Exploiting the Shared Storage API

Alexandra Nisenoff
Carnegie Mellon University
Pittsburgh, PA, USA
nisenoff@cmu.edu

Abstract

As part of an effort to replace third-party cookies, Google intro-
duced the Shared Storage API as one of their “Privacy Sandbox”
proposals. The Shared Storage API seeks to replace some of the
benign functionalities that third-party cookies facilitate while mit-
igating the potential privacy harms that they can cause, such as
reidentifying users across websites. Shared Storage seeks to do this
by allowing third parties to store data that is not partitioned by
top-level website, but limiting read access to those data.

We find that the implementation and design of the API have
flaws that allow for both the reidentification of users across sites
and the leakage of more data than intended by Google. With the
API being deployed in Google Chrome and major advertisers and
trackers having completed the processes required to gain access to
the API, the Shared Storage API may not do as much as intended to
improve the state of privacy on the web. We present several attacks
on the API that circumvent the key goals laid out by Google as well
as discuss potential extensions and mitigation strategies. While
we have responsibly disclosed our attacks to Google, most attacks
remain possible in Chrome.
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1 Introduction

As users go about their daily online lives, they are being tracked
by companies seeking to monetize information about them. This
tracking can take on many forms, from HTTP cookies to browser
fingerprinting [21], and is conducted by both first parties (i.e., the
domain that a user directly visits) and third parties (i.e., all domains
other than the one that the user directly visits).
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Tracking can violate user privacy, direct users to more expen-
sive products [64], and discriminate against users even based on
legally protected attributes [5, 17, 39, 70, 83]. Online tracking is a
fundamental part of the multi-billion dollar digital advertisement
industry, and allows companies to build up information about users’
demographics, interests, and activities. Advertisers then use this
information to show individual users ads they believe will be more
relevant and effective [57, 79, 80]. Further, user information is fre-
quently shared and sold [77] in a way that is opaque to users.

In response to this tracking and the negative effects that it can
have on end users, many browsers have taken steps to protect
users, from partitioning storage to entirely deprecating third-party
cookies [9, 59, 82]. For several years Google had plans to depre-
cate third-party cookies while introducing several APIs (primarily
related to advertising), under the umbrella of their “Privacy Sand-
box” After many delays in their third-party cookie deprecation
timeline [28], Google finally stated that it plans to leave third-party
cookies enabled in Chrome while also continuing to develop the
Privacy Sandbox APIs [4].

In this paper, we discuss one component of Google’s Privacy
Sandbox—the Shared Storage APIL Google created the Shared Stor-
age API to be a low-level, multipurpose, and privacy preserving
replacement for third-party cookies. At the highest level, the API
provides per-origin memory that is not partitioned by top level site,
the same way third-party cookies are currently handled in Chrome,
but with limited read access to the data. Google specifically says
that the Shared Storage API “seeks to avoid the privacy loss and
abuses that third-party cookies have enabled. In particular, it aims
to limit cross-site re-identification of user(s)” [76]. While marketed
as a multipurpose API, many of the use cases that Google suggests
are directly related to advertising. This includes use cases such as
limiting how many times a user has seen a specific ad or reporting
how many unique users have seen an ad [51].

In this paper, we analyze the Shared Storage API to discover
the extent to which the current implementation and underlying
proposal meet its privacy goals. We discover and describe several
attacks that circumvent the protections that the API is supposed
to offer. Some of the issues we uncovered include several covert
timing channels, a caching covert channel, and a major limitation of
how the proposal quantifies the amount of data that can be leaked
with a single Shared Storage API operation. Several of these issues
are similar to the limitations of other Privacy Sandbox proposals.
We further discuss extensions to these attacks and possible ways to
mitigate them: though eliminating them altogether seems unlikely
without severe degradation to the usability of the APIL Indeed,
we have disclosed these vulnerabilities to Google, and several of
the attacks remain feasible at the time of writing. To the best of
our knowledge, the only publicly disclosed issue with the Shared
Storage API prior to our work was about how much data can be
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Figure 1: Partitioning of cookies and shared storage data in Chrome

leaked over time through standard use of Shared Storage. We discuss
this problem for completeness and compare it to a similar issue
with federated learning of cohorts (FLoC) [30].

Creating APIs and tools that properly protect user privacy is an
incredibly important yet difficult challenge. The Shared Storage
API does have more limitations on data access than traditional
third-party cookies, but it currently fails to live up to its stated
goals and introduces new challenges. With Chrome being the most
widely used web browser, with over 60% of the browser market
share [25], any new feature that is rolled out in Chrome has the
potential to impact a large number of users. Despite concerns about
the API having been raised by other browser vendors in the normal
course of W3C discussion (see Section 6.4), the Shared Storage API
is currently available in Chrome and has been since as early as June
2022 in the canary and developer versions of Chrome [76]. This
paper also provides a first look at the use of the API in the wild,
despite privacy issues inherent to the design and implementation.

2 Background

Next, we describe relevant background, including how cookies can
be used for tracking and the relevant details about how the Shared
Storage API works.

Third-Party Cookies: Chrome currently allows arbitrary third
parties to utilize cookies. As Figure 1a shows, the third parties can
both write to and read from the same shared cookie storage across
top-level sites. If a user first visits example.com which includes
content from tracker.com, tracker.com can set a cookie that
represents the user’s identity. For the sake of this example, we will
say that the identifier for the user is “Taylor” tracker.com can
then record that Taylor has visited example.com.

When Taylor visits stackoverflow. com that also includes con-
tent from tracker. com, tracker.com can read that identifier that
has been stored as a cookie and record that they have visited
stackoverflow.com. They can also choose to make the assump-
tion that Taylor is interested in technology. Since tracker.com
has already seen that identifier before they can start to build up a
profile about what Taylor is interested in based on the sites they
have visited and any other auxiliary information they might have.
While being interested in technology may be fairly innocuous, web-
sites could reveal something potentially more sensitive such as
health conditions, sexual orientation, or political affiliation. The
issue here is that by being able to read the cookie value the user
can be re-identified across websites by a third party on multiple
sites visited by the same user.

Shared Storage: This is where the Shared Storage API comes into
play. As Figure 1b shows, while writing data to storage that is
unpartitiond by top-level site is still allowed, the reading of values
through the Shared Storage API is intended to be severely limited.
While the cookies are sent alongside network requests and can
sometimes be read by JavaScript, values in shared storage cannot
be directly read. The idea is that even if the website were to store
“Taylor” in shared storage if that value cannot be read, then the user
cannot be re-identified.

Shared Storage attempts to accomplish this by only allowing
data stored in shared storage to be read in an isolated environment,
called a worklet.

One main use of the Shared Storage API is deciding what content
to show a user based on values stored in shared storage. This can
be done by calling the Select URL API which takes in up to eight
URLs and selects one to be shown to the user based on the values
in shared storage. The Select URL API can not be used without the
Shared Storage and consists of a single function: selectURL.

Figure 2 shows this selectURL being used for A/B testing by
tracker.com. With cookies this would be very simple, one would
simply read the cookie through the JavaScript of the webpage and
use an if statement to set the src attribute of an iframe to the URL
of the content the user should see.

Since the values in shared storage cannot be directly read outside
of the worklet, the branching logic must happen inside the worklet.
A call to selectURL triggers code inside the worklet. From there,
the code can decide which URL to show the user based on the
shared storage data and any auxiliary information passed in with
the selectURL function call. When the selectURL function returns
the content, the selected URL can be loaded either as an iframe or
a fenced frame.

