}, otherwise
.

Subsets of Σ∗ are called stringsets, or languages. By default, all languages considered here are assumed157
to contain λ. A grammar is a finite representation of a (potentially infinite) language. For a grammar G, let158
L(G) denote the language represented by G. A class of languages L is a set of languages, e.g. the set of159
languages describable by a particular type of grammar.160

This paper will make use of the Locally k-Testable class of languages (McNaughton and Papert, 1971;161
Garcı́a and Ruiz, 2004). A language L is Locally k-Testable if there is some k such that, for any two strings162
w, v ∈ Σ∗, if fk(w) = fk(v) then either both w and v are in L or neither are. Thus a Locally k-Testable163
language is one for which membership in that language is decided entirely by substrings of length k.164

For example, let Σ = {a, b} and Lbb be the set of strings over Σ which contain at least one bb substring.165
In other words,166

Lbb = {bb, abb, bba, bbb, aabb, abba, abbb, ...}
Lbb is Locally 2-Testable because for any w ∈ Σ∗, whether or not w is a member of Lbb can be determined167
by seeing if f2(w) contains bb.168

In fact, Lbb belongs to a subclass of the Locally k-Testable languages for which any language in the169
subclass can be described by a grammar G which is simply a required k-factor; i.e. L(G) = {w|G ∈170
fk(w)}. For example, Lbb is L(G) for G = bb. This particular subclass is used here in the context of171
application examples, since its member languages can be learned from positive data in a straightforward172
way, as described below.173

2.2 Language identification in the limit174

The learning paradigm used in this work is that of identification in the limit from positive data (Gold,175
1967). The particular definition here is adapted from Fu et al. (2013): given a language L, a presentation φ176
of L is a function φ : N→ L ∪#, where # is a symbol not in Σ, and represents a point in the text with no177
data. Then φ is a positive presentation of L if for all w ∈ L, there exists n ∈ N such that φ(n) = w.178

Let φ[i] denote the sequence φ(0), φ(1), ..., φ(i). A learner or grammatical inference machine GIM is an179
algorithm which takes such a sequence as an input and outputs a grammar. A learner is said to converge on180
a presentation φ if there is some n ∈ N that for all m > n, GIM(φ[n]) = GIM(φ[m]).181

Frontiers 5

Karydis et al. Resilience in Supervisory Multi-Agent Systems

A learner GIM is said to identify a class L of languages in the limit from positive data if and only if for182
all L ∈ L, for all positive presentations φ of L, there is some point n ∈ N at which GIM converges and183
L(GIM(φ[n])) = L. Intuitively, given any language in L, GIM can learn from some finite sequence of184
examples of strings in L a grammar that represents L.185

This idea of learning is very general, and there are many classes of formal languages for which such186
learning results exist. For reviews of some of these classes, see (de la Higuera, 2010; Heinz and Rogers,187
2013a). Thus, while demonstrated with a particular subclass of the Locally k-Testable languages, the188
results in this paper are independent of the particular class from which the specification languages of the189
agents are drawn, as long as the class is identifiable in the limit from positive data.190

2.3 Problem Statement191

coordinator

accepts A

generates plan

A ∈ A
projects to

individual instructions

A〈1〉 A〈i〉 A〈κ〉

agent 1 agent i agent κ

learner i

learner 1

L̂κ

L̂i

L̂1

A{1,...,κ}(L̂κ) ∩ · · · ∩ A{1,...,κ}(L̂i) ∩ · · · ∩ A{1,...,κ}(L̂1)

hypothesizes

identifies

?
=

learner κ

Figure 1. Conceptual diagram of the supervisory system operation and learning functions in support of resilience.

The basic problem treated in this paper is illustrated in Fig. 1. A discrete-event system in the role of192
a team coordinator encodes the desired operation of its system in the form of some type of a collection193
of combined system trajectories A. The coordinator generates plans A, elements of A, which direct the194
behavior of a number 1, . . . , κ of subordinate agents. Each coordinator plan A is essentially a bundle of195
open-loop control laws, one per agent, so each agent i receives its own control trajectory A〈i〉 through a196
projection operation that strips away all information that is not related to that particular agent.197

In the process of executing their instructions, the agents can potentially learn incrementally the strategy198
behind their coordinator’s plans. This paper hypothesizes that the process through which agents infer the199
strategy behind the instructions they receive can be implemented in a decentralized fashion by means of200
agent-specific inference machines (learners). Such a learner operates on the body of instructions provided201
to its agent up to that moment in time.202

If agents can indeed figure out the rules behind the instructions they receive, a following question is203
whether they can combine this acquired knowledge to construct collectively a system that reproduces the204
behavior of their coordinator. This way, if at any point their leader is decapitated, either due to system205

This is a provisional file, not the final typeset article 6

Karydis et al. Resilience in Supervisory Multi-Agent Systems

failure or disruption of communication, the agents are able to recover normalcy of operation by “cloning”206
their coordinator.207

The goal of this paper is to show that the answer to both questions above, namely whether(i) agents208
can learn their behavior specification through observation, and (ii) they can collectively reconstruct the209
machine that coordinates them, is affirmative. Readers familiar with results in language identification will210
have little reason to doubt (i), once it is revealed that system behaviors are represented as formal languages;211
the technical complication lies in the projection of A into A〈·〉 components. Whether hypothesis (ii) is valid212
is less obvious and has to be treated in some more detail.213

3 RESULTS

The main claim of this paper is that individual agents can gradually learn the plans that the coordinator has214
devised, by observing the descending commands the coordinator sends to them during the execution of a215
desired task. This way, if this coordinator unexpectedly fails or communication is disrupted, the agents will216
have learned their individual local specifications, and by combining their local hypotheses about what they217
are expected to do, they can essentially reconstruct an image of their lost commander.218

The mathematical proof of this claim is constructive. The key to developing this proof is practically in219
the structure of the object types defined, and in the operations between the objects in these types.220

3.1 The Models221

Consider κ ∈ N+ agents indexed by i ∈ {1, . . . , κ}. Their dynamics are modeled as transition systems222
denoted by Ti.223

DEFINITION 1. A transition system is a tuple T =
(
Q, Σ, →

)
with224

Q a finite set of states;
Σ a finite set of actions;
→: Q× Σ→ Q the transition function.

