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Abstract

Null hypothesis significance testing (NHST) is commonly
used in quantitative usable privacy and security studies. Many
papers use results from statistical tests to assert whether ef-
fects or differences exist depending on the resulting p-value.
We conduct a systematic review of papers published in 10 edi-
tions of the Symposium on Usable Privacy and Security over
a span of 20 years to evaluate the field’s use of NHST. We
code statistical tests for potential statistical validity, reporting,
or interpretation issues that may undermine assertions made
in the 121 papers that use NHST. Most problematically, tests
in 23% of papers inadequately account for non-independence
between samples, leading to potentially invalid claims. 58%
of papers lack information to verify whether an assertion is
supported, such as imprecisely specifying the statistical test
conducted. Many papers contain more minor statistical issues
or report statistics in ways that deviate from best practice. We
conclude with recommendations for statistical reporting and
statistical thinking in the field.

1 Introduction

Statistical methods are often used in human-computer inter-
action research to support assertions about the presence (or
absence) of an effect of scientific significance (e.g., some
magnitude of difference) accompanied by a measure of statis-
tic significance. Indeed, one of the most common refrains
in statistical analysis is that a result is significant because
the “p-value” is less than a given threshold, e.g., p < 0.05.
Despite over half a century of criticism, null hypothesis signif-
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icance testing (NHST, also known as statistical significance
testing)—that is, methods using p-values from inferential sta-
tistical tests as evidence to reject a null hypothesis—remains
the dominant form of statistical analysis and evaluation [17].
However, simply dichotimizing results into “significant” and
“non-significant” through their associated p-values without
reporting other information is not in itself sufficient to convey
the scientific importance of the claims, nor the richness and
complexity of data collected from human subjects. This re-
liance on p-values to support assertions sometimes leads other
information vital to understanding statistical and scientific
significance to be omitted.

As aresult, complete reliance on p-values is increasingly
frowned upon, with some journals banning the reporting of
p-values altogether [75, 81]. Most other current guidance
is less drastic, and recommends using statistical hypothesis
testing as a starting point and providing sufficient context
(such as effect sizes, confidence intervals, and underlying data)
to convey the scientific significance of the claims [2,13,49,59,
80,81]. We use this guidance to evaluate whether the scientific
assertions made on the basis of NHST in usable privacy and
security (UPS) are accompanied by sufficient reporting for
readers to validate whether these assertions are supported by
the information present in the paper. We focus on UPS as it
is still a fairly young area, with evolving standards, features
a considerable amount of quantitative research, and errors
or misinterpretations can be detrimental to user safety in the
digital world and beyond.

Prior work has also examined the transparency, reporting,
and validity of statistical methods in HCI and various sub-
fields [16,25,36,51,62,66,77]. However, the evaluations in
these works typically focus on evaluating whether p-values
are accurately computed or on whether there may be false
negatives (such as due to lack of power) or false positives
(such as from inaccurately reported p-values).

In this work, we look beyond statistical significance to ex-
amine statistical validity (whether the chosen test is suitable
for the data or whether it may produce spurious results), re-
porting transparency and completeness (whether the reported



information is sufficient for an informed reader to evaluate the
merit of the assertion), and the accuracy of the interpretation
of the result of the statistical test. More specifically, we con-
duct a systematic review of the use and reporting of statistical
tests in all papers published in 10 editions of the Symposium
on User Privacy and Security (SOUPS) over a span of 20 years.
We examine methods and data in conjunction with statistical
procedures, and we evaluate the mapping of results of statis-
tical procedures to assertions, to identify statistical validity
issues (i.e., issues with the choice of statistical test) and inter-
pretation issues. We draw upon guidelines from the American
Psychological Association (APA) and American Statistical
Association (ASA), and consult criteria from prior systematic
reviews, to identify reporting issues [2,25,62,66,77,80,81].

We code 479 assertions based on NHST across 121 papers.
Because sufficient data to re-run statistical tests is typically
not available, and because attempting to re-run statistical tests
would significantly limit the scope of our study, we assume
that all tests are computed correctly and only evaluate them
with respect to the reported information and the assertions
they are used to support.

Most problematically, we find that 9% of all assertions,
spanning 23% of papers, do not properly account for depen-
dence or independence in the data, leading to potentially in-
valid claims. We further find that the information reported
cannot support 21% of the assertions made based on NHST,
across 47% of papers, as the results are not fully substanti-
ated by the reported statistics. For another 23% of assertions,
across 58% of papers, information is lacking for readers to
judge whether the statistical methods support the assertion.
Overall, we identify at least one statistical validity, reporting,
or interpretation issue in almost all (~97%) papers we sur-
veyed. While many reporting issues, such as not reporting the
test statistic, are less severe, others, including not reporting the
statistical test, affect the reader’s ability to evaluate statistical
validity and undermine support for the resulting assertions.

Drawing on these findings, we provide recommendations
and suggest best practices for statistical reporting and thinking.
These recommendations set out ways for authors, reviewers,
and readers to move beyond pure reliance on p-values and
instead engage with the context necessary to critically evaluate
assertions and better reflect the complexity of the people who
are at the center of UPS research.

2 Background and Related Work

We give a brief overview of the debates surrounding the sci-
entific use of NHST broadly (§2.1,§2.2), as well as in HCI
and UPS (§2.3). We also summarize existing guidance from
various fields on best practices for statistical result reporting
and research transparency relating to NHST (§2.4).

2.1 Challenges with the Concept of Statistical
Significance

The widespread use of NHST and the over-reliance on an
“all or nothing” approach with p-value thresholds has spurred
much discussion and debate since the 1950s [32,39,59,59,64,
69-71,81,86]. One concern is that this focus on the p-value
can lead to inadequate reporting of other relevant information,
such as measures of uncertainty or effect sizes when results
do not fall under such a threshold [39, 81]. In one case, the
journal Basic and Applied Social Psychology banned (with
mixed results [31]) the use of p-values to spur better and
more complete reporting and evaluation of results [75]. Even
the concept of NHST itself is controversial, often seen as
an incomplete and self-contradictory amalgamation of two
distinct schools of thought regarding statistical testing, Fisher
and Neyman-Pearson [64,69].

Despite its shortcomings, NHST remains a useful tool [43,
56], and remains widely used, as p-values are an easily com-
prehensible (if not always accurate) shorthand to indicate
interesting and significant results. The key is thus to pro-
vide context beyond just a p-value, such as effect sizes, to
provide greater support for the claims being made [2, 79].
Indeed, p-values and statistical models are not by themselves
objective measures of truth. For instance, random variation
and varying violations of statistical assumptions can lead to
different results and p-values in experiment replications [6].
Changes in sample size or statistical test can inflate or deflate
p-values [29,45]. Therefore, adequate reporting of the whole
process of statistical selection is critical to allow for validation
of scientific accuracy. Unfortunately, investigations of statis-
tical reporting in preclinical research found that inadequate
reporting for statistical tests occurs in a large proportion of ar-
ticles, and there have been concerns that the majority of claims
from statistical tests are false across many fields [33, 44].
Questions of transparency, reporting, and replicability have
also arisen in the field of Human-Computer Interaction and
its subfields [16,49, 85].

2.2 Other General Statistical Issues

Among the most prominent statistical issues papers have fo-
cused on are questions regarding statistical power, corrections
for multiple comparisons, and reporting transparency.
Sufficient knowledge regarding the data is necessary before
any evaluation can be made on the validity of the statistical
test itself. As such, questions about transparency of statistical
reporting are at the forefront of much investigation regarding
statistical validity [16,66,77]. Therefore, we focus on evalu-
ating the adequacy and transparency of statistical reporting in
our work as it is the basis upon which other evaluations rest.
Losses of power, such as from small sample sizes or using
a two-sample test for paired data, can lead to false negatives—
effects that are present not being detected. Conversely, paired



tests are sometimes used for independent data, leading to ar-
bitrary paired comparisons and potential false positives. The
multiple comparison problem and concerns about p-hacking
(running large numbers of statistical comparisons and only
reporting positive results, which may occur by chance) also
affect statistical validity. In one striking example, Bennett et
al. demonstrated that without corrections for multiple compar-
isons, results from an fMRI showed statistically significant
results supporting that dead salmon could recognize emotions
from human facial expressions [11].