Non Worklet Functions: In addition to functions that cause code
to run in the worklet. Developers can call Shared Storage functions
such as set!, append, batchUpdate, delete, and clear to modify
values in shared storage from the JavaScript of a page or in network
response headers in much the same way that cookies can be set.
Worklet Functions: The worklet has access to all of the Shared
Storage functions that are available to the JavaScript outside of the
worklet but with additional functionality such as being able to use
Private Aggregation API operations.

ITo prevent overwriting existing data the ignoreIfPresent attribute can be used
while calling the set function.
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Figure 2: Selecting a URL from a list using the Shared Storage API for a user where the value for group has been set to 0.

Code that runs in the worklet must be defined in a separate

JavaScript file and loaded into the page prior to being invoked
using either the addModule or createWorklet functions.
Select URL Budget: While the number of URLs passed into select
URL limits the amount of information that can be learned about the
values with a single call, each time selectURL is called some infor-
mation could be leaked. This means that an unlimited number of
calls could leak an unlimited amount of information. To limit how
much information is leaked over short periods of time the API intro-
duces several “budgets” With a starting budget of 12 bits per origin,
across all pages visited by a user in a day, each call to selectURL
costs logz (JURLs|). The reasoning is that the log, ([URLs|) deduc-
tion represents the information theoretic number of bits that are
leaked by knowing which of [URLs| was selected. If only two URLs
are passed in, there are only two possible outputs (i.e., URLs that
could be selected), which could be represented by a single bit (0 or
1). Similarly, if eight URLs are passed in there would be a budget
deduction of three because it would take three bits to represent
eight values. If the deduction for a given operation would make
the total of the budget deductions in the previous day exceed the
budget, the call would return the first element in the list of URLs
that have been passed in.

Google has also added two additional budgets to the API as a
way to patch issues in the proposal. To prevent a visit to any one
page from leaking too much there is an additional budget of 12 bits
per top-level page load. The other new budget seeks to prevent a
single origin from monopolizing this per page page load budget
giving each an individual budget of 6 bits per top-level page load.
Data Origin: For the most part, the origin of the context used to
invoke Shared Storage API functions determines the origin of the
data that the functions can access. However, cross-origin worklets
can be created allowing third parties to access their data when
using functions such as selectURL without the need for an iframe.
Operation Queue: Calls to all Shared Storage API functions are
placed in a queue for the corresponding origin responsible for the
function call and are executed in the order that they were added to
the queue. Having a unique queue for each origin prevents the API
from leaking some information about an origin’s actions to other
origins on the page.

Having this queue also means that calls to operations that may
take time to finish executing are completed before subsequent func-
tions execute. For example, if two calls to selectURL are made,

the first must finish executing before the second starts running. If
there were no queue, developers would not be able to reason about
whether a call to functions like set or append would execute before
a call to selectURL returned.

Data Persistence: By default, the values stored in shared storage
are retained for the 30 days following when they were written. This
time limit is far shorter than the current 400-day maximum lifetime
of a cookie in Chrome [14]. Users can also manually clear shared
storage values, along with other browser data, including cookies,
from the Chrome settings menu.

Attestation Requirement: A non-technical measure that Google
put in place to prevent misuse of the APIs is the requirement that
companies complete an enrollment and attestation process before
they can use the privacy sandbox APIs (including the Shared Storage
API) on websites. During the process of requesting access to the
APIs companies must explicitly state that they do not intend to
identify users across sites. Companies can do this by filling out a
form from Google, where they must also specify which APIs they
want to use, as well as information about their company such as
the location of their privacy policy.

Once they receive approval, which is tied to a domain, they are
given a file that they must place at a standardized well-known
URL. Users may also manually list out domains that do not have
to complete the attestation process to access the privacy sandbox
APIs on their browser. This requirement went into place in August
2023 [35] and the implications of this requirement are discussed in
more depth in Section 6.

Fenced Frame: As mentioned earlier, the result of selectURL can
be loaded into a fenced frame. Fenced frames are another one of
Google’s privacy sandbox proposals [31]. Functionally, they per-
form a similar function to iframes creating a nested browsing con-
text in a page. The main difference is that communication between
the content of the fenced frame and the embedding context is highly
restricted. Eventually Google will require that the result of select
URL be loaded into a fenced frame but, Google is allowing the URLs
to be loaded into iframes through 2026 [76].

Private Aggregation API: The Shared Storage API can also be
used in conjunction with Google’s Private Aggregation API. As the
name suggests the API can be used to create reports of aggregated
data, including data from shared storage [32]. Use cases for this
include reporting on approximately how many unique users have
seen an ad or the demographics of those users. To preserve privacy,
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these reports do not include exact numbers, but also include some
level of noise.

The Shared Storage proposal also currently allows event level re-
porting which allows developers to send reports triggered by events
in the fenced frame to URLSs specified in the initial call to select
URL. Like fenced frames, this less privacy preserving temporary
measure will be allowed through 2026 [76].

3 Threat Model & Attacker Capabilities

We evaluate the feasibility of attacks from a third-party attacker
against Shared Storage. The attacker has previously stored data
(e.g., a unique identifier) in shared storage, in any context, and aims
to circumvent the Shared Storage budget and read those data when
the user visits a different page. We primarily discuss how those
data could be used by third parties to re-identify users, because that
is precisely what the Shared Storage API intends to prevent, but
those data could be used for other purposes as well.

For an attacker to use the Shared Storage API at all, and sub-
sequently for our attacks to work, they must have completed the
attestation process as described in Section 2. This would be true for
developers intending to use the Shared Storage API for legitimate
reasons. The same process would need to be completed by com-
panies if they wanted to make use of the attacks that have been
shown to work against other Privacy Sandbox APIs such as the
Topics API or the Protected Audience APL

Rather than considering an attacker that can directly load any
content (e.g., an image or JavaScript file) onto the top level page
that is not controlled by them, we assume that the attacker is only
able to load their content into an iframe on the page.? The attacker
model and capabilities of the attacker described above are meant
to mimic the situation where content from an advertiser or known
tracker is loaded into an iframe.

4 Attacks

In this section we present several methods for the attacker described
in Section 3 to circumvent the protections that the Shared Storage
APl is designed to provide. Specifically, we identify a network tim-
ing attack, a crash attack, a queue timing attack, and a caching
attack. We discuss these next. We also discuss the known issue of
the API’s budget resets leaking information over time. A summary
of Google’s responses to disclosures of the attacks described in this
paper can be found in Section 4.6.

4.1 Network Timing Attack

By definition, a network request to a URL selected by selectURL
cannot be made before the function in the worklet returns (i.e.,
in Figure 2, step 5 must happen after step 4). Through the attack
described below, this allows us to exfiltrate data from shared stor-
age. As the function called by selectURL runs in a worklet, it has
unfettered access to the values stored in shared storage. This means
that the function’s behavior, including how long it takes for the
function to return, can vary based on these stored values.

2Google recently added support for cross-origin worklets as described in Section 2.
However, we describe the attacks in the rest of the paper in the context of an attacker
that simply has content loaded into an iframe.
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Writing a Value: Writing a value that will subsequently be used for
tracking can be done in the standard way any data can be written to
shared storage (e.g., with JavaScript code or via response headers).
The pseudocode in Algorithm 1 gives an example of how this can be
done by an attacker iframe (running JavaScript) for a single binary
variable stored in shared storage.

