
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Selected	References:	
[1]	Kevin	Leahy,	Prasanna	Kannappan,	Adam	Jardine,	Jeffrey	Heinz,	Bert	Tanner,	and	Calin	Belta.	Integration	of	Deterministic	Inference	with	Formal	Synthesis	for	Control	under	Uncertainty.			

	Submitted	to	ACC	2015.	
[2]	J.	Fu,	H.	G.	Tanner,	and	J.	Heinz,“Adaptive	symbolic	control	for	Rinite-state	transition	systems	with	grammatical	inference,”	In	IEEE	Trans.	on	Automatic	Control,	59(2):505-511,	2014.	
[3]	J.	Fu,	H.	G.	Tanner,	and	Jeffrey	Heinz.	Concurrent	Multi-Agent	Systems	with	Temporal	Logic	Objectives:	Game	Theoretic	Analysis	and	Planning	through	Negotiation.	IET	Control	Theory	and		

	Applications	9(3):465-474,	2014.	
[4]	J.	Fu,	H.	G.	Tanner,	and	J.	Heinz,	“Adaptive	planning	in	unknown	environments	using	grammatical	inference”	In	IEEE	Conf.	on	Decision	and	Control,	2013.	
[5]	Cristian	Vasile	and	Calin	Belta.	Reactive	Sampling-Based	Temporal	Logic	Path	Planning.	In	International	Conference	on	Robotics	and	Automation,	2014.	
[6]	Xu	Chu	Ding,	Mircea	Lazar,	and	Calin	Belta.	Receding	Horizon	Temporal	Logic	Control	for	Finite	Deterministic	Systems.	In	American	Control	Conference,	2012.	
[7]	J.	Rogers,	J.	Heinz,		G.	Bailey,	M.	Edlefsen,	M.	Visscher,	D.	Wellcome,	and	S.	Wibel.	“On	Languages	Piecewise	Testable	in	the	Strict	Sense.”	The	Mathematics	of	Language	(2010):255-265	
[8]	J.	Heinz.	String	Extension	Learning.	In	Proceedings	of	the	48th	Annual	Meeting	of	the	Association	for	Computational	Linguistics,	(2010):897-906	

ScientiRic	Goal	

Coordinate	a	group	of	heterogeneous	autonomous	cyber-physical	systems	to	satisfy	temporal	logic	control	speci7ications		
in	a	partially	unknown	and	dynamically	changing	environment.	

A	Bird’s-Eye	View	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	

											Temporal		Logic	Synthesis	

						Integration	of 	Learning 	and 	Control 	in	Cyber 	Physical	Systems	Operating	Under		Uncertainty	

robot(s)

environment

abstraction

control

planning

learning

transition

system

transition

system

environment

actuators

sensors

specification⇥ ⇥

abstraction

identification

?

Ef7icient	Control	Synthesis	and	Learning		
in	Distributed	Cyber-Physical	Systems	
Herbert	Tanner,	Jeffrey	Heinz	

University	of	Delaware	
Calin	Belta	

Boston	University	

Example of scenario
“Agents should visit the corners of the grid�
infinitely often while avoiding the adversary”

' = ⇤}⇡1 ^⇤}⇡2 ^⇤¬⇡captureLTL :

Algorithm 2: Control Policy Synthesis
Input : Turn-based product T , Büchi automaton B
Output: Product automaton A, control policy µ
Construct A from T and B;
Compute d (s,FA) for all s in SA;
FA⇤  � FA;
for s 2 FA⇤ do

if min{s0|(s,⇡,s0)2!A} d (s
0,FA) =1 then

FA⇤  � FA⇤/s;

Compute d (s,FA⇤) for all s in SA;
for s 2 SA do

if V (s) <1 then
µ (s) = argmin{s0|(s,⇡,s0)2!A} V (s0);

else
µ (s) is undefined;

for s = (q, sB) 2 SA do
if sB 2 SB is current Büchi state then

µ
T

(q) = {q0 | µ (s) = (q0, sB)}

the adversary, we know that all accepting runs in A are
also feasible. At this time, the synthesis algorithm becomes
complete. The control synthesis essentially functions as it
would if the dynamics of the adversary were known a priori.
Until this stage is reached, the control synthesis module
operates based on the best available model for the adversary.
Whenever this model is refined by the learner � as a result
of some new capability of the adversary being observed,
then the control synthesis module must update the control
strategy. This process can, in general, be computationally
intense; fortunately, for the classes of systems considered in
this paper it can be performed incrementally, and thus faster.

To incrementally update the product automaton, we use
an algorithm first presented in Vasile and Belta [20]. For
each new transition (q, q0) that � adds to !0, the algorithm
considers all q 2 Q0 from which such a transition may
be made. For each of those states, a set of states in the
product containing that state is maintained. Further, a set of
transitions in !A from those states to states containing q0

is created. From these two sets, the product automaton can
be efficiently updated. For complete details of the algorithm,
the reader is directed to Vasile and Belta [20].