However, issues with lack of power or multiple compar-
isons rest on the recognition of a specific p-value threshold [8].
Hence, while important to consider, we do not explicitly ex-
amine these concerns, but rather focus on the reporting sur-
rounding statistical tests. Lack of power resulting in false
negatives may still indicate promising directions for further
study. False positives may be less impactful when considered
within clearly reported scientific context (such as effect size),
or when sufficient information is provided for replications of
the study.

2.3 Quantitative Methods in HCI and UPS

Concerns about the validity of statistical methods in HCI
are not new. In 2007, a meta-analysis of 41 papers in HCI
found that only one paper did not contain any problems that
undermined the validity of the results [16]. Similarly, com-
parisons of work in CHI between 2017 and 2022 found that
there was little change in transparent reporting practices for
quantitative methods [66]. While nearly all papers in both
years reported p-values, only around half of papers in 2022
and 37% in 2017 reported effect sizes, and fewer than 20%
in either year reported confidence intervals [66]. An analy-
sis of award-winning papers in CHI 2020 found that while
the majority reported some form of variability, only 16% re-
ported any kind of effect size [51]. Another 2020 study found
that 63% of the papers using NHST published in CHI PLAY
between 2014 and 2019 reported effect sizes, yet only 7%
reported confidence intervals. These results support previous
claims that “many studies rely solely on p-values for their
inferences” [77].

Similar trends exist in the usable privacy and security sub-
field. Prior work examining the use and reporting of statistical
methods in UPS revealed that reporting is often incomplete
and relies on claims of significant p-values [25]. Grof3 found
that over half of cyber security user studies did not report
sufficient information to validate reported p-values [36]. Of
those with sufficient information (from the test statistic and
degrees of freedom), the recalculated p-value fell on the other
side of the p = 0.05 threshold in 14% of papers. Other works
have uncovered that tests in many UPS user studies are un-
derpowered for detecting small, medium, or sometimes even
large effect sizes [35,62]. This has resulted in concerns that
most positive findings in UPS are false [37], echoing worries

first raised by Ioannidis in 2005 when examining statistical
use across general scientific fields [44].

While these concerns are relevant for many scientific fields,
we focus specifically on UPS. We extend prior work by ex-
plicitly including regression models in our analyses, which
prior work has rarely evaluated. Much prior work also ex-
cluded tests where insufficient information was provided or
the provided information was unclear, whereas we attempt to
evaluate the amount of information that a reader can glean
even when statistical reporting is incomplete.

2.4 Existing Recommendations and Guidelines

Given the concerns regarding statistical use, various guide-
lines and checklists exist [3, 5,24, 34,42,57,59, 63]. Some
guidance focuses on specific procedures, such as running
corrections for multiple comparisons or sample size selec-
tion [12, 15]. Other guidance focuses on reporting. Within
HCI, a movement has advocated for transparent reporting
and openness, with guidance on “transparent statistics” [4,
22,41, 49, 66,77, 78]. Many, including the American Sta-
tistical Association (ASA), have suggested moving away
from reliance on the p < 0.05 threshold [81]. These calls
have been echoed in HCI [28, 48, 50]. Other standards are
more field- or venue-specific [1, 5,9, 20, 80]. For example,
sharing data is not always feasible due to user data protec-
tions or space constraints [52, 66, 78]. Of the many sets of
standards, those of the American Psychological Association
(APA) are among the most widely known and used, and have
been recommended as reporting guidelines both within UPS
and HCI [2,24,25,62,66]. We draw upon these guidelines for
our evaluation of statistical use and reporting, and investigate
how often reporting supports the assertions based on NHST.

3 Methods

In this systematic review, we examine potential issues in the
use of statistical methods in the field of usable privacy and
security (UPS) through an evaluation of a sample of papers
published at the Symposium on Usable Privacy and Secu-
rity (SOUPS) between 2005 (the conference’s first year) to
2024. We chose the SOUPS conference as it is the largest
and longest-running conference whose focus is solely on us-
able privacy and security. We chose to focus on this research
area, as 1) it features a considerable amount of quantitative
research, and thus lends itself well to the kind of analysis we
propose, 2) the research area is still fairly young, but com-
munity standards have greatly evolved over the past 20 years,
which warrants scientific exploration, and 3) erroneous asser-
tions or misinterpreted claims can have a direct detrimental
impact on users’ safety, online and otherwise.



3.1 Sample Selection and Codebook Develop-
ment

We examine a sample consisting of 121 papers that 1) were
published in even-numbered years of the SOUPS conference
(10 editions in total) and 2) contain some form of null hypoth-
esis statistical testing (NHST).

We start with the complete set of 223 papers published
in even-numbered years and analyze those that use p-values
from inferential statistical tests to determine the statistical
significance of a result." One author examined all 223 papers
in the selected ten editions to determine whether NHST was
used in each of them. If there was at least one assertion sup-
ported by NHST anywhere in the body of the paper (including
tables and figures), the paper was included. This resulted in
the 121 papers, a list of which can be found in [72]. We chose
to limit ourselves to papers published in even-numbered years,
as this produces a stratified sample of statistical use through-
out 20 years without being skewed towards earlier or later
editions of the conference.

To assemble our dataset, we analyze every use of NHST
in each paper. We call each use (or several related uses, as
described next) of a test an instance. An instance represents
either the use and reporting of a single test or several uses of
the same test that are all identically reported. Each instance
can have more than one issue (of the same type or of different
types). For example, suppose a paper reports on the effect
sizes and exact p-values of two two-sample ¢-tests with the
variables gender (male vs. non-male) and region (urban vs.
rural); and that it does not provide any information on the
effect size or p-value of a third two-sample 7-test comparing
participants with technical background with those without
technical background. We would categorize the two tests on
gender and region as one instance (because the same test
is used and reported identically) and the test on technical
background as another instance.

We use both inductive and deductive coding to analyze the
use of statistical tests. Initial codes were inductively devel-
oped by one author with statistical knowledge coding all 22
papers containing NHST from two years of the SOUPS con-
ference (2014 and 2019) and expanded through referencing
the APA guidelines on Reporting Standards for Quantitative
Research [2, 7]. The initial set of codes was then refined
through discussion among the research team.

The same author (the primary coder) then used this set of
codes to code all other papers. For each instance, the primary
coder wrote down the details and reasoning for the assigned
code, as well as noting edge cases and ambiguities. New
codes were iteratively added when previously unencountered
issues arose. These cases were resolved through discussion

'Though not traditionally included in NHST, we include regression mod-
els within our systematic review for use of NHST as the significance level of a
coefficient can be interpreted as testing whether the coefficient is significantly
different from 0.

among the research team. The codebook categories were fur-
ther refined through referencing systematic reviews in HCI
and statistical works [16,24,49,62,66,77]. After all papers
were coded, the primary coder revisited all papers in the sam-
ple with the final codebook to ensure consistency across the
dataset. The final codebook containing the codes, definitions
for each code, and examples can be found in Appendix A.
The full list of examples and criteria for the most common
tests and models can be found in [73].