Algorithm 1 Network Timing Attack - Write

1: procedure WRITE(identifier)

2: counter «— 0

3 for bit in identifier do

4: window.sharedStorage.set("counter",
bit, {ignorelfPresent:true});

5: counter «— counter + 1

6: end for

7: end procedure

Algorithm 2 Network Timing Attack - Read

1: procedure WORKLET(counter)

2 value «—sharedStorage.get (counter)

3 if value == 1 then

4 Sleep for a predetermined amount of time

5 end if

6: return 0 > Network request for URL made
7: end procedure

procedure PAGE JS(worklet_script, URL_list)
2: sharedStorage.worklet.addModule(worklet_script);
counter < 0
4 while counter < length of identifier do
make a nested iframe i > or fenced frames
6: opaqueURL « await sharedStorage.selectURL(
counter, URL_list);
i.src «— opaqueURL;
8: counter < counter +1
end while
10: end procedure

Reading a Value: Algorithm 2 shows how to read this value.
Within an iframe they control, the attacker creates as many (nested)
iframes as there are bits in their identifier, to load the results of
selectURL and make network requests. From there, the attacker
can call selectURL as previously described and immediately set the
src attribute of the iframe or the equivalent attribute for a fenced
frame to the value that the call to selectURL returns. To prevent
the code that called selectURL from learning when the function
in the worklet returns, a promise is returned as soon as the call is
placed in the operation queue which resolves when the function
in the worklet returns and the embedding page is prevented from
directly reading the value of the URL that was returned. Inside the
worklet, if the function sees that the first bit of the data3 it wants to
exfiltrate out of the worklet is a 0, it returns immediately; if it sees
a 1, it waits before returning. When the function in the worklet

3For reidentification of a user across sites this data would be an identifier.
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Figure 3: Server-side timing difference with delayed worklet.

returns the promise from selectURL resolves, a network request
can be made, and the server can learn what value was stored in
the first bit of the data based on the relative time that it receives a
request relative to some earlier request or through auxiliary infor-
mation sent from the browser about when the call to selectURL
was made. Figure 3 shows the difference in the time at which the
server receives a request generated by a call to selectURL, based
on how long the function in the worklet takes to return (i.e., if an
attacker chooses to add an artificial delay to the function in the
worklet).

By doing this, an attacker can leak an additional bit of informa-
tion that will not be accounted for in the existing privacy budgets.
This is because the proposal only considers information leakage
based on which URL is selected:* not any covert channels. Hence,
how much data can be transmitted and how quickly depends on
how long the user stays on the page and the delay parameter used
by the attacker.

Practicality: To understand if this attack is practical, we must
consider the average time a user spends on a page and the length
of an identifier that an attacker wants to leak. For data to leak with
this attack, the user must remain on the page through when the
call to selectURL returns so that the page can make a network
request to the server, leaking the information. Since calls to select
URL happen in series rather than in parallel, if an attacker wanted
to leak two bits of data, each one requiring a delay, the user would
need to stay on the page for a minimum of approximately 2 delays.

Prior works have estimated that the median time that a user
stays on a webpage ranges from around 12 seconds to just under
a minute [36, 47, 52, 53]. We also take the identifier to be 33 bits
long, as that is the minimum number of bits required to uniquely
identify every person on Earth (23° ~ 8.5 Bn).

To determine the longest delay that would allow a 33-bit long
identifier, that requires 33 delays, to be leaked within the median
time a user spends on a page, we can simply divide the number

*In this scenario, the actual URL that is returned by the call to selectURL can also
be used to reveal information concurrently with the delay as long as the select URL
budget has not been exhausted.
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of seconds by 33. A longer delay may be more noticeable to the
server as it is less likely to be due to network conditions. Since
the iframes that these resources are loaded into can be hidden
from users, even a longer delay could go unnoticed by users. By
doing this, we find that the maximum delay would be between 0.36
seconds (for a 12s dwell time) and 1.82 seconds (for a 1-min dwell
time). For identifiers that do not require a delay to transmit every
bit, the maximum delay could be larger since finishing all of the
calls to selectURL would happen more quickly. A delay of 0.36
seconds is in line with the round-trip time between the US and
Australia, meaning that an additional delay of that length would
likely allow an attacker to distinguish an intentional delay from
normal variations in the latency of the request.

Even in the case where a full identifier cannot be transmitted,
the information that is leaked can be used in conjunction with
other methods of identifying users (e.g., browser fingerprinting)
to improve a tracker’s ability to re-identify a user if the Shared
Storage API had not existed.

Extensions: Several slight modifications can extend this attack
by making it faster, avoiding any deduction from the Select URL
budget, or leaking more information per call to selectURL.
Avoiding Select URL budget deduction: If JavaScript makes a
call to selectURL and only passes in a single URL the call will
not decrease the Select URL budget (log,(1) = 0). Paired with this
covert channel, this means that information about the values in
shared storage can be leaked without any deduction from the Select
URL budget as long as the user remains on the same page.
Leaking more than one bit with a single call to selectURL: We
assumed above that this covert channel uses a single predetermined
delay, but, conceptually, there is no reason an attacker could not
use different delays to pass more information to the server (e.g., no
delay, short delay, long delay to reveal which of three values were
stored). This may be more beneficial in a scenario in which limiting
the number of requests being made is more of a priority than the
amount of time it takes to convey information.

Optimizing the speed at which data can be leaked: Tailoring
delays to current network conditions would be useful to balance
how long it takes to reveal the information, while ensuring that the
delay is long enough that it is not obfuscated by normal variability
in network conditions. An attacker could simply time how long the
request for the worklet script from addModule took to get a sense of
the current network conditions without requiring an unnecessary
network request. Repeating the transmission of the value could
also help with any noise introduced by network variability.

If a tracker were creating identifiers, they could optimize their
selection to assign identifiers that minimize the number of delays
used to transmit that information, thereby decreasing the total time
needed to convey information to the server. Furthermore, putting as
many of these values towards the beginning of the identifier would
allow the largest number of bits to be sent in the shortest amount
of time in case the user left the page before the entire identifier
could be transmitted.

Potential Mitigations: As an attacker can currently add arbitrary
delays to functions in the worklet, attempting to mitigate this covert
channel by adding small delays to the return times of the code in
the worklet could easily be defeated by the attacker making their
delays longer. Concretely limiting the runtime of functions in the
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worklet could also help with this issue. In a public post, made after
our disclosure, the developers did mention potentially adding a
limit to the run time of another worklet function [45], suggesting
their openness to limiting function run times in the worklet.

In their response to our disclosure, Google mentioned various ad-
hoc solutions from requiring “that all of the URLSs [be] prefetched
as web bundles,” to “fetch[ing] from some CDN that has a trusted
policy that it won’t leak its logs,” to requiring “the server [execute]
in a trusted execution environment running trusted code”, and
using “some sort of private information retrieval service.” As URLs
may point to dynamic content or additional external resources,
both the initial request and any subsequent requests would need
to be thus restricted. These solutions are not just ad hoc, but also
heavy-weight and a significant departure from open web standards.

Adding these types of network access restrictions to fenced
frames has also been discussed [67]. But these plans have not been
implemented and, as long as the result of selectURL can be loaded
into an iframe, the benefits of fenced frames are a moot point.

By preventing calls to selectURL with one URL the API could
limit how much information is leaked through several attacks de-
scribed in this paper. When calling selectURL with a single URL
only one URL can be returned and could simply be loaded directly.?

4.2 Crash Attack

When the network conditions (e.g., slow mobile networks) require
prohibitively long, or highly variable delays, using a termination
covert channel (instead of an external timing covert channel) may
make it easier for an attacker to leak data.

Writing a Value: Writing an identifier is done in the same way
as the previous attack: the attacker simply writes values to shared
storage using JavaScript or via response headers.

Reading a Value: To read a value, the attacker goes through
the same steps as in the previous attack, but instead of delaying
when the function returns, the attacker intentionally crashes the
JavaScript in the worklet depending on the value stored. When the
worklet JavaScript crashes, no request is made to the server. Like
in the previous attack, the server can then infer the value stored in
shared storage depending on whether it receives a request (i.e., the
worklet has not crashed), or not (i.e., the worklet has crashed). The
deductions from the Select URL budget take place whenever the
navigation of a frame occurs since that is when the information is
hypothetically leaked to the server. Crashing the worklet prevents
this navigation, and therefore, budget deduction from happening.