IV. SIMULATIONS AND RESULTS

To test our algorithm, a game simulation with two agents
and adversary operating in a grid environment3 was devel-
oped (Fig. 1). The agents (shown as red and blue circles)
must carry out the specification

' = ⇤⌃⇡1 ^⇤⌃⇡2 ^⇤¬⇡
capture

, (2)

which translates into English as “visit regions ⇡1 (shown in
violet) and ⇡2 (shown in yellow) infinitely often and always

3The grid structure is adopted here for illustration purposes only. The
method is applicable to workspaces with arbitrary graph structures.

avoid capture by the adversary (shown in green)” The agents’
motion primitives

⌃1 = ⌃2 = {(N, 1), (S, 1), (E, 1), (W, 1), (NE, 1),

(NW, 1), (SE, 1), (SW, 1), (O, 0)} (3)

allow them to transition one grid square in north, south,
east, west, north-east, north-west, south-east, and south-west
directions or just continue to stay in place respectively. In
this example, the adversary’s has same motion primitives as
the agents, ⌃0 = ⌃1 = ⌃2. The difference between the
agent and the adversary here is that the sequence of moves
played by the adversary during the game or in technical
terms, the language of the adversary belongs to a class of
Strictly 2-Piecewise languages where the adversary is forbid-
den to move along the four compass directions more than
once. In other words, the adversary’s actions cannot have
2-subsequences (N, 1)(N, 1), (S, 1)(S, 1), (E, 1)(E, 1) or
(W, 1)(W, 1). In this case, the Strictly 2-Piecewise grammar
G of the adversary’s language L(G) is

G = (⌃0 ⇥ ⌃0)\Gf

. (4a)

G
f

= {(N, 1)(N, 1), (S, 1)(S, 1), (E, 1)(E, 1),

(W, 1)(W, 1)} (4b)

However there are no restrictions on the stay in place
or diagonal moves for the adversary. Initially, the agents
only knows that the adversary’s language belongs to a class
of Strictly 2-Piecewise language but have no knowledge
of the adversary’s transition relation !0 or the forbidden
subsequences in the grammar of the adversary’s language.
By observing the actions of the adversary, the agents incre-
mentally build a model of the adversary and devise a strategy
to satisfy their specification.

Fig. 1: Image of the 5⇥5 grid simulation game showing the agent
(red circle), adversary (green circle) and the regions ⇡1 and ⇡2

shown labeled by violet and yellow circles, respectively.

⇡1

⇡1

⇡2

⇡2

adversary

agents

•  Agents constraints: move in compass directions 
•  Adversary constraints: unknown, �

but its behavior is an SP2 language

Approach

•  Observe the environment and build a model for it
•  Refine the model in real-time
•  Use the refined model to update control strategies

Methodology

•  Interaction between agents and environment takes the form of a deterministic zero-sum game
•  On the game graph, progress toward satisfaction of the LTL spec is quantified
•  Agents strategize assuming their hypothesis about the adversary plays its best move
•  Control strategy is synthesized along standard model-checking approaches
•  Adversary can move diagonally but not along compass more than once �

(agents do not know any of that at first)
•  Agents’ prior knowledge is that the environment behavior is in a specific class of formal languages
•  They observe adversary actions and incrementally built a model for it
•  The model is guaranteed to asymptotically converge to the true environment model
•  After finite turns agents can recover the performance of full knowledge of their adversary dynamics

Results

In every game, as the environment model is refined and converges, �
the computed policy converges to the policy that would have been computed �
if environment dynamics were completely known.

Supported by NSF CNS  Under Awards 
#103588  
#103577 

Goal:  
Synthesize a control policy to satisfy a mission specified using temporal logic 
 
Example Mission:  
“Visit regions π1 and π2 infinitely often and always avoid the adversary” (see Example of Scenario 
below) 
 
Challenges: 
•  Ensure progress towards goal despite unknown actions by the adversary 
•  Computational issues arising from planning for multiple agents and adversary 
 
Technical Approach: 
•  Translate mission specification from Linear Temporal Logic to a Büchi Automaton 
•  Construct Product Automaton from Game Transition System (see Learning and Adaptation at left) 

and Büchi Automaton to capture agent/environment interactions and satisfaction of specification 
•  Use “energy” function to determine distance to accepting states in the Product Automaton 

•  Function is computed using backward induction 
•  Adversary is assumed to choose most antagonistic actions 

•  Incrementally update the Product when new elements in the grammar are learned 
•  Add new transitions in Game Transition System 
•  For each new transition, add appropriate transitions in Product Automaton 
•  Re-compute energy function 

•  At each step, control policy is the action that leads to a state with lower value for energy function, if 
one exists, otherwise report failure 

Result: 
•  Given that the learned model for adversary behavior is correct, our algorithm guarantees a control 

policy to satisfy the specification, if one exists 

				Learning	and	Adaptation	

Goal

Learn from observations the behavior of the environment a multi-agent system interacts

with while attempting to satisfy its specification.

Assumptions

• Knowledge of the class of formal languages the environment behavior falls into

• Fully observable environment evolution

Challenges

• Requirements for guaranteed asymptotic convergence of learning algorithm

• Full generalization without overfitting

Approach

• Formulate the problem as learning a repeated two-player turn-based game

• Adapt grammatical inference algorithms for learning games

Example

Suppose the dynamics of the unknown language can be modeled with a Strictly k-
Piecewise (SPk) language [7]. This class of languages is learnable with a string extension

learner [8].

Strictly Piecewise Dynamics

• String v = a1a2 . . . an is a subsequence of w i↵ w 2 ⌃

⇤a1⌃⇤a2⌃⇤ . . .⌃⇤an⌃⇤
.

• Let fk(w) = {v | v is a subsequence of w and |v|  k}.
• Example: f2(abacd) = {�, a, b, c, d, ab, aa, ac, ad, ba, bc, bd, cd}.
• L 2 SPk i↵ there exists a finite set S ✓ ⌃

k
such that fk(L) = S.

• This finite set can be viewed as the grammar generating L.

String Extension Learning

• A text T for L is an infinite sequence of elements of L such that each element of

L occurs at least once in T .
• T (i) is the ith element of T , and T [i] is the finite sequence T (1), T (2), . . . T (i).
• Given any text T for any SPk language L, the learning function �k converges to a

grammar for L.

�k(T [i]) =

⇢
? i = 0

�k(T [i� 1]) [ fk(T (i)) otherwise

1