For cross-validation, a second coder with a background in
statistics coded a subsample (stratified by year) of 19 papers
from our full sample of 121 papers. The primary coder trained
the second coder by going through and coding two example
papers not in the subsample and discussed the rationale for the
coding of each instance. The second coder then coded some
of the subsample, optionally indicating uncertainty about how
to code specific instances. Partway through the sample, the
primary and secondary coder met to answer questions and
perform an initial resolution of codes. When the full subsam-
ple was coded by the second coder, the coders met to discuss
codes that were marked by the second coder as unsure. A
random subsample of instances was further selected to dis-
cuss. Our initial agreement level before reconciliation was
0.51. The two coders discussed each code that differed and
came to an agreement on the final code. In the majority of
cases (85%), the code was resolved to primary coder’s code.
In all remaining cases, the code was resolved to a code that
indicated more severe issues than the primary coder’s initial
code. This suggests that the codes on which we base our anal-
ysis are a conservative lower bound of the issues that arise in
statistical methods in UPS papers.

3.2 Code Categories

We next discuss the codes for potential issues with the use,
reporting, and interpretation of all inferential statistical tests
in the papers that comprise our sample. For brevity, we will
use “tests” to refer to statistical tests, models, procedures, and
techniques unless there is explicit indication otherwise. We
divide codes into three main categories: statistical validity
issues, reporting issues, and interpretation issues.

3.2.1 Statistical Validity Issues

The first category of codes evaluates whether the choice of
statistical test is suitable for the data and would result in valid
results. We classify these issues into three main types.

Incorrect. Independence or dependence assumptions for the
chosen statistical test are not properly met. While many statis-
tical tests are robust to violations of their assumptions (such
as those of normality) at sufficient sample sizes, the indepen-
dence assumption remains critical [10, 46, 54, 65, 68]. For
example, if independent data is arbitrarily paired, the same
data can be found to differ in opposite directions (positive or



negative change). Examples of tests we coded as incorrect
include using a paired z-test on independent samples or not
accounting for repeated measures. In the best case, improp-
erly accounting for the independence or dependency between
datapoints reduces the power of the test; in the worst, these
issues lead to erroneous or invalid results [38,84], e.g., false
positives, false negatives or incorrect correlation direction.
Data Type Mismatch. This code denotes that the statistical
test is not suited to the data type. Tests are often structured
for specific types of data and perform better when those distri-
bution assumptions are satisfied [16,55,58,61]. For example,
we include treating binary data or ordinal data as continu-
ous when used as dependent variables, as well as aggregating
multiple Likert scale variables into one independent variable
without validation (as this type of aggregation removes any in-
formation about variance), as a data type mismatch.” These
issues can lead to a loss of power, leading to false negatives,
or testing of a different hypothesis than intended (e.g., differ-
ence in means rather in distributions). A description of the
types of data considered to be a mismatch for each test can
be found in [73].

Unverifiable. There is insufficient information reported about
the statistical test or model to determine whether it is suitable
for the data. As an example of the unverifiable code, some
papers simply report p-values without any indication of what
statistical method was used to produce these values, report
a non-unique name, or a non-unique test statistic [5]. These
may be statistical tests that are suitable or not for the data, but
without further information, it is impossible to verify.

Each instance is coded with only one statistical-validity-
issue code, as the codes are mutually exclusive. Codes in this
category provide insight into the whether the statistical test
measures what it is intended to investigate in the context of
the data, and thus, whether the assertions made on the basis
of the instance are supported by the statistical test results.

3.2.2 Reporting Issues

The second category of codes investigates whether sufficient
context and evidence are reported to evaluate the results from
the statistical test. In contrast to the issues related to the choice
of statistical test, described in Section 3.2.1, the issues we
code for in this category do not call into question the choice
of test, but instead relate to a reader’s ability to verify whether
there is evidence that supports the assertion both in terms
of statistical significance (e.g., p-value and its context) and
scientific significance (e.g., effect magnitude). The APA Pub-
lication Manual states that “Because each analytic technique

2We recognize there remains ongoing debate about the suitability of
treating ordinal data as interval data and whether such choices reduce the
power of such tests [18,27,47,53]. It is out of scope for this work to settle
the debate on the ideal analysis of Likert-type data.

3These data types are ones encountered in the coding and not exhaustive.
They should not be taken as recommendations for how to analyze each type
of data.

depends on different aspects of the data and assumptions,
it is impossible to specify what constitutes a ‘sufficient set
of statistics’ in general terms” when reporting statistical re-
sults [2]. The definitions we used of the lower bound for what
is acceptable for each test can be found in [73]. Issues with
statistical reporting fall into three main categories, described
next.

Insufficient Reporting to Evaluate Statistical Significance.
Any one of “test statistic, the degrees of freedom, [... and the
...] exact p-value” is not reported when expected [2]. Missing
one of these values is generally not severe, as the informa-
tion provided by these values can sometimes be inferred or
calculated from other information. Reporting of these pieces
of information aids with contextualization and verification of
the results. For example, reporting of degrees of freedom not
only allows for (re-)calculation of p-values, but also can allow
readers to infer the number of groups, and whether data may
have been transformed. Furthermore, large sample sizes can
deflate p-values, and degrees of freedom allows a better un-
derstanding of what groups are compared and contextualizes
significance levels [19,76].

Insufficient Reporting to Evaluate Scientific Significance.
There is insufficient information to understand the “size and
direction of the effect” [2]. Without reporting of magnitude
or effect size, there is little evidence to support the scientific
significance of the assertion. Thus, evaluations of the asser-
tion relies solely on the presence of statistical significance
and p-value cutoffs. The following are the types of scientific
significance measures we code for.

Effect Size Measures. This includes unitless, standardized
effect sizes such as Cohen’s d or Cramer’s V [23] or effect
sizes associated with specific tests and models—such as co-
efficients or estimates (B) for regressions, or R* for model fit.
Any measure of effect size constitutes sufficient context to
evaluate scientific significance.

Other Context (Descriptive Data). Without effect sizes, in-
formation that characterizes the data—whether in numerical
(descriptive statistics) or visual format—can also provide suf-
ficient context. These include providing the frequencies in
each category (for categorical or ordinal data), aggregated de-
scriptive statistics such as measures of centrality (e.g., means
and medians) or distributions (e.g., stacked bar charts or box-
plots). The descriptive context must be structured in such
a way as to provide adequate information about the groups
being compared or evaluated, particularly if visual (see Ap-
pendix A). For example, if a statistical test is examining differ-
ences between two groups, information about the two groups
should be reported separately rather than aggregated into one.

Measure of Variability. If context is reported as point esti-
mates, we further look for measures of variability to under-
stand the confidence in and precision of the reported num-
ber [26].* For example, means should have context such as

4This is also commonly termed “uncertainty”.



standard deviations to illustrate the distribution of the data.
For regression coefficients, we expect confidence intervals (or
standard errors) to allow for an evaluation of the precision of
the model’s estimates.
Insufficient Reporting to Evaluate Validity. Reporting is
insufficient to determine the validity of the results of the sta-
tistical test. This may be due to not reporting the test used
or not providing sufficient information to uniquely identify a
test. For instance, a “Wilcoxon test” can indicate either the
Mann-Whitney-Wilcoxon test for independent samples or the
Wilcoxon Signed-Rank Test for paired data. This code also
identifies imprecise model specification, such as not report-
ing which predictors are used. This code also occurs when
reporting regarding the data evaluated by the statistical test
is insufficient, such as not explaining what groups are being
compared, or failing to explain how values are transformed
(e.g., changing a Likert scale variable into a binary variable).
A instance may be coded with more than one reporting
issue. For example, the reporting may not be sufficient for
evaluating either statistical or scientific significance.

3.2.3 Interpretation Issues

This category of codes describes whether the results of statisti-
cal tests are consistent with and support the assertions papers
make. Sometimes the statistical results (e.g., p-values and
effect sizes) are presented as supporting some assertion that is
in fact not supported (or not supported in the way described).
These we code as interpretation issues, of which there are
three major types.