In terms of implementation, we initially found a bug that allowed
us to crash the worklet by calling console.log on an array inside
the worklet. While this specific bug was patched, a simple strategy
involving computations on a massive array could still crash the
worklet, and prevent a request from being made.

Besides the worklet, other elements on the page will also crash
in accordance with Chrome’s site isolation policy [63]. For instance,
an iframe embedding a worklet that crashes itself also crashes,
preventing subsequent requests. In Figure 4, this means that every-
thing from tracker2.com will crash. To handle this, the attacker

5 All other worklet operations that otherwise would have been run when calling select
URL could be handled with the run function which allows code to run in the worklet
without selecting a URL.
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example.com [4racker1.com - 3rd party iframe
<script>
// reload tracker2.com iframe
</script>

tracker2.com - 3rd party iframe
<script>
URLs = [https://tracker.com/ad1.html, ... ]
sharedStorage.selectURL(..., URLs)
</script>

tracker2.com - frame

Figure 4: The iframe format necessary for the crash attack.

simply needs to nest the tracker2.com iframes in another iframe
from a separate domain (that does not need to have completed
the attestation process). In the figure, this is tracker1. com. Since
tracker1.com is from a different domain it will not crash with
tracker2.com. From here, the tracker1.com iframe can reset the
src attribute of the top most tracker2.com iframe forcing the
frame to reload. By reloading the nested iframe, the attacker is
given another opportunity to either make a request or crash, leak-
ing another bit in the same way the first bit was leaked.
Practicality: To assess the practicality of this attack, we implement
it as described above and experimentally determine what delay be-
tween reloading the outermost iframe is necessary to consistently
allow the worklet to crash or make a request for a resource. Our
tests were completed on a 2020 MacBook Pro with 32 GB of memory
and a 2.3 GHz Quad-Core Intel Core i7 processor running Chrome
version 135.0.7049.115. We find that with a delay of approximately
0.5 seconds, we can consistently recover randomly selected identi-
fiers. With delays shorter than this we begin to see a degradation
in performance: not all bits of the identifier are exfiltrated. In these
cases, partial data are still revealed, which could be used in con-
junction with auxiliary information to aid in reidentifying a user.
If we consider an identifier of 33 bits this would require a user
to stay on a page for 16.5 seconds. While this delay falls within
the range of median dwell times identified in the literature, it is
potentially slower than the network timing attack. We stress that
this is simply a ballpark estimation, as it is likely that the necessary
delay between reloads of the page is deeply dependent on several
other factors including, but not limited to, the hardware used to
run Chrome and the method used to crash the worklet.
Extensions: As with the previous attack, calling selectURL with
a single URL would result in no budget deduction, even if the
JavaScript did not crash. Crashing the worklet can also be paired
with delaying requests to leak more information.

A similar result can be achieved by causing a crash in the fenced
frame that is loaded as a result of a selectURL call. Similar to crash-
ing a worklet, crashing a fenced frame causes cascading failures.
This could be used to circumvent mitigation strategies that depend
on pre-loading all possible resources as it leaks information to the
embedding frame.

Potential Mitigations: If a worklet crashes, preventing the frame
that calls it from crashing and returning the default URL could
prevent the server from learning about the crash, since the server
would still receive a request. Unfortunately, developers might not
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(b) Webpage JavaScript and worklet writing to shared storage.

Figure 5: Return times of calls to set from webpage JavaScript

expect this behavior from the API and this would also (erroneously)
decrease the Select URL budget.

4.3 Queue Timing Attack

An attacker who wants to minimize the number of network requests
and calls to selectURL could take advantage of the queue for Shared
Storage API operations from an origin. This queue is the same for
both the webpage JavaScript and the worklet. Outside the worklet,
calls to functions such as sharedStorage. set return as soon as
they have been successfully added to the queue. If code inside of
the worklet simultaneously makes calls to these functions, it can
result in delays in when the calls from outside of the worklet are
successfully added to the queue.

Writing a Value: This step remains the same as earlier attacks,
simply writing to shared storage as usual.

Reading a Value: Inside the worklet, the code either does nothing
or floods the queue for predetermined time intervals to represent
data that the attacker wants to exfiltrate. The attacker can use exist-
ing network communication schemes for encoding (and decoding)
this information.

Outside of the worklet, the attackers can, e.g., look for spikes in
the number of returned function calls in a given time interval to
reveal when the worklet was or was not flooding the queue. The
time between those spikes reveals the behavior inside the worklet.
For instance, if the worklet were trying to convey a value of zero,
it could simply not do anything, and the JavaScript of the webpage
would see the baseline number of function calls being returned.
If, on the other hand, the worklet saw a value of one, they could
flood the queue. The webpage JavaScript would see fewer of their
requests returning over a given period of time, which would lead
that JavaScript code to be able to infer the value in shared storage
is a one.

As a concrete example, Figure 5a shows the return times for 5,000
calls to window. sharedStorage. set without the worklet calling
the same function. Meanwhile, Figure 5b shows the return times
for the same number of calls in the scenario where the code in
the worklet alternates between two seconds of flooding the queue
with calls to window. sharedStorage. set and two seconds of not
taking any action. To read a value the attacker must trigger code
to run in the worklet so that they can make the necessary func-
tion calls from inside the worklet. While code is running inside

the worklet, the attacker starts flooding the queue with calls to
window. sharedStorage. set from outside the worklet and record-
ing the return times of those calls.

Practicality: Compared to attacks discussed earlier in the paper, the
attack on the queue is less directly controllable. While a one-second
delay in the network timing attack almost directly corresponds to
a one second delay in when the server receives the response, that
correlation is not quite as direct for the queue timing attack. As can
be seen in Figure 5b a two second period of flooding the queue does
not necessarily match with a two second period of delayed return
times. Thus, an attacker would have to be careful about potentially
flooding the queue again before it has had a chance to get cleared,
and fail to transmit information in the process.

Another approach that an attacker may have more control over

is to break up the information that they want to leak into smaller
chunks. Rather than leaking all information in a single call to
selectURL, they could make a call for each bit with a delay in
between, to allow pending API calls to finish. Both of these meth-
ods would likely be much slower than other attacks but would still
be able to leak at least as many bits as is allowed by the current per
page budget without any budget deduction.
Potential Mitigations: Limiting the run time of functions in the
worklet could limit how much information is leaked for a given
call that triggers code in the worklet. However, multiple sequential
calls to trigger code in the worklet could circumvent this. Limiting
the total number of calls to functions that interact with the shared
storage queue or rate limiting these requests could also help.

Making the return times of API calls outside of the worklet
independent from what happens in the worklet would be necessary
for fully preventing this avenue for leaking information. Having
initial queues that are separate for the worklet and other JavaScript
may help but would require additional overhead.