225

Transition system Ti can generate every run agent i can produce—this is referred to as the capacity of226
agent i.227

DEFINITION 2. The capacity of agent i is a transition system Ti =
(
∆, Σi, →i

)
with228

∆ a finite set of (world) states;
Σi a finite set of actions;
→i : ∆× Σi →i ∆ the transition function.

229

Symbols in ∆ are understood as (world) states in transition system Ti, in other words, they express the230
state of the world in which the agent is operating. Since the agents are operating in a common workspace231
and possibly interacting with each other, they are assumed to share alphabet ∆.232

Transition systems can be thought of as accepting families of languages. However, once initial states233
∆I ⊆ ∆ and final states ∆F ⊆ ∆ are marked on T , the latter becomes an automaton T that accepts a234
particular (regular) language L. Let Ti be the automaton derived from Ti when all states are marked as235
both initial and final, i.e., ∆ = ∆I = ∆F .236

Frontiers 7

Karydis et al. Resilience in Supervisory Multi-Agent Systems

In the context of this paper, the process of marking initial and final states is thought of as a product237
operation (Cassandras and Lafortune, 2008) between the transition system and a language specification238
automaton TLi = 〈Gi, GIi , GFi , Σi, →Li〉.239

DEFINITION 3. The specification of agent i is an automaton TLi =
(
Gi, G

I
i , G

F
i , Σi, →Li

)
with240

Gi a finite set of (internal) states;
GIi ⊆ Gi a finite set of initial states;
GFi ⊆ Gi a finite set of final states;
Σi a finite set of actions;
→Li : Gi × Σi →Li Gi the transition function.

241

When agent i behaves in a way consistent with its specification, the corresponding alphabet strings are242
exactly the input strings of the automaton TCi = Ti×TLi , where× denotes the standard product operation243
on automata (Cassandras and Lafortune, 2008).244

DEFINITION 4. The constrained dynamics of agent i satisfying specification TLi is an automaton245

TCi =
(
∆×Gi, ∆×GIi , ∆×GFi , Σi, →Ci

)
. (1)

having as components246

∆×Gi a finite set of states;
∆×GIi a finite set of initial states;
∆×GFi a finite set of final states;
Σi a finite set of actions;
→Ci : ∆×Gi × Σi →Ci ∆×Gi the transition function.a

247

a for δ, δ′ ∈ ∆, g, g′ ∈ Gi, and σ ∈ Σi, one has δ σ→i δ
′ ∧ g

σ→Li g
′ =⇒ (δ, g)

σ→Ci (δ′, g′).

248

For computational expedience, the paper assumes that TLi generates a language Li that belongs to a249
particular subset of Locally k-Testable class of languages (see Section 2). In this subclass, each string250
contains a specific k-factor. In other words, if z is the required k-factor, then any string w accepted by TLi251
can be written as w = uzv where u, v ∈ Σ∗.252

If φi is a positive presentation of Li, and φi[m] is the sequence of the images of 1, . . . ,m under φi, then253
the set of factors in the string φi(r) associated with r ∈ {1, . . . ,m} with |φ(r)| ≥ k is254

fk
(
φi(r)

)
=
{
z ∈ Σk

i | ∃u, v ∈ Σ∗i : φ(r) = uzv
}
. (2)

The learner that identifies Li in the limit can be compactly expressed through the equation255

GIM
(
φ[m]

)
=

m⋂
r=1

fk
(
φ(r)

)
. (3)

Knowing that there is only one k-factor that needs to be found in all strings of Li, one can determine when256
the learner has converged. Indeed, this happens when for some m ∈ N, it holds that |GIM

(
φ[m]

)
| = 1.257

This is a provisional file, not the final typeset article 8

Karydis et al. Resilience in Supervisory Multi-Agent Systems

3.2 The Types258

Let a symbol vector v of length κ, be defined as an ordered collection of symbols arranged in a column259
format, where the symbol σi at location i belongs to Σi:260

v ,


σ1

σ2
...
σκ

 ,

Sometimes, to save (vertical) space, v is written in the form of a row, using parentheses instead of square261
brackets, and separating its elements with a comma:262

v = (σ1, σ2, . . . , σκ) .

A concatenation of symbol vectors of the same length makes an array. The array has the same number of263
rows as the length of any vector in this concatenation. Every distinct vector been concatenated forms a264
column in this array. A vector is a (trivial) array with only one column. A row in an array is understood as265
a string. Thus an array can be thought of being formed, either by concatenating vectors horizontally, or by266
stacking (appending) strings of the same length vertically.267

The notation used distinguishes vectors from arrays and strings; strings are (horizontal) sequences of268
symbols without delimiters, but when writing a vector in row format, its elements are separated with a269
comma and are enclosed in parentheses, while an array is denoted with square brackets.270

Let K ⊂ N, and define the class AK of symbol arrays with |K| rows and 2n, for some n ∈ N columns271
over the set of symbols ∆ ∪ Σ. Set AK contains arrays of the form272

[ab]n : a = (δ, δ, . . . , δ︸ ︷︷ ︸
κ times

), δ ∈ ∆, b = (σ1, σ2, . . . , σκ) ∈ Σκ, n <∞ .