Misinterpretation. Misinterpretations state something that is
not directly supported by the results of the test.

Incorrect Interpretation. The interpretation is directly con-
tradicted by the results. For example, results are interpreted
on the wrong scale, such as interpreting changes in log odds
as changes in odds, which reverses the effect for coefficients
between 0 and 1.

Improper Statistical Significance Interpretation. The in-
terpretation conflates statistical significance with effect size.
This includes interpreting the presence of small p-values to
indicate large magnitudes of difference or lack of statistical
significance as lack of effect.

Misrepresentation. This indicates that model coefficients
are not interpreted adequately in the context of the model. For
example, interpretations do not explain results with respect to
a baseline categorical variable when necessary or interprets
interactions on their own, rather than as additions to main
effects. This code also arises when a metric is mentioned
that does not match the other context in the paper, such as
reporting a correlation for a comparison test.

Not Tested. The interpretation makes claims beyond what
is investigated by the statistical test. One example is reporting
statistically significant differences between two groups in
omnibus tests without pairwise comparisons.

Sub-optimal Effect Interpretation. We use this code when
the general direction of the interpretation is correct, but reports
results on a sub-optimal scale (or no scale), or describes the
test result or its implications in terms that do not fully match
what the test actually measures.

Incorrect Scale. Interpretations that are on an incorrect
scale but correct direction, such as interpreting changes in
likelihoods as linear increases. These result in an interpre-
tation of an effect that is in the right direction (positive or
negative) but with an incorrect magnitude.

Sub-optimal or No Scale. This can involve interpreting on
a log scale (for logistic or ordinal logistic regressions) rather
than transforming first into more intuitively understandable
scales. We also classify interpretations that only report the
significance or general direction of coefficients without inter-
preting the magnitude of the effect as sub-optimal.

Interpreting Distributions and Not the Model. Regressions
are meant to evaluate the impact or predictive power of spe-
cific independent variables on the dependent variable, and
not whether there exist differences between levels of the in-
dependent variables. For example, logistic regressions do not
evaluate whether more units with specific traits (predictors)
take a specific action but rather how much more likely units
with these specific traits are to take a specific action (com-
pared with the baseline set of traits). The former (sub-optimal)
interpretation is a description of the underlying data, while
the latter explanation is an interpretation of the odds ratios re-
sulting from the model. This code only applies to regressions.
No Interpretation. This indicates instances that report on
only the presence or absence of statistically significant results.
One example is reporting significance levels (or coefficients)
in a (regression) table without any explanation in the text of
the interpretation of any results.

Each instance is coded with one type of interpretation issue.
If a there are multiple interpretations from one test (e.g., dif-
ferent interpretations of coefficients from a regression model),
each distinct interpretation is coded as a separate instance.

3.3 Evaluating the Severity of Issues on Asser-
tions

To understand the potential impact of issues in statistical meth-
ods, reporting, or interpretation on the generation of knowl-
edge in usable security and privacy, we evaluate whether any
instance from the inferential statistical test that we examined
was used to support an assertion central to the paper. If the
variables or inferences from the results of a test are mentioned
in the abstract or introduction of the paper we code that in-
stance of the statistical test as supporting a main assertion.
We code tests on variables that are not mentioned in the paper
abstract or introduction as supporting peripheral assertions.
We note that not all uses of NHST are necessarily meant to be
formal hypothesis tests. Therefore, peripheral claims could
be a proxy for exploratory uses of NHST and could have less



complete reporting.

Finally, we evaluate and code whether each assertion about
the presence (or absence) of an effect of some size (scien-
tific significance), accompanied by a p-value (statistical sig-
nificance) based on the results from each NHST instance—
whether a main or a peripheral assertion—is supported by the
information reported in the paper:

Fully Supported. There are no statistical validity, reporting,
or interpretation issues. There is sufficient information to
verify the statistical validity, as well as sufficient evidence
to evaluate (the statistical and scientific significance of) the
assertion beyond a statement of p-value. The assertion is
properly interpreted in the context of the statistical test.
Mostly Supported. The issues present are not severe. The
reporting supports the assertion’s claims regarding statistical
significance, as well as effect size and direction. There are no
statistical validity issues. There are some light reporting or
interpretation issues that do not greatly impact evaluation of
the assertion. Reporting issues that lead to this code are insuf-
ficient reporting on statistical significance and insufficient
reporting of measures of variability (under the insufficient
reporting on scientific significance code). Interpretation is-
sues that lead to this code are No Interpretation and most
subcodes of sub-optimal effect interpretation apart from
incorrect scale, as that interpretation issue changes the magni-
tude of results.

Partially Supported. The issues present are somewhat severe
and can impact replication. The reporting supports the asser-
tion’s claims regarding statistical significance, but there is
incorrect or missing information about scientific significance
(effect size and direction). There are no statistical validity
issues. There are reporting or interpretation issues that impact
support for the assertion. Instances of NHST that do not re-
port adequate information about relevant characteristics of the
data (insufficient reporting of scientific significance) lead
to this code, as readers have no evidence to further evaluate
the assertion (such as a magnitude of effect) apart from a pa-
per’s claim that a statistical test resulted in a specific p-value.
Misinterpretations that are on an incorrect scale—affecting
the magnitude of the effect—also fall into this code.

Not supported. The issues are the most severe, as statistical
validity is threatened. These assertions often cannot be repli-
cated or independently verified without the original dataset.
The reporting does not support the assertion’s claims regard-
ing statistical significance as statistical validity issues or mis-
interpretations undermine support for the assertion. Instances
with a statistical validity issue (apart from unverifiable) fall
under this code, as the results of the statistical test on which
the assertion is based are not suited for what the test evaluates.
This category also identifies assertions that are at odds with
the results of the test (misinterpretations). This code identi-
fies assertions where the issues are such that the test provides
no support either for the claim or for its complement due to
issues with statistical validity or to misinterpretations of the

results.

Lacking Information. The issues are severe, as there is insuf-
ficient information to determine if the assertion is supported.
This lack of information also hinders replication and indepen-
dent verification of assertions. Instances with the statistical
validity issue unverifiable or the reporting issue insufficient
reporting to evaluate validity fall under this code. Given
lack of or imprecise reporting, the assertions in this category
cannot be verified to follow from the results of the reported
statistical investigation.

We holistically evaluate whether assertions are supported
by coding for three aspects: statistical validity, reporting, and
interpretation. We use the most severe issue with the instance
to categorize assertions. For instance, if an instance uses an
incorrect statistical test but fully reports all details of the data,
we code the assertion as not supported, as the statistical test
results are unable to support the assertion.

3.4 Coding Scope and Limitations

Our systematic review focuses on specific types of issues—
statistical validity, reporting, and interpretation—and their
impact on the assertions in UPS work based on NHST. It
does not cover all factors that may impact the statistical or
scientific accuracy of results of a statistical test.

We emphasize that we are not coding if something is true
in reality (i.e., that certain effects or differences are present
in the general population). Determination of an objective
truth is outside the scope of this work as such determinations
involve repeated replications, representative and generalizable
samples. Thus, these truths cannot be established within any
one statistical test or paper. Indeed, such a task is perhaps
instead the overarching goal of scientific endeavor. Rather,
we are investigating whether, given the information present
within each paper, the assertions made on the basis of results
of a statistical investigation are supported.