While Google acknowledged our report, and discussed several
of the above mitigation strategies, they also commented that “while
this particular side-channel could be mitigated, not all [side chan-
nels] can and we potentially need to lean on after-the-fact analysis
to detect these patterns and adapt over time” While potential tech-
nical mitigations for this attack were mentioned, they have not
been implemented. On the other hand, Google does appear to be
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moving forward with data collection that would help with the more
reactive, instead of proactive, after the fact forensics.®

4.4 iframe Caching Attack

While the attacks above can be carried out without decreasing the
Select URL budget, they have downsides such as requiring a large
number of calls to Shared Storage functions. By taking advantage
of a caching covert channel on iframes, an attacker can learn what
URL a call to selectURL returned in the past for that top-level page
without decreasing the Select URL budget or making any calls to
Shared Storage API functions after the writing phase. This attack
mainly takes advantage of the fact that in the normal use of the
selectURL function to load a resource into an iframe, that resource
can be cached, and it is possible to determine if those resources

have been cached without interacting with the Shared Storage APL

Writing: Reading:
server responds to requests server does not respond to requests
ene eve
example.com example.com
tracker.com - 3rd party iframe
<script>

URLS = [tracker.com/ad0.html,
tracker.com/ad1.htmi]

iframe.src = sharedStorage.selectURL(
.., URLS)

tracker.com - 3rd party iframe
tracker.com - iframe
iframe src = ad0.html g

tracker.com - iframe

/1 ad1.htmi selected by selectURL
</script>

tracker.com - iframe.
iframe src = ad1.html
// loaded from server

Figure 6: Writing a value from shared storage to the iframe
cache and reading it on a subsequent visit to the page.

iframe src = ad1.html

//loaded from iframe cache

Writing a Value: For this attack, we assume that an identifier
has already been written to shared storage in the same way as
in earlier attacks and that the attacker now wants to store this
identifier in a way that does not require the Shared Storage API
to retrieve it. To accomplish this, the page makes a call to select
URL, passing multiple URLs as described in Figure 2, and loads the
selected resource into an iframe. For the sake of simplicity, let us
assume that two URLs were passed in ad@.html and ad1.html
and ad1.html was selected and loaded into an iframe. ad@.html
would not be loaded into an iframe and would not be cached. The
server should respond as usual, resulting in the selected URL being
loaded and cached for that top-level page (if the URL were to be
subsequently requested from a different top-level page it would not
be in the cache for that top-level page).

Reading a Value: In the reading phase, the page attempts to load
both ad@.html and ad1.html by setting the src attribute of an
iframe to each of those URLs. This does not involve any calls to any
Shared Storage API functions and therefore no deduction from the
Select URL budget.

The server should not respond to requests in this phase so that
only resources that have previously been cached would be loaded
without an error. Figure 6 shows the result of this process: only
ad1.html, which had previously been cached, is loaded.

®Tn fact, part of their data collection efforts seems to be driven by our disclosure of the
fact that calling selectURL with a single URL can circumvent the privacy budget in
https://github.com/WICG/shared- storage/issues/86
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Since these nested iframes are from the same domain (tracker.
com) communication with the top-level tracker . com iframe is pos-
sible, allowing the attacker to determine what resource was loaded
from the cache. This essentially provides the same information as
previous calls to selectURL without the Select URL budget deduc-
tion since in both cases ad1.html was loaded into the page and
ade@.html was not.

This reading process is similar to reading an identifier based on
favicon caching as described in prior research [69].

As Chrome partitions the iframe cache per top-level site, this
circumvention method is only helpful to a tracker if a user revisits
a site and the same iframe is loaded onto the page. Previous studies
have shown revisitation rates of top-level pages to be 60% to 78%
within a 20-day period [15, 86]. Paired with the fact that popular
trackers appear on a large percentage of websites [26] there is a
good chance that those trackers could take advantage of iframe
caching. Attackers would also need to be sure that they do not
accidentally poison their cache by loading the resource outside of a
call to selectURL. In our Figure 6 example, if the server ever loaded
ad@.html into that iframe, it would be cached, and both ad@.html
and ad1.html would be loaded from the cache in the reading phase
and the attacker would not know which one was added to the cache
by the call to selectURL.

To summarize, this caching of resources loaded into iframes
allows an attacker to replay calls to selectURL across reloads of
the page without a deduction from the Select URL budget.
Practicality: The speed bottleneck for this attack is writing the
identifier. As this attack requires calls to selectURL with more
than one URL writing the identifier is constrained by the Select
URL budget and the fact that the iframe cache is partitioned by
top-level page. How long writing an identifier to a cache would
take depends on how many sites the tracker wants to move their
identifier from shared storage into the cache and how often a user
revisits these top-level sites. If the tracker were to focus on writing a
33 bit identifier to the iframe cache from shared storage for a single
top level site and the user was to visit the page every day after the
tracker’s Select URL budget resets, this would have to take place
over three days given the current 12 bit per day budget. That being
said, on the second and third day the bits that had already been
cached could be read and used in conjunction with other methods
(e.g., browser fingerprinting) to identify the user.

The reading process of this attack only involves making normal
network requests to a server without having to invoke aspects
of the Shared Storage API that would involve budget deductions.
This means that reading a long value in this way does not rely
on a user repeatedly visiting a page. If we use the setup described
above, where loading one resource represents a value of zero and
the other represents one, this would require 66 requests to read a 33
bit identifier as the two possible resources must be unique for each
bit of the identifier. To the extent that the browser is capable, these
requests can happen in parallel. The median number of requests
made by a webpage at the beginning of 2025 was over 70 [38], so
an additional 66 would be a proportionally large increase but, in
the reading phase the server does not have to return any content.

In terms of storage, this attack requires caching a resource for
each bit of the identifier. Still, the resources themselves could consist
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of merely a text file with a single character in it making the impact
on the amount of content stored in the cache relatively small.

Potential Mitigations: Preventing resources loaded from the re-
sult of a call to selectURL from being cached or loaded into iframes
could be avenues to mitigating this particular issue. By taking these
steps, the API would prevent “free” API calls when a user revisits a
page that had previously made a call to selectURL. Google plans
to address this class of attacks by preventing the results of select
URL from being loaded into iframes and requiring that the URLs be
loaded into a fenced frame. Currently, this change is not planned
to take effect until 2026 at the earliest. Moreover this, ties the miti-
gation to the effectiveness and the adoption of fenced frames.

4.5 Data Leakage Over Time Attack

Since the Select URL budget periodically resets (every 24 hours),
additional data can be leaked over time, in stages. This means the
Shared Storage API is susceptible to a vulnerability similar to one
observed in the FLoC proposal [6, 75], which we summarize below.
This issue of arbitrary amounts of data being leaked over time
has long been acknowledged by the developers of the API as an
inherent issue with any proposal where the limits on how much
data can be leaked reset after a given amount of time [55].

In FloC users were sorted into “cohorts” with similar browsing
histories. After every time period (initially 7 days), users would be
sorted into a new cohort. Websites could read what cohort a user
belonged to, but since there were many users in each cohort, the idea
was that the users could not be uniquely identified. Unfortunately,
research showed that over time the sequences of cohorts that a user
was assigned to were often unique [6]. To derive that sequence of
cohorts, a (third-party) attacker could take advantage of various
types of partitioned storage that are accessible, even if third-party
cookies are not. A similar attack can be used against the Shared
Storage API. Specifically, an attacker can read different parts of
their chosen identifier every time the budget resets.

Writing a Value: Writing an identifier is identical to the network
timing attack or crashing attack. The attacker simply writes val-
ues to shared storage either with JavaScript or through network
response headers.

Reading a Value: When the Select URL budget resets for a given
page the attacker reads the next few bits of the identifier that they
have previously stored in shared storage, by calling selectURL, and
storing the bits that were leaked based on what URL was requested
in any form of partitioned storage they have access to. This moves
the identifier that was stored in shared storage, and is therefore
the same across all top-level pages, into storage that is partitioned
by the top-level page but has no limit on the frequency at which it
can be read. Over time this means that the partitioned storage for a
tracker on each top-level page will have the same identifier stored
for a user. This is similar in concept to the iframe caching attack in
which the calls to selectURL are essentially reused across reloads
of a single top-level site.

Differences from FLoC Attack: With the Shared Storage API an
attacker can have more control over making an identifier unique to
a given user, rather than relying on the cohorts FLoC assigns the
user to based on their browsing history. With each call to select
URL the attacker can choose to read a new part of the identifier,
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while new information can only be gained from FLoC when the
user is assigned to a new cohort.