The set K will be called the support set of the class. The support set of a class is used to index the rows273
of the arrays belonging in the class. To keep track of those indices, the arrays from a particular class are274
annotated with the support set of this class. For example, with K = {1, 2, . . . , κ}, an array AK ∈ AK is275
written as276

AK =


δ1 σ1,1 δ2 σ1,2 · · · δn σ1,n

δ1 σ2,1 δ2 σ2,2 · · · δn σ2,n
...

...
...

...
...

δ1 σκ,1 δ2 σκ,2 · · · δn σκ,n


K

(4)

For m = 1, . . . , n, array AK has every 2m+ 1 column formed as a vector with the same symbol from ∆,277
while symbols from columns with indices equal to 2m for some m, are in Σ. Note that the elements in K278
need not necessarily be consecutive integers as in the example above; it is assumed, however, that they are279
arranged in increasing order. Each class AK is assumed to contain the empty array Λ, which is a trivial280
array with no columns.281

To ground the concept of an array AK in the context of transition systems, assume for instance that all282
agents share the same state set Q and set ∆ = Q. Take σi,j ∈ Σi. Then each row of AK is a sequence,283

Frontiers 9

Karydis et al. Resilience in Supervisory Multi-Agent Systems

the subsequence of which containing the elements with even indices denotes an input word for transition284
system Ti, while the subsequence containing the elements with odd indices represents the common run285
that all transition systems synchronously execute.286

3.3 The Operations287

From an automata-theoretic perspective, the basic operation needed is a (particular) product operation,288
that essentially implements the intersection implied in Section 3.1. The product operation was referred to as289
“particular,” because it does not conform exactly to the product definition in standard literature (Cassandras290
and Lafortune, 2008). The reason it does not, is because it enforces synchronization on a component291
of the state of the factors, rather than their actions. This special product operation is referred to as the292
synchronized product.293

To see how it works, consider two agent constrained dynamics TC1 and TC2 , respectively, that share294
the same space Q as the first component of their state space. Recall the standard Trim operation on295
automata (Cassandras and Lafortune, 2008), which simplifies the system by retaining only its accessible2296
and co-accessible3 states and define the synchronized product of TL1 and TL2 as follows.297

DEFINITION 5. The synchronized product ⊗ of TC1 and TC2 is defined as the operation that yields a298
third automaton299

TC1⊗2 := TC1 ⊗ TC2
:= Trim

(
(Q×G1 ×G2, Q×GI1 ×GI2, Q×GF1 ×GF2 , Σ1 × Σ2, →C1⊗2)

)
(5)

where the transition function→C1⊗2 is defined as a map Q×G1×G2×Σ1×Σ2 → Q×G1×G2 where300

(q, g1, g2)
(σ1,σ2)−−−−→C1⊗2= (q′, g′1, g

′
2) if for q ∈ q, g1, g

′
1 ∈ G1, g2, g

′
2 ∈ G2, σ1 ∈ Σ1, and σ2 ∈ Σ2, it is301

(q, g1)
σ1−→C1 (q′, g′1) and (q, g2)

σ2−→C2 (q′, g′2).302

The operation is extended inductively to more than two factors:303

TC1 ⊗ TC2 ⊗ TC3 ⊗ · · · ⊗ TCn := (· · · ((TC1 ⊗ TC2)⊗ TC3)⊗ · · · ⊗ TCn) .

The effect of the synchronized product on two automata is a particular form of operation on the languages304
they generate. This operation is neither a pure union, nor a pure intersection. The effect is clearer when the305
words in the languages of each system are viewed as rows of a symbol array as in (4), that is, sequences306
in (∆× Σ)∗. In fact, a string in (∆× Σ)∗ can be thought of as a (trivial) 1× 2n array. The synchronized307
product operation now essentially merges these one-row arrays into a two-row array, in a way that ensures308
that odd columns are vectors consisted of the same symbol.309

To see how this works in general with arrays, define first a projection operation on strings. A string u310
formed with symbols in an alphabet Σ can be projected to a set Σ′ ⊂ Σ, by “deleting” all symbols in the311
string that do not belong in Σ′. The projection to Σ′ operation is denoted πΣ′ and formally defined as312

πΣ′ : Σ∗ → Σ′∗ ; u 7→


λ u = λ

πΣ′(s) u = s a, a 6∈ Σ′

πΣ′(s)a u = s a, a ∈ Σ′
.

2 Accessible states are all states that are reachable from initial states.
3 Co-accessible states are states from which there exists a path to a final state.

This is a provisional file, not the final typeset article 10

Karydis et al. Resilience in Supervisory Multi-Agent Systems

The projection operation is extended from strings to arrays implicitly, through a function that extracts313
a particular row from an array. This extraction operation is first defined on vectors, and then naturally314
extended to arrays. The process is as follows. Let ·[j] denote the (extraction) operation on vectors that315
selects the element (a symbol) of the vector at position j ∈ {1, . . . , n}, that is,316

·〈j〉 : Σ1 × Σ2 × · · · × Σj × · · · × Σn → Σj ;

Λ 6= u = (σ1, σ2, . . . , σj , . . . , σn) 7→ σj .

The extraction operation can be naturally extended to arrays. Without loss of generality, assume that317
|K| = κ, and arrange the elements of K in increasing order: {n1, . . . , nκ}. In this case, the ·〈j〉 operation318
yields the row (string) of the array indexed by nj ∈ K:319

·〈j〉 : (Σn1 × · · · × Σj × · · · × Σnκ)∗ → Σ∗nj ;

AK×n 7→


λ AK×n = Λ

λ nj /∈ K
BK×(n−1)〈j〉b〈j〉 AK×n = [BK×(n−1) b] ,

b ∈ Σn1 × · · · × Σnκ .