We do not code for whether tests meet all their underlying
assumptions, such as equal variance assumptions. There is
often insufficient information to adequately evaluate these
assumptions since the robustness of statistical tests to vari-
ous assumptions is often tied to sample size and presence of
outliers, and are best evaluated on a case-by-case basis [87].
In usable privacy and security, often working with data from
real human users, almost no test will have all assumptions
perfectly satisfied. For example, obtaining truly random sam-
ples perfectly representative of the population is difficult, and
there will likely always be some statistical noise and multi-
collinearity within datasets. Hence, we adopt a conservative
approach, coding things as incorrect only when we are fully
confident that they are. For example, we assume that data
is “reasonably” distributed. When evaluating overall validity
of assertions, we do not require that papers describe a test
for normality for all tested samples when running paramet-
ric tests with a normality assumption, nor do we require an



explicit statement of “all else being held constant” for regres-
sions. Other analyses of the use of statistics have been more
pedantic [16,66], and so the results of our analyses should be
interpreted as a lower bound of potential issues.

We consider the reporting and interpretation of statisti-
cal tests as sufficient as long as the required information
appears anywhere in the paper (including figures, methods,
appendices, or supplementary material) even if not explicitly
referred to in the reporting. As our coding was conducted
mainly by one coder and only a subset verified by a second
one, some issues may have been overlooked. However, the
results from our code resolution process (§3.2) provides some
confidence that our dataset is a lower bound of the issues that
are present in our sample. We provide the codebook in Ap-
pendix A so that readers can independently verify our codes.

Finally, in our codes, even if there is an issue in one cate-
gory, we still code all other categories with the assumption
that the initial category was correct. For example, if a statisti-
cal validity issue (e.g., non-independence) is present, we still
code the claim for reporting issues and interpretation in the
context of the statistical test stated, as the validity of the test
does not change the expectation of transparent reporting and
accurate interpretation.

4 Results

We identified 879 statistical issues over 479 NHST instances
in 121 papers. We find that most usable security and privacy
papers within our dataset have at least one instance with a
statistical validity (65% of papers; §4.1), reporting (95% of
papers; §4.2), or interpretation issue (45% of papers; §4.3), of
varying levels of severity (§4.4). Across all assertions based
on NHST, 83% are not fully supported by the reported in-
formation, with some issues more severe than others. While
21% of assertions are mostly supported by the reporting in
the paper, 21% of assertions are not supported, and 23% lack
information to judge statistical support, given the reporting in
the papers. Table | and Table 2 summarize the results.

4.1 Statistical Validity Issues

Statistical validity issues affect 165 instances (34%) across
79 papers (65%). These issues arise from statistical tests that
are either unsuitable or whose suitability cannot be verified.
Of those, 45 instances (9%) in 28 papers (23%) use at
least one incorrect statistical test that does not correctly
account for the structure of dependencies between units or
measurements. The most common error is failure to account
for repeated measures (30 instances), while in 9 instances
independent tests were used on dependent (often paired) data,
and independent data was arbitrarily paired in 6 instances.
24 instances (5%) across 16 papers (13%) in our sample
use tests where there is a data type mismatch. The majority

of these cases (17 instances) are due to treating ordinal data
as continuous or interval data.

Across 96 instances (20%) in 62 papers (51%), at least
one statistical test is insufficiently reported, leading to situa-
tions where it is unverifiable whether the test is statistically
valid for the data. This often arises due to a lack of clarity in
reporting tests and models.

4.2 Reporting Issues

Reporting issues are the most common, affecting 360 in-
stances (75%) and occurring in 115 papers (95%). These
issues interfere with the reader’s ability to evaluate the results
due to a lack of reported evidence to support statistical or
scientific significance of the assertion.

The majority of papers (248 instances, 52%; corresponding
to 104 papers, 86%) had incomplete statistical significance
reporting, meaning the test statistic and associated degrees
of freedom, or the exact p-value, were not reported.

256 instances (53%) across 97 papers (80%) provide in-
complete scientific significance context, hindering evalu-
ation of the scientific significance of the results. Often (69
instances over 46 papers) this is due to solely reporting that
a result is (non-)significant without reporting any other ev-
idence. Point estimates (such as measures of centrality or
model coefficients) are provided without any variability (e.g.,
standard deviations or confidence intervals) in 84 instances.
Another notable issue is the lack of evaluation of model fit,
missing in 41 instances out of 75 instances based on regres-
sion models.

122 instances (25%) in 72 papers (60%) report insufficient
information to evaluate statistical validity. In 58 instances
(12%), readers are not provided with information to identify
the specific statistical test used. In 64 instances (13%), there
is lack of clarity in test or model specification, such as not
stating how variables are constructed, or what the independent
variables in a regression model are. This type of reporting
issue can also impact evaluations of statistical validity. Given
that we code each type of issue (statistical validity, reporting,
interpretation) assuming correctness in the other categories,
there are more instances in this category than in the “Unverifi-
able” statistical validity category because some instances are
classified as “Data Type Mismatch” or “Incorrect” given other
information. For example, a paper can use a regression model
that does not account for repeated measures (“Incorrect”) but
also provide no details on the construction of independent
variables (“insufficient information to evaluate statistical va-
lidity”).

4.3 Interpretation Issues

Even when reporting is accurate and the statistical test is
suitable for the data, specific interpretations of the results
may be misleading or inaccurate. These types of issues occur



Table 1: Summary of results. Our analysis examined 479 NHST instances from 121 papers, which are the totals used to compute
the percentages. Percentages may total more than 100% as each paper may use multiple distinct statistical tests or instances.

Num. Papers % Papers Num. Instances % Instances

Issue Type Affected  Affected Affected Affected
Statistical Validity Issues 79 65.29 165 34.45
Incorrect 28 23.14 45 9.39
Data Type Mismatch 16 13.22 24 5.01
Unverifiable 62 51.24 96 20.04
Reporting Issues 115 95.04 360 75.16
statSig Reporting Issues 104 85.95 248 51.77
sciSig Reporting Issues 97 80.17 256 53.44
statValidity Reporting Issues 72 59.50 122 2547
Interpretation Issues 54 44.63 88 18.37
Misinterpretation 32 26.45 40 8.35
Sup-optimal Interpretation 30 24.79 37 7.72

No Interpretation 9 7.44 11 2.30
Some Issue 118 97.52 397 82.88

the least frequently, in 88 instances (18%) across 54 papers
(45%).

Misinterpretations of test results arise in 40 instances
(8%) from 32 papers (26%), resulting in inferences that are not
supported by the data. The most common misinterpretation
(13 instances) uses results from an omnibus test to report a
statistically significant difference for a pairwise comparison.
10 instances misinterpret statistical significance.

37 instances (8%) across 30 papers (25%) have sub-
optimal interpretations. The most frequent are interpreta-
tions that use an incorrect scale (such as linear scales for lo-
gistic regressions), use an unintuitive scale, or fail to interpret
magnitudes from regression coefficients at all (26 instances).

The results of 11 statistical tests (2%) in nine papers (7%)
have no interpretation. While presenting the results is useful,
the absence of any further discussion implicitly assumes that
statistical significance alone provides sufficient information.

4.4 Evaluating Severity and Impact of Issues

While assertions in ~97% of papers contain at least one issue,
not all these issues are equally severe or have similar impact
on the assertions following from NHST. We provide a break-
down in Table 2 and discuss their varying severities. Across
all 479 assertions that follow from the instances of NHST,
82 assertions (17%) are fully supported by the information
reported in the paper. Of the rest, 103 (22%) are mostly sup-
ported, as the reported context was sufficient for a reader to
evaluate the accuracy of the assertion, even if some pieces
were not entirely present; or the issues were minor enough
that they do not drastically affect the direction and magni-
tude of the assertion (such as believing a difference exists or
that some variables are positively correlated). There is not
enough information reported to fully support and contextual-
ize the assertion, but the statistical test chosen is suitable for
the data, and the direction and magnitude of the assertion is

supported by the reported information. These issues lightly
impact independent verification.