The Shared Storage API has the privacy benefit that for a given

time period there is a limit on how often even part of an identifier
can be read, whereas for FLoC, reading which cohort a user has
been assigned to does not suffer from the same limitation.
Practicality: This attack does not involve deviating from the in-
tended use of the Shared Storage API or the selectURL function
so, in this case, the Select URL budget is the limiting factor in how
much data can be leaked. This means that only 12 bits of data can
be leaked in this way per day. Individual calls to selectURL are
negligibly fast when the code that is run inside the worklet is simple.
A single call to selectURL is intended to leak up to three bits of
information due to the limit on the number of URLs that can be
passed in to the function. Three calls to selectURL, which would
leak 12 bits, could easily take place in far less time than even the
lowest estimates for median dwell time on a page [36, 47, 52, 53].
As discussed in relation to the iframe caching attack, users fre-
quently revisit sites so it is likely that attackers could continue to
leak information as users revisit these sites over time.
Potential Mitigations: The Select URL budget is an integral part of
the Shared Storage proposal because some information is inherently
leaked when selectURL is called. Lowering the budget would slow
down the rate at which the data could be leaked but would not stop
it. Limiting even partitioned storage methods could help to prevent
third parties from building up the identifiers but would impact
far more than just the Shared Storage APL If fenced frames were
required and did not leak the result of selectURL to the server the
embedding frame could not build up an identifier, but this requires
many changes to the status quo and would make using the API for
anything other than static content very difficult.

4.6 Google’s Responses

Location of

Attack Status Link Disclosure

Network Timing Proposed https://github.com/WICG/shared- Initial Issue
Solution storage/issues/86

Crash Partially https://github.com/WICG/shared- Issue Thread
Fixed storage/issues/86

Queue Timing Proposed https://github.com/WICG/shared- Initial Issue
Solution storage/issues/136

iframe Caching Planned https://github.com/WICG/shared- Initial Issue
Fix storage/issues/86

Data Leakage Over Time | No Planned https://github.com/WebKit/standards-  Issue Thread
Fix positions/issues/10

Figure 7: Details of Google’s responses to disclosures of pos-
sible attacks.

For each attack described in this paper Google directly replied
discussing potential fixes or acknowledging the inherent limitation
of the API, as was the issue of the amount of data that can be
leaked over time. For two of our disclosures, Google’s response also
referenced relying on identifying indications of misuse (e.g., making
alarge number of requests or intentional crashes) to identify misuse
of the API Recently, Google added more logging capability to the
implementation of the API, which references our GitHub issue for
the Network Timing Attack, to help identify cases where many
calls to selectURL with a single URL are made. Disclosures as well
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as Google’s responses to all of the attacks can be accessed at the
links in Table 7.

5 Usage of the Shared Storage API

To understand the adoption of the Shared Storage API, we perform
multiple measurements across different aspects of the API: the
proportion of domains that have completed the attestation process,
both among popular and tracking domains, and the prevalence of
Shared Storage API usage in the wild. These measurements provide
insight into users’ current exposure to the API as well as provide
an overview of the characteristics of companies that have access to
the API and would therefore be able to exploit the API if desired.

5.1 Attestation Completion

As discussed in Section 2, companies must complete Google’s at-
testation process before being able to use the Shared Storage API
Understanding which companies have completed this process di-
rectly relates to who could carry out these attacks as well as attacks
on several other APIs in the Privacy Sandbox ecosystem.

To compile a list of sites that may have completed the attestation
process we used two sources: Google’s Privacy Sandbox Enrollment
Report, a public list of what companies have completed the enroll-
ment process which was last updated on June 28th, 2024,7 and a list
of domains shipped with Google Chrome titled privacy-sandbox-
-attestations.dat from December 25th, 2024 from which we
extracted all plaintext domains.

After excluding URLSs used exclusively for demos of the Privacy
Sandbox API, provided by Google, we were left with 289 domains.
Google requires that the attestation files be hosted at a well-known
URL and available to researchers. In late December 2024, for each
domain, we used the Python request library to make a request to
the path on the domain where the attestation file should be hosted.
For domains where this process did not successfully retrieve a
valid attestation file we manually visited the URL in an attempt to
retrieve the file. From this process we were able to obtain 245 valid
attestation files, meaning that 85% of the domains that we checked
were hosting an attestation file.

During the process of getting access to these APIs from Google,
developers can request access to all or a subset of the APIs that
require an attestation. Of the attestation files we collected, 61% (149)
reported that the domain had access to the Shared Storage API. With
public information, it is only possible to know if the domain was
ultimately granted access to the Shared Storage API; on the other
hand, no information is available about requests Google may have
denied.

5.1.1  Popularity of Domains With Shared Storage Access. To under-
stand the popularity of the domains, which we use as a proxy for
companies, that have completed the attestation process we check
the rank of these domains in the Tranco list® [50] from the same
date as the Chrome browser file. Figure 8 shows the cumulative
proportion of domains from this list that we found hosting an at-
testation file and had access to the Shared Storage API specifically.
6.4% of the top 1,000 domains host valid attestation files while 4.3%
host valid attestation files that include the Shared Storage APL

"https://github.com/privacysandbox/attestation/blob/main/enrollment_report.csv
8The Tranco list used here can be found at https://tranco-list.eu/list/932Q2
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Figure 8: The cumulative proportion of attestation files with
a domain in the Tranco top 200K.

In short, while a relatively small number of domains have com-
pleted the attestation process, at least some companies are aware of
the Privacy Sandbox APIs, including the Shared Storage API, and
have made efforts to secure access to them.

5.1.2  Tracking Affiliation of Domains With Shared Storage Access.
While comparing the domains that have completed the attestation
process to the Tranco list provides insight into the popularity of the
domains with access to the API, Shared Storage should be primarily
useful to advertisers. Companies associated with advertising and
tracking may have more of an incentive to exploit Shared Storage
for tracking users.

To get a sense of how many of the companies with attestation
files are associated with these areas we checked the domains with
attestation files, which we previously compared to the Tranco list,
against tracking-related domains from the Disconnect Tracker Pro-
tection list [19]. Of the domains that have a valid attestation file
48.2% appeared in the Disconnect list. Similarly, 56.4% of the do-
mains with access to the Shared Storage API appeared in the Dis-
connect list.

From the other direction, out of all of the companies listed in the
disconnect file, 112 (7.2%) have at least one URL that completed the
attestation process and 78 (5.0%) of companies had at least one URL
that had completed the process and been granted access to Shared
Storage. When we only consider companies that the list designates
as related to advertising, we see that 9.2% (104) had completed
the attestation process and 6.5%(73) of those companies had been
granted access to Shared Storage, both of which are slightly higher
percentages than in the list as a whole. Altogether, this shows us
that many of the companies that have gone through the attestation
process are associated with tracking, but there are still many known
tracking domains that do not have access to the APL

5.2 Shared Storage in the Wild

To better understand users’ exposure to the Shared Storage API we
conducted an additional crawl in early February 2025 to look for
usage of the API on popular websites. This is necessary because,
even if a website has not completed the attestation process them-
selves, it may include content from a domain that has. Companies
that complete the attestation process may also choose not to use
the APIs that they have access to.
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For each of the top 10,000 domains and a random sample of 5,000
domains from the remaining top 1 million domains from the Tranco
list of popular domains® we visited the page in a fresh instance
of Puppeteer with the Shared Storage API enabled. Through the
Chrome developer tools, we captured all instances of the API being
called both outside and within the worklet.

