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Problem and Context

Strength of Service 
Guarantees

Complexity of the
Service Architecture

WeakNone Strong Very Strong

Low (per-class)

High (per-flow)

AF/DiffServ

IntServ

Prop. DiffServ

Challenge: Can we provide strong service guarantees with Challenge: Can we provide strong service guarantees with 
low computational complexity?low computational complexity?

AQM

SCORE/CSFQ           
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Related Work
Flow-Based Service Architectures
� FRED [Lin and Morris, 1997]
� SCORE/CSFQ [Stoica and Zhang, 1998, 1999]

Class-Based Service Architectures
� Proportional Differentiated Services [Dovrolis et al., 1999, 

2000, 2001]
� Enhancements on the Prop. DiffServ model [Nandagopal et 

al., 2000][Bodamer, 2000][Bodin et al., 2001] 
� Alternative Best-Effort [Hurley et al., 1999, 2000]
� JoBS [Liebeherr and Christin, 2001]
� C-DBP [Striegel and Manimaran, 2002]
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Quantitative Assured Forwarding
Guarantees provided on a per-hop, per-class basis
No admission control, no signaling, no traffic conditioning 
� No per-flow operations

Proportional and absolute per-class guarantees for both loss 
and delay and lower bound on throughput

Concession: service guarantees may need to be temporarily 
relaxed 

Class-1 loss rate
Class-2 loss rate ≈ 2

Class-2 delay ≤ 5 ms 

None of the existing mechanisms can realize this service
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Mechanisms for QAF: Overview
Key idea: Manage the head and the tail of the transmission 
queue in a single algorithm
� Combine buffer management and rate allocation

How can QAF be implemented?
� Service rate allocation to traffic classes, periodically adjusted
� If no feasible rate allocation exists, drop traffic
� Rate allocation and packet drop decisions use feedback 

control
� If set of guarantees infeasible (no admission control), 

temporarily relax some guarantees
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Arrivals, Departures, Losses at a 
Node
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Combined Rate Allocation and Buffer 
Management

time

Arrival Curve

Output Curve

t(n)

Present time

Measured Delay

Class-i Traffic

Rate adjustment
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Drop Traffic
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Feedback Loops
Service rate allocation and loss rates can be viewed in terms of
a recursion:

Feedback loops
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Delay Feedback Loops

One loop per class
Proportional delay guarantees:

� Each class-i delay is compared to a reference

� Rate is adjusted by controller:

Absolute delay and rate guarantees:
� Bounds on K(n)
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Absolute Delay and Rate Guarantees
Limit the rate adjustment permitted:

Bound on K(n)
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Linearization and Stability
System is intrinsically non-linear (delay = inverse of 
the rate)
Can be linearized with following assumptions
� Backlog does not change significantly during the time a 

particular arrival is backlogged
�

Allows to derive bounds on K(n) for stability (I.e., 
convergence to proportional differentiation):
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Properties of the Controller
Adjustment is simple:
� Compute bounds on K(n)
� Compute errors ei(n)
� Multiply (for each class)

Work-conserving scheduler! 
� Since K(n) common to all classes:

∑ ∑ =∆⇒= 0)(0)( nrne ii
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Loss Feedback Loops
No adjustment here, but three decisions to make
When to drop
� Buffer is full
� Minimum capacity needed for service guarantees exceeds 

output link capacity
Which class to drop from
� Measure distance e�i(n) between target loss rate (for 

proportional loss differentiation) and loss rate of class i 
� Drop in increasing order of e�i(n)

How much traffic to drop
� Drop as long as buffer is full or minimum capacity needed 

exceeds output link capacity
� Stop dropping from a given class when absolute loss rate 

bound is reached
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Implementation
Implementation in 
FreeBSD kernel
� Testbed of 6 Pentium IIIs

1Ghz with multiple 
interfaces

� Allows testing at 100 
Mbps (FastEthernet)

� Developed for ALTQ 3.0 
(package allowing 
modifications to the 
network stack), now part 
of ALTQ 3.1
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Experimental Setup

Bottlenecks

100 Mbps, 200 pkts

GreedyTCP64

GreedyTCP63

GreedyTCP62

On-offUDP61

TrafficProto.No. of 
Flows

Class

N/AN/A---4

22---3

2235 Mbps--2

---1 %8 ms1

k�ikiµµµµiLidiClass
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Proportional Delay Differentiation
Router 1 Router 2
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Absolute Delay Bounds

Router 1 Router 2
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Proportional Loss Differentiation

Router 1 Router 2
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Absolute Loss Rate Bounds
Router 1 Router 2

Class-1 Loss Rate
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Throughput Differentiation
Router 1 Router 2

Aggregate
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Computational Overhead
Two functions: 
� enqueue (feedback loops)
� dequeue (translation of service rates into packet scheduling 

decisions)

A Pentium III-1GHz can process over 50,000 
packets/sec.

858

912

Std. 
Dev.

837

2603

Std. Dev. Avg.Avg.

38102415without

405315347 with

dequeueenqueueGuarantees

Number of cycles (1 cycle ≈ 1 ns here)
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Deployment
Static configuration of 

service guarantees

Network 1

Network 2

Network 3

Network 4

Delay Class 1 < 5 ms
Loss Rate Class 2 < 3%

Throughput Class 1 > 10 Mbps
Delay Class 3 

Delay Class 2
= 4
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Conclusions
Quantitative Assured Forwarding service: subsume 
per-class service architectures
Low complexity/Strong guarantees
Can be implemented at high-speeds
Current work:
� Avoid infeasible set of service guarantees by regulating 

traffic using TCP congestion control algorithms
� Implementation at Gbps speeds (Network processor)

Software and more information is available at:
http://qosbox.cs.virginia.edu