81 of assertions (17%) are only partially supported by the
information given from the papers in which they appear. For
many of these assertions, there is only enough information to
verify that a specific (suitable) statistical test resulted in some
p-value, with insufficient evidence to further contextualize
that result in terms of its effect size and direction. In other
cases, the interpretation of the result is on an incorrect scale,
changing the magnitude (but not direction) of the effect. In
these cases, the reported information contains some evidence
that supports that the assertion is generally true (e.g., pres-
ence of effect) but not enough to evaluate specifics. These
issues undermine support for the assertion, as the magnitude
of the effects can differ, or cannot be adequately evaluated
given the lack of reporting on context. Nonetheless, the re-
ported information supports the statistical significance and
general direction (e.g., existence of some effect) of the asser-
tion. These issues are somewhat severe as they may cause
further difficulties for comparisons in future replication.

101 assertions (21%) are not supported by the reported
information, due to issues with statistical validity or misin-
terpretations of the results. These are the most severe issues.
While the assertion that the test attempts to support may still
be correct, the test and its reporting provide no positive evi-
dence to support the assertion. A common cause is that the
test is not appropriate for the type or structure of data involved.
These issues are the most important to address since they can
have far-reaching implications for claims and interventions
based on these assertions, as the assertions are not properly
backed by the statistical methods.

Finally, 112 assertions (23%) are lacking information for
a reader to judge statistical support. The chosen statistical
tests may or may not be suitable for the data, but there is
insufficient information provided to tell. This is still a se-



Table 2: Summary of evaluation of the support for 479 assertions from the reported data in each paper. Detailed breakdowns
under each category report the prevalence of each issue. The issue and paper counts may sum to more than 100%.

Num. Papers % Papers Num. Assert. % Assert.

Assertion Evaluation Category Affected  Affected Affected Affected
Fully Supported 54 44.63 82 17.12
Mostly Supported 70 57.85 103 21.50
statSig Reporting Issues 48 39.67 61 12.73
sciSig Reporting Issues (Insufficient variability) 25 20.66 34 7.1
Sup-optimal Interpretation 14 11.57 16 3.34

No Interpretation 6 4.96 6 1.25
Partially Supported 53 43.80 81 16.91
sciSig Reporting Issues (Insufficient Effect Size or Direction) 51 42.15 76 15.87
Sup-optimal Interpretation (Incorrect Scale) 7 5.79 7 1.46
Not Supported 57 47.11 101 21.09
Incorrect 28 23.14 45 9.39
Data Type Mismatch 16 13.22 24 5.01
Misinterpretation 32 26.45 40 8.35
Lacking Information 70 57.85 112 23.38
Unverifiable 61 50.41 86 17.95
statValidity Reporting Issues 62 51.24 99 20.67

vere issue, as this lack of information undermines support
for the assertion and degrades the ability for replication and
independent verification of the results.

We now examine the potential broader impact of these sta-
tistical issues. The proportion of assertions in each of the
above categories differs between main (350 assertions) and
peripheral assertions (129 assertions). The proportions of fully
supported (17% main, 16% peripheral) and mostly supported
assertions (22% main, 20% peripheral) differ by less than 5%
between these groups. A slightly higher percentage of periph-
eral assertions (22%) than main assertions (15%) are partially
supported. The same relationship holds for assertions that
are lacking information (22% main, 28% peripheral). This
suggests that more exploratory hypotheses that may not be
envisioned as formal NHST feature less reporting, perhaps
due to space constraints. Lastly, more main assertions (24%)
than peripheral assertions (14%) are not supported. This may
be due to peripheral assertions more commonly lacking infor-
mation, preventing us from evaluating their suitability.

Finally, we examined the historical breakdown of incorrect
assertions and we report the results in Figure 1. We see no
discernable pattern indicating any fundamental changes over
time or any obvious positive or negative trend.

5 Discussion

Our analysis of a sample of two decades’ worth of SOUPS pa-
pers has revealed issues of varying levels of severity in 83% of
assertions across most papers (97%). They include relatively
minor reporting issues that do not follow best practices, as
well as more severe lack of reporting hindering readers from
adequately evaluating relevant details regarding the quantita-

Figure 1: The percentages of assertions in each category by
year. Percentages are also marked on each bar.
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tive methods used. The most severe issues are those papers
that contain issues with the choice of statistical test, under-
mining support for assertions, or misinterpretations that make
assertions that do not follow from the results of NHST.

There is no one-size-fits-all recommendation for statistical
reporting, and recommendations must necessarily differ by
field and be guided by the scientific context [60,81]. Grounded
in the trends we observed in our study, the statistical literature,
and other methodological work in HCI and beyond, we pro-
vide a set of recommendations for authors of works that use
or intend to use inferential statistical methods for statistical se-
lection (§5.1), reporting (§5.2), and interpretation (§5.3). We
reflect on suggestions for the UPS field as a whole, including
authors, reviewers, and researchers in §5.4.



5.1 Statistical Selection Recommendations

Statistical tests must suit the data they analyze. This was not
the case in 14% of the instances we evaluated. We recom-
mend creating an analysis plan for data prior to collection and
analysis and using statistical hypothesis testing “only when
you want to test a well-defined hypothesis” [79]. This can
involve pre-determining hypotheses and articulating the exact
purpose a test for statistical significance is intended to serve.
Some [21,30,71,77,83] have advocated for pre-registering
complete protocols before data collection and analysis. While
protocol pre-registration may be a best practice, simply mak-
ing explicit the hypotheses and the corresponding tests ahead
of time would already considerably help. In some cases, prin-
cipled evaluations of potential effect sizes given the data and
expert judgment may serve similarly well as statistical test-
ing. As a corollary, testing all variables, such as demographic
variables, is unnecessary without a relevant hypothesis [82].

5.2 Reporting Recommendations

The majority of issues we found in statistical use arose from
lack of reporting transparency. Based on statistical reporting
guidance from various fields, guidelines for reporting trans-
parency [3,4,24,36,71,77,83], and the results from this sys-
tematic review, we create a set of recommended “minimally
sufficient” information that provide adequate information to
for readers to evaluate assertions.

Precise Test Name. The statistical test name reported should
provide readers sufficient information to distinguish between
non-paired and paired versions of a test, whether the test
accounts for repeated measures, and what type of data the test
is structured to evaluate.

Data Characteristics. Data collection methods should be
clearly described so that readers can evaluate whether the
variables analyzed are independent or dependent, and whether
statistical methods should account for repeated measures. Stat-
ing only whether an experimental design was within or be-
tween subjects is not always sufficient. For instance, studies
exposing users to multiple scenarios may remain between sub-
jects but analysis must account for repeated measures. Lack
of accounting for repeated measures is the most prominent
statistical validity issue we identified.

Dependent and Independent Variables. What data (or
groups) are being evaluated in the statistical procedure, and
how the data is structured should be reported. For categori-
cal variables in regression models, authors should state the
baseline. Variable transformation—such as binning continu-
ous variables or aggregating multiple measures—should be
clearly described. Which groups or variables are being com-
pared should be stated. Without knowing what was being
tested, readers cannot verify whether the test is suitable and
whether the results can support the assertions. For regressions,
authors should explicitly mention the dependent variable and

all independent variables or predictors (including any inter-
actions), to provide context for a knowledgeable reader to
evaluate the validity of and confidence in the specific model
(and what it seeks to test), as there may be many similarly
statistically valid models [14].

To provide sufficient information for readers to evaluate
both the statistical significance and scientific significance of a
test, we recommend reporting the following information [24,
36,40,57,62,66,71].

Magnitude and Direction of Effects. Effects can be reported
as standardized effect size measures (e.g., Cohen’s d, Pear-
son’s r), in the original units of measurement (e.g., regression
coefficients), or as other interpretable forms (e.g., difference
in means) [51]. Other context such as descriptive statistics can
also be used in lieu of effect size to aid in the evaluation of
scientific significance and provide evidence for the assertion.
If so, the reporting of context should suit the type of statistical
procedure. For example, if comparing multiple groups, the
information for each group, rather than in aggregate, should
be reported.” For categorical measures, frequencies of the
categories of interest are also sufficiently illustrative. Data
can be reported in visual formats with exact values provided
in an appendix or supplementary material or as descriptive
statistics. This conveys information beyond a strict statisti-
cal significance threshold and has implications for scientific
significance as well as provides further evidence to support
the assertions made. Provision of a full dataset is the ideal,
though not always possible.