From this crawl, we found that approximately 10.1% (1,311) of the
12,955 sites we were able to reach did invoke the Shared Storage API
in some way. Most relevant to our attacks, 1,250 of these pages (9.6%)
made at least one call to selectURL, with 1,613 calls to selectURL
across all pages.

All of these interactions can be traced back to four unique
domains. Two domains associated with Google, securepubads-
.g.doubleclick.net and ep3.adtrafficquality.google, were
the most prolific in their use of the API, using Shared Storage on
1,222 and 177 websites respectively. crcldu.com (46 websites) and
ads.optable.co (17 websites) made up the other domains respon-
sible for these instances.

The reality that the Shared Storage API is being used on popu-
lar websites indicates that end users are already being exposed to
the API. In the course of these measurements, we did not look for
any evidence of the attacks described in the paper being currently
exploited on websites. However, historically, fingerprinting com-
panies have used a variety of methods to learn about users [48].
Additionally, attacks that were initially discussed theoretically, such
as canvas fingerprinting [58], have later been found to be used in
practice [1, 21, 48]. While the adoption of code that calls functions
that read from Shared Storage remains fairly low and originates
from a small set of domains, it does occur, and many more compa-
nies have completed the process necessary to start using the Shared
Storage AP if they choose to in the future.

6 Discussion

In this section, we discuss the limitations of our study and possible
future work (Section 6.1), ethical considerations (Section 6.2), impli-
cations for user choice (Section 6.3), the positions of other browsers
(Section 6.4), and the impact on cross browser compatibility and
centralization (Section 6.5).

6.1 Limitations and Future Work

Shared storage is a complicated proposal that depends on several
other technical proposals (e.g., fenced frames and the Private Ag-
gregation API), and its feature set and complexity is continuing to
grow over time. With the continued evolution of the API and the
other proposals that it depends on new issues might be introduced.
In this paper, we identify several exploitable issues in the Shared
Storage API as designed and implemented today but there may be
more attacks that are possible than we identified. If Google were
able to fix all of the issues we laid out in the paper, the API would
undergo significant changes, including to functionality, and would
require additional analysis. More generally, our paper highlights the
need for a more principled API design, since these APIs introduce
new covert channels, rather than post-hoc fixes.

Unfortunately, our findings are not isolated events. With the
similarities and interactions between different privacy sandbox

9The Tranco list used for this crawl is the same one as used in Section 5.1.1.
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proposals, we expected (1) new proposals could be susceptible to the
same attacks that have been identified in previous privacy sandbox
proposals (e.g., Protected Audience API is susceptible to similar
timing attacks as the worklet for the Shared Storage API [73]) and
(2) interactions between the APIs may introduce vulnerabilities
to the privacy protections the individual proposals are attempting
to provide (e.g., the new queue introduced by the Shared Storage
APT itself introduces a new covert channel that can be abused to
violate privacy). Future work could look for additional attacks that
updates to the API introduce or for new opportunities to improve
both Shared Storage and similar proposals in the Privacy Sandbox.

Our measurement of the usage of the Shared Storage API in
Section 5 has limitations. If is possible that if a real user were to
interact with the same sites that were a part of our measurement
they could cause additional code to run that could trigger calls to the
Shared Storage API or avoid some level of bot detection. In practice,
this means that the true rate at which the API is used on websites
could be higher than what was found in our measurement. Further,
the measurements presented in this paper are only snapshots in
time, with the changes in Google’s position on third-party cookies
this use may vary.

While other work has addressed the prevalence of other privacy
sandbox APIs on the Internet [10], as new or less studied APIs crop
up, further analysis may be warranted to understand the scope of
how the APIs are being used and interact. While our study did not
look for potential misuse of the APIs, looking for these types of
usage across Privacy Sandbox APIs could be very beneficial to users,
considering Google’s comments on addressing privacy violations
due to Shared Storage as they appear.

Covert channels frequently have their limitations and the attacks
proposed in this paper are no exception. Variability in network
conditions could cause issues for the network timing attack, such
as abnormally high RTTs being misinterpreted as a delay. More
generally, interference from factors outside of an attacker’s control
on any of these covert channels may lead to an attacker not being
able to accomplish their goal. Many attacks also rely on the user
actively remaining on a page for a period of time. If users spend
only a few seconds on a page, it is unlikely that an attacker would
be able to exfiltrate the entirety of an identifier.

If attacks start to noticeably degrade a user’s browsing experi-
ence, such as the browser slowing down due to extensive use of the
AP, or delays in legitimate network requests due to a large number
of requests being sent in an attempt to exfiltrate data, the user may
take steps such as reloading a page or navigating away from a tab.
This could interrupt some of the attacks presented in this paper.

6.2 Ethics

As the Shared Storage API is currently implemented and available
for use through the Chrome browser, it was necessary that we
report these issues. Therefore, we disclosed the attacks presented
in this paper to the Shared Storage API team through several issue
reports to the W3C GitHub repository for the project.!

Ohttps://github.com/WICG/shared- storage/issues/86
https://github.com/WICG/shared- storage/issues/136
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All experiments were conducted from our own machines, on
ourselves, and on self-hosted websites under our control. We delib-
erately used local exceptions to the attestation requirement rather
than going through the formal attestation approval process, as the
attestation process requires agreeing not to use the API for the
identification of users across websites. This also avoided the issue
of requiring Google to review an attestation form submitted by us,
which could have unnecessarily slowed down the review for any
other companies that were simultaneously completing the attesta-
tion process. Our approach also had the advantage of ensuring that
the scripts for identifying users on our websites would not impact
anyone who accidentally visited the site, as they would presumably
not have set up the custom exceptions.

6.3 User Choice

Currently, there does not seem to be a way to individually disable
the Shared Storage API in the normal settings menus of Chrome as
of version 128. At present, disabling third-party cookies, disabling
all privacy sandbox APIs, or experimental flags appear to be the
only available methods for users to prevent sites from using the
Shared Storage API. There has been some discussion of adding a
dedicated setting for the API, but it has been wrapped into the
general Privacy Sandbox Setting which does not explicitly mention
the Shared Storage APL!! Providing similar levels of control for the
API as currently exist for third-party cookies would allow users to
make choices about their usage of the API if they are uncomfort-
able with individual proposals within the set of privacy sandbox
proposals. As with any technical setting, explaining what it is to a
general audience in an accurate and accessible way would require
significant effort as previous work has shown [37, 60, 84]. As a
result of the UK Information Commissioner’s Office raising similar
concerns about the lack of end user facing information about how
the API can be used, Google is planning on making unspecified
changes to their user interface [13].

More generally, with the move towards alternatives to cookies,
existing tracking protection tools that empower users to make
choices about data storage and currently only focus on cookies will
need to adapt to these new APIs to continue to provide users with
the same level of protection in the absence of existing methods for
users to manage their data. Current consent management platforms
will also need to adapt to these new proposals as legal consent
requirements (e.g., GDPR) can also apply to data stored and accessed
via these APIs [27].

Since the Shared Storage API has garnered less public scrutiny
than other other privacy sandbox proposals (e.g., FLoC and Topics)
it is unlikely that even fairly tech-savvy users are aware of this new
API and the potential implications for their privacy.

6.4 Industry Positions

Other browser vendors have also expressed their concerns about
the Shared Storage API and its ability to preserve user privacy. Ap-
ple [55] expressed concerns that “sites that users visit often would
be able to extract an arbitrary amount of data over time” due to the
resetting budget and the dependence on other proposals such as
fenced frames which, at the time, did not have full specifications.
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Mozilla’s negative position on the proposal was that they had “sig-
nificant concerns about the viability of the isolation components of
this design,” although they did not cite any specific attacks against
the APL They also stated that the use cases for the API did not “jus-
tify the complexity and privacy risks” [23, 56]. While these other
major browsers have not implemented the API, Shared Storage is
already deployed in Chrome and therefore in play for many users.