Let now AK×n denote specifically the class of symbol arrays with support set4 K ⊂ N and dimension320
|K| × 2n. Consider two array classes, AI×n and AJ×n, that have the same row length 2n, and non-321
intersecting support sets I ∩J = ∅. A merge operation can be defined on those two arrays in the following322
way:323

AI×n ⊕AJ×n → A I∪J ×n;

AI×n ⊕ AJ×n 7→
Λ ; I ∩ J 6= ∅

A :

{
A I∪J ×n〈j〉 = AI×n〈j〉 j ∈ I
A I∪J ×n〈j〉 = AJ×n〈j〉 j ∈ J

; π∆

(
AI×n〈j〉

)
= π∆

(
AJ×n〈j〉

)
Λ ; π∆

(
AI×n〈j〉

)
6= π∆

(
AJ×n〈j〉

)
(6)

Notice the projection operation that checks whether the symbols in ∆ match in the rows of the arrays324
being merged. A close comparison of (6) with the definition of the transition function of (5) reveals the325
equivalence. The merge operation essentially translates the synchronized product operation on automata, to326
the corresponding operation on language arrays.327

To express the fact that the substrings formed by taking every symbol with even index (i.e., not in328
∆) in a row i ∈ {1, . . . , κ} of an array belong in a specific language Li ⊂ Σ∗i , the array class is329
written AK×n

(
{Li}i∈K

)
. When not all rows contain substrings in specific languages, but rather only330

the rows with indices belonging in M ⊂ K, then this can be denoted AK×n({Li}M) (shorthand for331
AK×n({Li}M ∪ {Σ∗j}j∈K\M)).332

4 Note that K may not necessarily contain consecutive integers.

Frontiers 11

Karydis et al. Resilience in Supervisory Multi-Agent Systems

3.4 The Result333

Let K = {1, . . . , κ} and consider κ agents, the capacity of which is modeled originally in the form of334
transition systems T1, . . . , Tκ. A run on Ti is a row-vector, just like a row in some AK as in (4), where the335
alphabet symbols in Σi are interspersed with symbols from an alphabet ∆.336

The closed-loop (controlled) behavior of agent i is supposed to satisfy specification TLi . The closed-loop337
system, which is consistent with the specification, is TCi . However, since agents are not supposed to338
have knowledge of Li (or, equivalently, TLi), the product operation yielding TCi cannot be performed339
locally by each agent. Instead, the agents are “teleoperated” by a coordinator, a central automaton T0 that340
dictates specifically what transition each agent is to take at each given state. In some sense, all such product341
operations have been performed by this coordinator, a model of which can be thought of as342

T0 = TC1 ⊗ · · · ⊗ TCκ .

DEFINITION 6. The coordinator is an automaton343

T0 =
(
∆×G1 × · · · ×Gκ, ∆×GI1 × · · · ×GIκ ∆×GF1 × · · · ×GFκ , Σ1 × · · · × Σκ, →

)
with components344

∆×G1 × · · · ×Gκ a finite set of states;
∆×GI1 × · · · ×GIκ a finite set of initial states; a

∆×GF1 × · · · ×GFκ a finite set of final states; b

Σ1 × · · · × Σκ a finite set of action profiles; c

→ : ∆×G1 × · · · ×Gκ × Σ1 × · · · × Σκ → ∆×G1 × · · · ×Gκ the transition function.d

345

a GIi ⊆ Gi.
b GFi ⊆ Gi.
c An action profile is a tuple of symbols from agents’ alphabets.
d For δi, δj ∈ ∆, a transition δi

(σ1,...,σκ)−−−−−−→ δj occurs if (δi, σk) ∈→k for all k ∈ K.

346

A coordinator’s run is a finite sequence of the form347

rK :=

row κ︷︸︸︷
δ1 g1,1︸ ︷︷ ︸

row 1

· · · ︷︸︸︷gκ,1 σ1,1︸︷︷︸ · · · ︷ ︸︸ ︷σκ,1 δ2 g1,2︸ ︷︷ ︸ · · · ︷︸︸︷gκ,2 σ1,2︸︷︷︸ · · · ︷ ︸︸ ︷σκ,2 δn g1,n︸ ︷︷ ︸ · · · ︷︸︸︷gκ,n σ1,n︸︷︷︸ · · · ︷︸︸︷σκ,n · · · (7)

where the braces indicate how the sequence elements can be regrouped with some minimal redundancy,348
and rearranged in the form of an array like (4)349

AK =


δ1 g1,1 σ1,1 δ2 g1,2 σ1,2 · · · δn g1,n σ1,n

δ1 g2,1 σ2,1 δ2 g2,2 σ2,2 · · · δn g2,n σ2,n
...

...
...

...
...