Measures of Uncertainty, Variability, or Confidence. Au-
thors should quantify the precision of point estimates, to give
readers context about uncertainty. For means, this could in-
clude reporting standard deviations; for coefficients, this could
mean reporting confidence intervals.

Model Fit. Regression model fit should be evaluated, through
R? or pseudo-R? values, or results from comparison to
a null model.® Regression models are necessarily reduc-
tive estimates of complex natural phenomena. Unmea-
sured values, small variations, or different variable selections
may lead to contradictory—yet similarly statistically valid—
conclusions [6, 14]. Some measure of model fit can help read-
ers gauge model usefulness in describing a complex reality.

In the process of writing a research paper, authors often
become so familiar with a dataset that they may make (in-
formed) assumptions about the data. Their audience, on the
other hand, does not have that ability. Thus, similar to existing
recommendations, we recommend having a reader external
to the project read the paper [67]. We extend this one step
further by recommending that authors ask a statistically lit-
erate reader to check over methods and reporting, to ensure
reporting is clear and understandable.

5This may not always be possible for data with repeated measures.
Certain measures of model fit, such as AIC or BIC, have no meaning in
isolation. Such numbers must be reported in relation to a model comparison.



5.3 Interpretation Recommendations

At their core, statistical tests are used to provide some method
to investigate the data and provide some value that quantifies
the effects. At a high level, we recommend against implicitly
equating statistical significance with scientific significance.
Underpowered tests may not detect differences that result in
a significant p-value, even when these differences exist in
the population. Lack of statistical significance of a predic-
tor in a regression model does not indicate that it does not
impact the outcome variable, only that it has no statistically
significant impact in the context of the other predictors in
the model. Therefore, we suggest reporting sufficient infor-
mation to evaluate all hypotheses, even if p-values are above
the stated threshold [16, 83]. These can be reported in an
appendix or supplementary material, and should not incur
unreasonable burden if the number of hypotheses tested is
limited, following our recommendations for judicious use of
statistical significance testing (§5.1).

Make Results Intuitive. Statistical test results are not always
intuitive. Numbers should be converted to interpretations un-
derstandable by people with modest statistical background.
For example, log-odds can be transformed into odds ratios,
which can be further transformed into predicted probabilities.
Rather than just leaving numbers in a regression table and
expecting the reader to interpret them and understand their
statistical and scientific significance, we recommend inter-
preting the relevant effects and impacts, such as explaining
the magnitude of results. There are many different ways of
conveying effect size in HCI, and authors can decide what
works best in the context of their work [51].

Place Results in (Field-Specific) Context. While standard-
ized effect sizes allow for a quick evaluation of effect mag-
nitude, reporting underlying data allows for a richer under-
standing of scientific, and practical significance. For example,
a 1% increase in conversion rate for a large web advertising
platform may add millions of dollars of revenue, while a 1%
change in perceived quality of experience in video streaming
may be barely noticeable.

5.4 WhatlIs Next?

We are not advocating to stop relying on NHST, but instead are
encouraging the UPS field to reflect on the role of statistical
expertise, use statistical significance as one of many tools,
and embrace uncertainty and complexity [6,74,81].

Statistical Expertise and Statistical Thinking. The papers in
which we found reason for concern about the use of statistics
all underwent peer review, suggesting that program commit-
tees may need to increase their commitment to identifying
and helping remediate potentially improper use of statistics.
Papers using NHST should have at least one reviewer able to
evaluate statistics to raise any questions or concerns regarding
statistical methods or reporting during the review process [16].

Software packages may also be able to flag potential issues
ahead of time for easier identification, or aid PC members
in verifying statistical results [36, 66]. Some institutions also
have statistical experts who give consultations on applied
statistical use for research projects, and we recommend that
authors use such resources when available.

Transparent Reporting, Repeated Replications. While the
issues that surfaced in this work vary in severity, they were
all gleaned from the information reported in the papers. Re-
gardless of the severity of the issues, replications and verifi-
cation of results from NHST can provide further confidence
in the conclusions from UPS research. Assertions based on
invalid statistical methods may also have less negative impact
if studies can be replicated with correct statistical methods
to validate (or invalidate) findings. This requires sufficient
and transparent reporting to understand the statistical test and
evaluate the assertions, and thus we recommend transparent
reporting for works using NHST and replication of studies.
When facing space constraints, appendices and supplementary
material can be used to report full statistical details.
Embrace Complexity and Uncertainty. Statistical methods
are an attempt to map a complex reality into a few com-
prehensible numbers to allow for interpretation and conclu-
sion.While experiments and procedures in physical sciences
may be able to strictly control for confounding factors, stud-
ies with human users rarely can. There is variation among
and within users, and it is difficult—if not impossible—to
adequately capture all that complexity. Given this, we call
upon UPS and HCI researchers to embrace this variation and
uncertainty as a feature of their work [6, 28,49, 81].

6 Conclusion

Our statistical methods and reporting should reflect the com-
plexity and variety of the people whom we study. Focusing on
statistical significance and dichotimizing results and reporting
based on an arbitrary statistical cutoff (e.g., “p-values”) at
the expense of reporting other relevant context reduces the
richness inherent in the data and reduces the inferences we are
able to draw. In our stratified sample of UPS papers published
in the last 20 years, we found statistical validity, reporting, and
interpretation issues of varying severity. Many papers relied
solely on statistical significance, and failed to report sufficient
information for readers to adequately evaluate whether the
claims of statistical and scientific significance in the assertions
hold. Hence, we advocate for the use of NHST and statisti-
cal significance as a starting point, and holistic reporting and
clear interpretation to provide information on the scientific
significance and practical impact of the research. Instead of
reducing human complexity into comparisons against static
thresholds such as p < 0.05, we argue that we should report
all information and context that allow readers to validate, eval-
uate, and replicate results and assertions in a more complete
context, with all its richness and complexity.
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A Codebook

A.1 General

Instance. Each entry is a instance (or set of instances) using
the same statistical method and reported in the same way. A
paper can have more than one set of instances present, and a
set of instances can have more than one issue (of the same type
or of different types). If a paper conducts the same statistical
test multiple times, but uses different reporting formats, each
distinct type of reporting is coded as a separate instance, even
though the same statistical method was used.

Example: If a paper reports on the effect size and exact
p-value for three two-sample ¢-test results, but then gives no
information on the effect size or p-value for another result
evaluated using a two-sample z-test, the first set of three results
is categorized as one instance, and the result reported without

an effect size or p-value is categorized as another instance.

All results of a regression model are one instance (unless
certain coefficients are interpreted differently.)

A.2 Statistical Test

The test used in the paper for each instance. See table in [73].

A.3 Statistical Issues

This code evaluates whether the choice of statistical test is

suitable for the type of data tested [57].

Incorrect. Test does not properly account for dependencies

between data. Expected dependencies listed in table in [73].
Examples:

 Used test suited for paired data for non-paired data.

» Used test that did not account for repeated measures
when multiple datapoints were from the same unit.

Data Type Mismatch. The test is not well-suited for the data
type. See table in [73] for expected data types.
Examples:

* Treating Likert data as continuous when it is a dependent
variable.

* Sum (or other aggregation) of multiple Likert data points
into one independent variable.

Unverifiable. There is not enough information reported to
determine whether the statistical test is suitable.
Examples:

* Non-unique test statistic (e.g., t-statistic can be from a
two-sample z-test, paired z-test, or a linear regression
coefficient).