6.5 Compatibility and Centralization

As mentioned in Section 2, Google had added the requirement that
companies complete an attestation process before being allowed to
use privacy sandbox APIs including the Shared Storage API.

While companies may follow this agreement, there is always the
chance that they will surreptitiously renege on their word and use
the API for tracking. Having companies publicly attest that they
will not use the API to re-identify users could potentially open the
companies up to action from the Federal Trade Commission in the
United States for deceptive practices or at least public backlash if
they are found to be breaking that agreement.

While having platform specific review processes has precedent
in the app ecosystem (e.g., Apple App Store Review for iOS apps)
this goes significantly further forcing any website developer that
wants to use the Privacy Sandbox APIs to go through this process.
This provides extra friction for companies trying to take advantage
of the privacy benefits that these APIs provide over technologies
like third-party cookies. As Google is presumably reviewing these
submissions, it makes them a gatekeeper for who gets to use the
API. Since there are no practical techniques for detecting privacy
leaks via covert channels, this also positions Google as the sole,
arbitrary executioner. With Google also being a large player in the
advertising space, what this means for competition is unclear.

Going against the opinions of other major browser vendors,
Google has moved forward with the Shared Storage API. Were
this API to majorly take off this would force website developers to
customize their websites even more based upon which browser a
user is visiting their website from.

7 Related Work

We introduce related work by first discussing relevant steps that
are being taken by various stakeholders to address tracking. We
then explain how these mitigation strategies can break down and
become avenues for tracking in themselves sometimes in similar
ways to the Shared Storage APL Finally, we discuss the deployment
of Google Privacy Sandbox APIs.

7.1 Tracking and Advertising Mitigations

Many steps have been taken to prevent the potential negative im-
pacts on users of tracking and advertising. Browser extensions
like Privacy Badger and uBlock Origin have been developed to
prevent tracking and/or stop ads from being displayed through
blocking/modifying network requests and cookies. These tools
have become widely adopted. A 2023 report from eye/o found that
912 million users were actively using ad-blockers [24].

Many browsers have even started to roll out their own forms
of built-in protections. Their strategies take various forms such
as limiting the use of third-party cookies, disabling APIs that are
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primarily used for tracking, and more [14]. In Firefox, many of these
efforts are bundled under the umbrella of the “Enhanced Tracking
Protection” setting, Safari has “Intelligent Tracking Protection,” and
Brave has “Shields”. As discussed, Google has been moving forward
with its “Privacy Sandbox” proposals, which in addition to the
Shared Storage AP, includes proposals such as federated learning
of cohorts (FLoC) [30], the Topics API [34], Protected Audience
API [33], and Aggregate Reporting API [32]. Each of these browsers
has a different approach and they vary in how strict the protections
they offer are, with each having different tradeoffs. Unlike browser
extensions that require users to go out of their way to install them,
tools that are built into browsers are frequently rolled out to users
without their intervention.

There is also extensive development and research on additional
methods of preventing tracking and making the advertising ecosys-
tem more privacy preserving, while still enabling the benefits
that users find in being shown relevant ads. Some of these pro-
posals are focused on measuring ad conversions and effective-
ness [18, 42, 71, 85, 87], allowing ad networks to charge advertisers
without knowing what ad was shown [66, 74], and more [81].

7.2 Privacy-Enhancing Technologies as
Tracking Vectors

Unfortunately, sometimes the very steps taken to prevent tracking
can then become vectors used by companies to re-identify users.
This paper focuses on how that is possible for one specific tool, but
the Shared Storage API is far from the only privacy-enhancing tool
that can be misused in this way. For example, the presence of the
Do Not Track header, which was originally an attempt to allow
users to opt out of tracking, can also be used for browser finger-
printing [20, 61]. Having privacy preserving (or other) extensions
installed may also make a user more identifiable [49]. Similarly, ac-
cessing a website via a less widely used but more privacy-preserving
browser or having extraneous APIs and features disabled can also
factor into a browser fingerprinting profile for a user [20]. User-
Agent Client Hints were intended to allow access to User-Agent
string information in a more privacy-preserving way but were still
found to be used for tracking [65]. Shared Storage could become
a similar telltale since a Chrome user disabling the API in their
browser would look different than a user with the API enabled.

Many of the Google Privacy Sandbox proposals have been shown
to have flaws that leak more information than intended, which could
lead to the re-identification of users. One of the earliest Privacy
Sandbox proposals to draw public scrutiny was the FLoC proposal.
For each block of time, FLoC assigned users into cohorts based
on the similarities of their browsing histories. Several papers have
demonstrated how the sequences of cohorts users would be assigned
to could be used to re-identify those users over time [6, 75]. In Sec-
tion 4.5 we showed that data stored in Shared Storage can similarly
be used to build up identifiers across websites.

The successor of FLoC, the Topics API, had the users’ browsers
learn the interests of the users and expose those interests through
the API rather than have advertisers track cohorts across the Web
to learn the interests of the groups. The Topics API was similarly
shown to not prevent the re-identification of users [3, 7, 40, 41].
Despite this, the API continues to be a part of Chrome much like the
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Shared Storage API. Academics are not the only ones to have raised
concerns about these proposals, which have also drawn scrutiny
from industry [68, 72, 73] as well as privacy advocate groups like
the EFF [16, 46] and the Competition and Markets Authority in the
UK [12]. Further works have also sought to accurately assess the
privacy risks of the API to users [8, 11, 22].

The Protected Audience API facilitates on-device ad auctions by
the browser. Part of this process involves the execution of code in
an isolated environment that is susceptible to timing attacks [73].
As we described in Section 4.1, the Shared Storage API has a similar
concept of running code in an isolated environment, and is also
susceptible to a similar type of timing attack. Many other limitations
of the privacy guarantees of the Protected Audience API have also
been shown [2, 10, 54, 73]. Our work falls within this line of research,
showing how the privacy-preserving aspects of the Shared Storage
API can still be circumvented to the detriment of users.

7.3 Privacy Sandbox Deployment

Privacy Sandbox APIs are actively being used by companies on web-
sites that users frequent [10, 43, 44, 62]. Johnson et al. found that
in 2023 the Topics API was used on over 35% of the approximately
60K websites they surveyed [44]. The use of these APIs is also not
uniform across all of the Privacy Sandbox, with less popular APIs
such as the Protected Audience API being used on less than 10%
of the surveyed sites [44]. Chrome Status metrics for the Privacy
Sandbox APIs also show a similar trend, with the Protected Audi-
ence API being used on less than 6% of Chrome page loads at the
beginning of 2025 and the method that retrieves information from
the Topics API being used on over 11% of Chrome page loads in
the same time period [29]. In Section 5.2 we similarly described the
adoption of the Shared Storage API on popular websites which, to
the best of our knowledge, has not been previously reported. Prior
work has also shown that well known advertisers are active users
of the Privacy Sandbox APIs [44, 62] and often early adopters [78],
which we find to also be true for the Shared Storage API (Section 5).

8 Conclusion

In this paper, we have shown the Shared Storage API is vulnerable
to several covert channels that undermine the stated privacy goals
of the API. These covert channels have the potential to allow users
to be re-identified by third parties across websites. We have notified
Google of the vulnerabilities in the API, but several attacks currently
remain feasible in Chrome, and are not likely to be addressable
without rethinking the API from first principles. Creating APIs
that are more privacy preserving than existing technologies can
greatly benefit users but can be very difficult to get right. And,
while the Shared Storage API does take a step towards this goal, it
also introduces new complexities and unknowns that detract from
the potential benefits it offers.
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