δ1 gκ,1 σκ,1 δ2 gκ,2 σκ,2 · · · δn gκ,n σκ,n

 , (8)

This is a provisional file, not the final typeset article 12

Karydis et al. Resilience in Supervisory Multi-Agent Systems

from which the link between the synchronized product on automata and the merge operation on symbol350
arrays is verified. Coordinator runs, either in the form of a sequence (7) or in the form of an array (8), are351
referred to as plans.352

Viewing now the coordinator as the synchronized product of the constrained dynamics of agents, the353
details of communication between this coordinator and its subordinate agents can be formalized. Assume354
there exists a dedicated communication channel to each agent, and an encoder that takes the row of AK that355
corresponds to the particular agent and extracts the sequence of input strings for that agent. Specifically,356
assume that the coordinator communicates πΣi(AK〈i〉) to agent i. (This can be done either in one batch, or357
one symbol at a time.) Then agent i executes the specified sequence of input symbols synchronously with358
the other agents, and all agents transition together through world states δ1, δ2, . . . , until some final world359
state δn+1 (not shown in AK).360

Assume now that every Li 3 πΣi(AK〈i〉) belongs to a subclass of Locally 2-Testable languages with361
grammars Gi consisted of a single 2-factor, i.e., Gi = {{σmσk}} for σm, σk ∈ Σi, and that each agent362
knows that this is the subclass of languages containing its specification. Then a GIMi can be constructed363
(Garcı́a and Ruiz, 2004) to identify Li in the limit from positive data. Each plan communicated by the364
coordinator to the agents constitutes a positive datum, and if enough5 data are presented to GIMi, the365
learner will converge to Li in finite time.366

Imagine a moment in time when the hypothesis (output) of every GIMi has converged to the corresponding367
specification language Li. The question now is: can the agents, having knowledge of their own specification,368
reconstruct T0 by communicating? The sequence of mathematical statements that follow provide an369
affirmative answer to this question.370

Consider a sequence {AK×n(k)}∞k=0 of 2n-column symbol arrays of the form (8). Pick an arbitrary371
i ∈ {1, . . . , κ}. Let the presentation to learner GIMi of agent i be372

φi := πΣi

(
AK×n(0)〈i〉

)︸ ︷︷ ︸
φi(0)

, πΣi

(
AK×n(1)〈i〉

)︸ ︷︷ ︸
φi(1)

, πΣi

(
AK×n(2)〈i〉

)︸ ︷︷ ︸
φi(2)

,

As assumed, there is a finite m ∈ N such that L
(
GIMi(φi[m])

)
= Li. At this point, and without any373

additional information about its teammates, an agent generically hypothesizes that the language of the374
coordinator is AK×n

(
{Li}

)
, i.e., an κ× 2n array class where the rows in row i are words accepted by TCi ,375

and in any row j 6= i one finds any combination of symbols in Σj interspersed with the (same) symbols376
from ∆ that appear in the i row.377

The following lemma indicates that if two agents intersect the array classes they each hypothesize as the378
coordinator’s language, they obtain exactly what they would have learned if they had been observing each379
other’s presentation and running two learners in parallel, one for each presentation.380

LEMMA 1. AI∪J×n
(
{Li}i∈I

)
∩ AI∪J×n

(
{Lj}j∈J

)
= AI∪J×n

(
{Lk}k∈I∪J

)
.381

5 For the particular language subclass, a handful of positive examples generally suffice.

Frontiers 13

Karydis et al. Resilience in Supervisory Multi-Agent Systems

PROOF.

AI∪J×n
(
{Li}i∈I

)
∩ AI∪J×n

(
{Lj}j∈J

)
= AI∪J×n

(
{Li}i∈I ∪ {Σ∗j}j∈J

)
∩ AI∪J×n

(
{Lj}j∈J ∪ {Σ∗i }i∈I

)
= AI∪J×n

(
{Li ∩ Σ∗i }i∈I ∪ {Lj ∩ Σ∗j}j∈J

)
= AI∪J×n

(
{Li}i∈I ∩ {Lj}j∈J

)
= AI∪J×n

(
{Lk}k∈I∪J

)
.

It is now natural to take this argument one step further to conclude that if all κ agents intersect their382
hypotheses obtained after their individual learners have converged, the resulting array class would be383
identical to the one that a single GIM would produce if it were to operate on a presentation of symbol arrays384
coming out of the coordinator.385

LEMMA 2.
⋂
i∈KAK×n(Li) = AK×n

(
{Li}i∈K

)
.386

PROOF. Straightforward induction on i.387

In this light, the intersection performed at the end, compensates for the decentralized agent operation and388
inference.389

PROPOSITION 1. Assume that for each i ∈ K, a grammatical inference module running on inputs390
πΣi(A[m]〈i〉) has converged on a language Li for large enough m ∈ N. Then the array class where the391
modules’ presentation has been drawn from is exactly

⋂
i∈KAK×n({Li}i∈K).392

PROOF. A direct restatement of Lemma 2 in the context of κ grammatical inference modules running in393
parallel on the rows of the finite sequence of symbol arrays

{
AK×n(k)

}m
k=0

.394

One interpretation of Proposition 1, therefore, is that if the agents’ link to their coordinator is severed, yet395
they had identified their own specification before this happened, then they can resurrect their coordinator’s396
function by intersecting their individual hypotheses AK×n({Li}) through communication.397

4 DISCUSSION

4.1 Implementation Study398

Consider two agents, with capacities T1 and T2; the transition systems of the capacities of the two agents399
are illustrated in Fig. 2. The two agents share the same (discrete) world state set W = {w0, w1, w2}.400
Agent has alphabet Σ1 = {s10, s11, s12}, while agent 2 has alphabet Σ2 = {s20, s21, s22}. Both agents401
are supervised by coordinator T0, which determines the desired behavior of its subordinates. The desired402
behavior for an agent is its language specification, and is encoded as an automaton: TL1 for agent 1, and403
TL2 for agent 2, and shown in Fig. 3. The labels on each specification automaton’s states are (almost)404
arbitrary integers: the only consideration in the assignment is so that the states of the two automata can405
be distinguished. Here, let G1 = {g11, g12, g13} = {1, 2, 0} and G2 = {g21, g22, g23} = {4, 5, 3}. The406
languages generated by TL1 and TL2 belong to the specific subclass of Locally 2-Testable languages407

This is a provisional file, not the final typeset article 14

Karydis et al. Resilience in Supervisory Multi-Agent Systems

considered: the specification language for agent 1 contains all strings that have s12 s11 as a substring, while408
that for agent 2 includes all strings that have the factor s22 s21.409

w2

w1

w0

s12

s10

s11

s12

s10

s10

s12 s11

(a) T1: capacity of agent 2

w2

w1

w0

s21

s22

s20

s21

s22

s20

s20

s21

(b) T2: capacity of agent 2

Figure 2. The capacity of agents T1 and T2 shown in (a) and (b) respectively. Since in a transition system all states can be thought of as both initial and final,
they are marked in the figures using circles drawn with double thick line.