* Non-exact test name (e.g., “Wilcoxon test” can indicate
Mann-Whitney-Wilcoxon test or Wilcoxon rank-sum
test; “correlation” can indicate Pearson’s correlation or
Spearman’s rank correlation).

Exception: assume a two-sample ¢-test if text states “¢-
test” and assume a Pearson’s 7 if text states “y>” in the
text of the paper given the prevalence of these tests.

¢ Lack of information about the variables in the model.

* Unclear what predictors are included in a regression
model.

¢ Unclear how ordinal variables are transformed into bi-
nary variables.

Other. Anything that does not seem to fall into the above
categories (make a note and discuss).
No Issues. No statistical validity issues.

A.4 Reporting Issues

Codes under this category investigate whether sufficient con-
text is provided to evaluate the validity, statistical significance,
and scientific significance of the results from the statistical
test. This assumes that the choice of statistical test is correct
(whether or not it is) and only evaluates the reporting. There
are multiple subcategories under “Reporting Issues.”

A.4.1 statSigSufficient

Code whether the reporting includes the appropriate test statis-
tic, degrees of freedom, and exact p-value. See table for ac-
ceptable test statistics.

Yes. Reports test statistic, degrees of freedom, and exact p-
value (acceptable to say p < 0.001 for very small p-values,
need exact value if > 0.001; so p < 0.01 is not acceptable)
For regression coefficients, does not need anything except
p-value threshold.

Examples:

* We found a statistically significant association between
X and 7, #(336) =4.17,p < 0.001

No. Missing any of test statistic, degrees of freedom, exact
p-value.
Examples:

* We found a statistically significant association between
XandY, p=0.037
A.4.2 sciSigReportingType

Check what type of reporting (if any) exists to allow a reader
to evaluate the scientific significance of the results of the test.
Effect Size. One of the standard effect sizes (see table in [73]).



Counts. Counts or frequencies in each category (sufficient

information to reconstruct counts is also acceptable, such as

percentages when the total number is given).

Sufficient A sufficient reporting of context (see spreadsheet

in [73] for what is acceptable for each test and whether a

measure of variability is needed for specific measures).
Examples:

* Centrality with variability.
» Exact values usually sufficient (e.g., if dataset provided).

» Allow for reporting of underlying data in aggregate for
paired tests (because otherwise too difficult to report).

 If a “sufficient” reporting of context can be constructed
from visuals and figures (e.g., bar charts with exact
counts).

No Variability Gives a point measurement as context with-
out information on variability or uncertainty (e.g., coefficient
without CI or SE, mean without SD); see table in [73].
Insufficient. Insufficient information on context.

Examples:

* Only gives coefficients for significant results.

* Distribution but not of all the groups tested (e.g. give
frequency of 4-5 on Likert scale but the statistical test
uses all 5 Likert buckets).

 Gives information that is by each variable (axes) rather
than as a scatterplot (paired) for correlations.

Absent. No presentation of any effect size or context.

A.4.3 Reporting Issue

The high level evaluation of whether there was enough infor-
mation reported to evaluate scientific significance or if there
were other issues with the amount of information presented
about the test.
statSig Reporting Issues. There is insufficient context to
evaluate statistical significance. This code occurs when stat-
SigSufficient is not “Yes.”
sciSig Reporting Issues. There is insufficient context to eval-
uate scientific significance.

Examples:

* If sciSig is not any of Effect Size, Counts, or Sufficient
then it is insufficient context.

* No information is reported beyond the model or test
conducted.

* When there is no significant result from p-value (paper
simply says something similar to “the result was not
significant”).

No Model Fit. For regressions only, no evaluation of model fit
(R2, pseudo-R? etc.). This falls under sciSig Reporting Issues.
Examples:

¢ No evaluation of model fit—evaluation is not done or
reported at all, with no evaluation statistics.

¢ Insufficient evaluation of model fit—the paper discusses
some model fitting but no statistics or quantitative results
are given for model fit.

No Test or Model. No information provided about the sta-

tistical test or model to accurately evaluate the conclusions.

This falls under Statistical Validity Reporting Issues.
Examples:

* Only gives a p-value or states that there is no significant
difference.

* No unique test can be inferred from name or test statistic.

Unclear Model. Unclear what the IVs or DVs are. This falls
under Statistical Validity Reporting Issues.
Examples:

¢ Unclear data aggregation, such as no information on how
a variable is bucketed or transformed.

* Unclear IVs, Does not give information on what vari-
ables are in a model or whether interactions are present.

* Unclear baseline in regression for categorical variables
that are used as independent variables.

Other. All other reporting issues (make a note and discuss).
No Issue. No issues with reporting.

A.5 Interpretation Issues

Codes for whether the conclusion or instance in the paper is

in fact supported by the statistical results (or supported in the

way described in a paper).

Incorrect Effect Interp. An interpretation that is directly

contradicted by the results. This falls under misinterpretation.
Examples:

* Interpreting log odds as odds (different scales, may re-
verse direction of effect).

¢ Interpretation implies impact of DV on IV in regression
(reverse direction of relation).

Improper statSig Interp. Conflates statistical significance

with effect size or makes claims that p-values prove or dis-

prove an assertion. This falls under misinterpretation.
Examples:

* Claims of highly significant differences or effects when
the p-value is small, but the data itself is not presented
(or not sufficiently presented).



* Assumes rejection of the null means the null is not true
or assumes lack of rejection of the null means the null is
true.

Misrepresentation. Model coefficients are not interpreted
adequately in the context of the model or test results are in-
terpreted on some other metric that does not match between
different parts of the reporting. This falls under misinterpreta-
tion.

Examples:

* Not taking into account the baseline for categorical vari-
ables.

* Does not explain what baseline is set as for predicted
probabilities in logistic regressions.

* Reporting results of interactions alone, without interpret-
ing it as an additional effect to main effects.

Not Tested. Claiming a result that was not directly measured
by the test. This falls under misinterpretation.
Examples:

* Use of omnibus test to claim a pairwise difference.

* Reporting an interaction without testing it or putting it
in the model.

Incorrect scale. Interpretations of results are on an incorrect
scale but the correct direction. This falls under sub-optimal
effect interpretation.

Examples:

* Interpreting log odds changes as linear increases or as
changes in DV by one point (correct direction, wrong
magnitude).

¢ Interpreting linear regression coefficients as changes in
likelihood (usually correct direction, wrong magnitude).

Sub-optimal or no scale. Lack of determination of magnitude
in interpretation or interpretation on an unintuitive scale. This
falls under sub-optimal effect interpretation.

Examples:

* Only gives vague directional interpretations (e.g., pos-
itive or negative) when coefficients are presented in a
table with no sense of magnitude.

¢ Interprets on log scale (for logistic or ordinal logistic
regressions) rather than transformed (i.e., scale is correct
but unintuitive).

Interprets distributions. For regressions only, interpreting
in terms of the dataset rather than result of the model. This
falls under sub-optimal effect interpretation.

Examples:

* Interprets using only underlying data (distributions of
responses) and not regression result (impact of IV on
DV).

* Logistic regression reported as response distributions or
rates rather than likelihoods.

No Interpretation. No in-text interpretation of the results,
only reports on presence of statistical significance for tests
that also evaluate magnitudes.

Examples:

 Reports all tests in a table or figure without talking about
any results from tests in the text.

* Indicating significant coefficients in a table without any
explanation (e.g., size, direction etc).

No Issue. No issues with interpretation. Note, this code as-

sumes that the test is valid as reported. In other words, if

the test can be used to claim X (e.g., for a two-sample test,

presence or absence of a statistically significant difference), it

falls under this code, even if the test is not suited for the data.
Examples:

¢ Test “did not find a statistically significant result.”

* Test “found a difference between these groups.”