1 2 0

s10

s11

s12

s12

s10

s11

s10

s11

s12

(a) Specification automaton TL1

4 5 3

s20

s21

s22

s22

s20

s21

s20

s21

s22

(b) Specification automaton TL2

Figure 3. Automata TL1
(a) and TL2

(b) encode the specifications for agents 1 and 2, respectively. Thick single circles denote initial states; double circles
denote final states. Input strings for agent 1 belong to the specification language if they contain the factor s12s11. Input strings for agent 2 are consistent with
that agent’s specification if they contain the factor s22s21.

Taking the product of the agent’s capacity Ti with its specification TLi produces the constrained dynamics410
of the agent, TCi . The result of the product operation for the systems depicted in Figs. 2 and 3 is shown in411
Fig. 4. The coordinator T0 is formed by taking the synchronized product of TC1 and TC2 , which is shown in412
Fig. 5. It may be worth noting that the product operation between the agent’s capacity and its specification413
creates a unique perspective of a world state, from the point of view of the individual agent: for example,414
world state w1 may have different semantics for agent 1 compared to agent 2, for the two agents are415
trying to achieve different things. Yet, as the whole group operates in the same physical workspace, agents416
synchronize on their world state when they act together, as shown in the synchronized product of Fig. 5.417

Frontiers 15

Karydis et al. Resilience in Supervisory Multi-Agent Systems

(w0, 2)

(w2, 1)

(w1, 1)

(w0, 1)

(w2, 2)

(w1, 2)

(w2, 0)(w1, 0)(w0, 0)

s10

s12

s11

s12

s10

s11 s10

s12
s11

s12

s10

s12

s10

s11

s12

s10

s12

s10

s10

s11s12

s11

s12

s10

(a) Constrained dynamics TC1

(w0, 5) (w1, 4) (w2, 4)

(w0, 4)

(w1, 5)

(w2, 3)

(w1, 3)(w0, 3)

s20

s21

s22

s21

s20

s22

s20

s21

s20

s21

s21

s20

s22

s20
s22

s21

s20

s21

s21

s22

s20

(b) Constrained dynamics TC2

Figure 4. The constrained dynamics of agents 1 and 2, TC1 = T1 × TL1 and TC2 = T2 × TL2 , respectively.

(w1, 1, 4) (w1, 2, 5)

(w2, 1, 4)

(w0, 1, 4)

(w0, 2, 5)

(w0, 0, 3) (w1, 0, 3) (w2, 0, 3)

(s11, s21)

(s10, s20)

(s12, s23)

(s12, s22)

(s10, s20)

(s10, s20)

(s11, s21)

(s12, s22)

(s11, s21)

(s10, s20)

(s10, s20)

(s11, s21)
(s10, s20)

(s11, s21)

(s10, s20)

(s11, s21)

(s12, s22)

(s10, s20)

(s12, s22)

Figure 5. The automaton T0 of the coordinator. It is produced as T0 = TC1⊗2
= TC1

⊗ TC2
.

A run in the coordinator is now a plan for the subordinates. After translating tuple labels into strings418
(dropping parentheses and commas), this plan takes the form (7). One example can be:419

r{1,2} = w1 1 4 s10s20 w1 1 4 s12s22 w0 2 5 s11s21 w0 0 3 ,

This is a provisional file, not the final typeset article 16

Karydis et al. Resilience in Supervisory Multi-Agent Systems

which in tabulated form (as in (8)) looks like420

A{1,2} =

[
w1 1 4 s10 w1 1 4 s12 w0 2 5 s11

w1 1 4 s20 w1 1 4 s22 w0 1 5 s21

]
.

Plans are then communicated to the agents. Agent i receives πΣi

(
A{1,2}〈i〉

)
, and all agents execute their421

instructions in step (i.e., synchronously), transitioning from one common world state to a next. There can422
be several instances where the same task needs to be completed, and for each one of these instances the423
coordinator crafts a different plan—the system may be initialized at a different world state each time, or424
several scheduling strategies can be tried out; there is usually more than one way to achieve the same end425
result involving the same crucial steps. Each such instance of guided task completion offers an example426
for the agent learning algorithms. Figures 6(a) and 6(b) display results from several different experiments,427
during which the two agents observe the instructions received over a number of instances, and attempt to428
identify their specification. Depending on the composition of these sequences of examples, agents may429
need more time to identify their specification language. The two figures show the size (cardinality) of430
the hypothesized grammar produced by the inference machine, |GIM|, for the specification language of431
agent 1 (Fig. 6(a)) and agent 2 (Fig. 6(b)) as a function of the number m of examples in the presentation φ432
provided to their inference algorithms by their coordinator, over a number of different experiments. Every433
experiment consists of an initial fragment of some (specification language) presentation, which for the434
purpose of these numerical tests is generated randomly. Convergence is achieved when |GIM(φ[m])| = 1.435
The thick curves in Figs. 6(a) and 6(b) correspond to experimental averages of grammar size for random436
presentation fragments of a certain length. It appears that a (uniformly) random generation of presentations437
for the target Locally 2-Testable languages results in (at least) polynomial rate of convergence.438

1 40 80

1

5

10

Number of presentations m

 |
G

IM
(φ

[m
])

|

(a) Agent T1

1 40 80

1

5

10

Number of presentations m

 |
G

IM
(φ

[m
])

|

(b) Agent T2

Figure 6. Convergence of the learner as the number of examples m increases. The shaded envelopes in (a) and (b) represent the standard deviation around the
mean size of the hypothesized grammars for agents 1 and 2, indicating that |GIM(φ[m])| converges to the value of 1 (marked with a dotted black line) as the
number of presentations m increases.

4.2 Scaling up439

Obviously, due to the product operations involved, increasing the number of agents κ, or the size of the440
agents’ automata has an adverse effect on one’s ability to reproduce the results of the previous section.441
Several observations, however, seem to indicate that the key insight behind the reported method is not442
directly linked to computational complexity issues related to dimensionality. This section thus briefly443
illustrates the implementation of the reported method on a similar setup with three agents, and concludes444

Frontiers 17

Karydis et al. Resilience in Supervisory Multi-Agent Systems

with the observations that can guide further algorithm development in the direction of handling larger-scale445
problems.446

In this setup there are three agents with structure similar to that shown in Fig. 2. The three agents have447
similar but not identical capacities. There are still three world states, three-symbol alphabets for each agent,448
and the agents’ specification languages are again Locally 2-Testable languages, each represented by an449
automaton with three states. (The actual automaton for the coordinator is too large to display on these450
pages.)451

Similar to Section 4.1, the learning process is repeated several times, and in each trial initial segments452
φ[m] of random presentations of length m = 100 are generated and processed by the individual agent453
learners. Each segment is tabulated in an array A{1,2,3}, from which each agent reads the (projected) row454

πΣi

(
A{1,2,3}〈i〉

)
associated to its index i ∈ {1, 2, 3}. As each learner reads this presentation segment, it455

progressively refines its hypothesis about what its specification language might be, and similarly to Fig. 6,456
in Fig. 7 the number of factors in the hypothesized agent grammar is recorded in the plots of Figs. 7(a)457
through 7(c). Figure 7(c) seems to also indicate a polynomial rate of convergence.458

1 50 100

1

5

10

Number of presentations m

 |
G

IM
(φ

[m
])

|

(a) Agent T1

1 50 100

1

5

10

Number of presentations m

 |
G

IM
(φ

[m
])

|

(b) Agent T2

1 50 100

1

5

10

Number of presentations m
 |
G

IM
(φ

[m
])

|

(c) Agent T3

Figure 7. Convergence results for individual agent learners over initial segments of presentation with 100 examples. The plots show the evolution of the
cardinality of the agents’ hypothesized grammars; when these grammars are reduced to a single factor, then the learner has converged. The shaded envelopes
indicate the evolution of the standard deviation around the mean grammar size over all trials, as the size of the presentation to the learners increases.

The simulation of the three agent example was coded in python and was run on a Intel-I7 Quad-core laptop459
computer (8 threads, 2.30GHz processor). What needs to be noted, however, is that the computationally460
challenging aspect of such an implementation, as the number of agents and the size of their automata461
increases, is in computing and representing their products (with their specifications, and eventually with462
each other). In practice, however, this computation would be needed for determining coordination plans,463
not for inferring the agents’ specifications. Note that if the (big) automaton that the coordinator needs464
to devise its plans for its subordinates is available, and the system is running in normal operation mode,465
then the inference algorithm on each agent’s hardware would need to build and refine a machine of size466
independent of the number of agents in the group: each agent is learning its own specification. Only when467
the agents are called to combine their hypotheses into a single model, and construct the synchronized468
product, would the increased computational power be required.469

Skeptics will argue that outside the realm of academic examples, one inevitably has to face analysis470
of many complex sub-systems (agents), and a daunting computation of a huge synchronized product471
will be unavoidable. It is conjectured, however, that there are computationally efficient alternatives to472
performing this operation. For example, once all agent constrained dynamics have been reconstructed,473
compatible coordinator plans can possibly be synthesized in a factored fashion, by synchronizing the474
runs on individual constrained dynamics incrementally, transition by transition. Preliminary evidence475
that supports this hypothesis is that this type of factored synthesis has been already demonstrated when476

This is a provisional file, not the final typeset article 18

Karydis et al. Resilience in Supervisory Multi-Agent Systems

constructing winning strategies in two-player zero-sum games (Fu et al., 2015), while at the same time it477
has been formally proven that learning sub-regular languages in factored form is also feasible (Heinz and478
Rogers, 2013b). In fact, the identification of individual agent specifications as implemented in this paper is479
a manifestation of the ability to learn in factored form. Exploiting the factored structure of the system in480
this way allows for exponentially smaller system representations (Heinz and Rogers, 2013b), significantly481
alleviating the ramifications of the curse of dimensionality. Exploring further the possibility for synthesis482
of coordinator plans when a model of the latter is maintained in factored form deserves treatment in a483
separate paper.484

5 CONCLUSION

Distributed multi-agent systems, in which individual agents are coordinated by a central control authority,485
and the dynamics of all entities is captured in the form of transition systems, can be made resilient to486
leader decapitation by means of learning. Specifically, grammatical inference algorithms running locally at487
each agent can be utilized to decode the logic behind the generation of commands that are issued to each488
individual agent over a period of time, provided that a sufficiently large sample of command examples are489
observed, and the agents know a-priori the class of formal languages their specifications belong to. Once490
individual agent specifications are identified, then it is shown that agents can put together their hypotheses491
about how their coordinator has been generating their instructions, and in this way essentially reconstruct it.492
This type of result can contribute to theory that supports the design of resilient multi-agent supervisory493
control systems, but also be utilized from the opposite direction as a means of decoding the mechanism494
that generates a bundle of signals communicated over a number of different, isolated, channels.495

ACKNOWLEDGMENTS

Funding: This work is supported in part by ARL MAST CTA # W911NF-08-2-0004.496

REFERENCES

Blanke, M., Kinnaert, M., Lunze, J., and Staroswiecki, M. (2003). Diagnosis and fault-tolerant control497
(Springer-Verlag)498

Bruni, F. (December 21 2014). Hacking our Humanity: Sony, Security and the End of Privacy. The New499
York Times , SR3500

Cam, H., Mouallem, P., Mo, Y., Sinopoli, B., and Nkrumah, B. (2014). Modeling impact of attacks,501
recovery, and attackability conditions for situational awareness. In IEEE Int. Inter-Disciplinary Conf. on502
Cognitive Methods in Situation Awareness and Decision Support. 181–187503

Cardenas, A., Amin, S., and Sastry, S. (2008). Secure control: Towards survivable cyber-physical systems.504
In 28th Int. Conf. on Distributed Computing Systems Workshops. 495–500505

Cassandras, C. G. and Lafortune, S. (2008). Introduction to Discrete Event Systems, vol. 11 (Springer)506

CPS-FORCES (2015)507

de la Higuera, C. (2010). Grammatical Inference: Learning Automata and Grammars (Cambridge508
University Press)509

Fu, J., Tanner, H. G., and Heinz, J. (2013). Adaptive planning in unknown environments using grammatical510
inference. In Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on. 5357–5363511

Frontiers 19

Karydis et al. Resilience in Supervisory Multi-Agent Systems

Fu, J., Tanner, H. G., Heinz, J. N., Karydis, K., Chandlee, J., and Koirala, C. (2015). Symbolic planning and512
control using game theory and grammatical inference. Engineering Applications of Artificial Intelligence513
37, 378–391514

Garcı́a, P. and Ruiz, J. (2004). Learning k-testable and k-piecewise testable languages from positive data 7,515
125–140516

Gold, M. E. (1967). Language identification in the limit. Information and Control 10, 447–474517
Heinz, J. and Rogers, J. (2013a). Learning subregular classes of languages with factored deterministic518

automata. In Proceedings of the 13th Meeting on the Mathematics of Language (MoL 13), eds. A. Kornai519
and M. Kuhlmann (Sofia, Bulgaria: Association for Computational Linguistics), 64–71520

Heinz, J. and Rogers, J. (2013b). Learning subregular classes of languages with factored deterministic521
automata. In Proceedings of the 13th Meeting on the Mathematics of Language. 64–71522

Hespanha, J., Naghshtabrizi, P., and Xu, Y. (2007). A survey of recent results in networked control systems.523
Proceedings of the IEEE 95, 138–162524

Jordan, J. (2009). When Heads Roll: Assessing the Effectiveness of Leadership Decapitation. Security525
Studies 18, 719–755526

Kendra, J. M. and Wachtendorf, T. (2003). Elements of Resilience After the World Trade Center Disaster:527
Reconstitung New York City’s Emergency Operations Centre. Disasters 27, 37–53528

Khaitan, S. and McCalley, J. (2014). Design techniques and applications of cyberphysical systems: A529
survey. IEEE Systems Journal PP, 1–16530

Kim, K.-D. and Kumar, P. (2012). Cyber-physical systems: A perspective at the centennial. Proceedings of531
the IEEE 100, 1287–1308532

Kundur, D., Feng, X., Mashayekh, S., Liu, S., Zourntos, T., and Butler-Purry, K. (2011). Towards533
modelling the impact of cyber attacks on a smart grid. International Journal of Security and Networks 6,534
2–13535

Liu, J., Xiao, Y., Li, S., Liang, W., and Chen, C. L. P. (2012). Cyber Security and Privacy Issues in Smart536
Grids. IEEE Communications Surveys Tutorials 14, 981–997537

Mahmoud, M. S. (2004). Resilient Control of Uncertain Dynamical Systems (Springer)538
Martin, W., White, P., Taylor, F., and Goldberg, A. (2000). Formal construction of the mathematically539

analyzed separation kernel. In Proceedings of the Fifteenth IEEE International Conference on Automated540
Software Engineering (Grenoble), 133–141541

McNaughton, R. and Papert, S. (1971). Counter-Free Automata (MIT Press)542
Mo, Y. and Sinopoli, B. (2009). Secure control against replay attacks. In 47th Annual Allerton Conf. on543

Communication, Control, and Computing. 911–918544
Rieger, C. (2014). Resilient control systems practical metrics basis for defining mission impact. In 7th Int.545

Symp. on Resilient Control Systems. 1–10546
Rieger, C., Gertman, D., and McQueen, M. (2009). Resilient control systems: Next generation design547

research. In 2nd Conf. on Human System Interactions. 632–636548
Rushby, J. (1981). Design and verification of secure systems. ACM SIGOPS Operating Systems Review 15,549

12–21550
Schenato, L., Sinopoli, B., Franceschetti, M., Poolla, K., and Sastry, S. (2007). Foundations of control and551

estimation over lossy networks. Proceedings of the IEEE 95, 163–187552
Tanner, H. G., Jadbabaie, A., and Pappas, G. J. (2007). Flocking in fixed and switching networks. IEEE553

Transactions on Automatic Control 52, 863–867554

This is a provisional file, not the final typeset article 20

	Introduction
	Context and motivation
	Problem description
	Organization

	Material & Methods
	Formal languages
	Language identification in the limit
	Problem Statement

	Results
	The Models
	The Types
	The Operations
	The Result

	Discussion
	Implementation Study
	Scaling up

	Conclusion

