
Exploiting the Shared Storage API
Alexandra Nisenoff

Carnegie Mellon University

Pittsburgh, PA, USA

nisenoff@cmu.edu

Deian Stefan

UC San Diego

La Jolla, CA, USA

deian@cs.ucsd.edu

Nicolas Christin

Carnegie Mellon University

Pittsburgh, PA, USA

nicolasc@cmu.edu

Abstract
As part of an effort to replace third-party cookies, Google intro-

duced the Shared Storage API as one of their “Privacy Sandbox”

proposals. The Shared Storage API seeks to replace some of the

benign functionalities that third-party cookies facilitate while mit-

igating the potential privacy harms that they can cause, such as

reidentifying users across websites. Shared Storage seeks to do this

by allowing third parties to store data that is not partitioned by

top-level website, but limiting read access to those data.

We find that the implementation and design of the API have

flaws that allow for both the reidentification of users across sites

and the leakage of more data than intended by Google. With the

API being deployed in Google Chrome and major advertisers and

trackers having completed the processes required to gain access to

the API, the Shared Storage API may not do as much as intended to

improve the state of privacy on the web. We present several attacks

on the API that circumvent the key goals laid out by Google as well

as discuss potential extensions and mitigation strategies. While

we have responsibly disclosed our attacks to Google, most attacks

remain possible in Chrome.

CCS Concepts
• Security and privacy; • Information systems→ Online ad-
vertising; Browsers;

Keywords
Web Privacy; Privacy Sandbox; Online Advertising; Online Track-

ing; Privacy

ACM Reference Format:
Alexandra Nisenoff, Deian Stefan, and Nicolas Christin. 2025. Exploiting

the Shared Storage API. In Proceedings of the 2025 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’25), October 13–17, 2025,
Taipei, Taiwan. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/

3719027.3744848

1 Introduction
As users go about their daily online lives, they are being tracked

by companies seeking to monetize information about them. This

tracking can take on many forms, from HTTP cookies to browser

fingerprinting [21], and is conducted by both first parties (i.e., the

domain that a user directly visits) and third parties (i.e., all domains

other than the one that the user directly visits).

This work is licensed under a Creative Commons Attribution 4.0 International License.

CCS ’25, Taipei, Taiwan
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1525-9/2025/10

https://doi.org/10.1145/3719027.3744848

Tracking can violate user privacy, direct users to more expen-

sive products [64], and discriminate against users even based on

legally protected attributes [5, 17, 39, 70, 83]. Online tracking is a

fundamental part of the multi-billion dollar digital advertisement

industry, and allows companies to build up information about users’

demographics, interests, and activities. Advertisers then use this

information to show individual users ads they believe will be more

relevant and effective [57, 79, 80]. Further, user information is fre-

quently shared and sold [77] in a way that is opaque to users.

In response to this tracking and the negative effects that it can

have on end users, many browsers have taken steps to protect

users, from partitioning storage to entirely deprecating third-party

cookies [9, 59, 82]. For several years Google had plans to depre-

cate third-party cookies while introducing several APIs (primarily

related to advertising), under the umbrella of their “Privacy Sand-

box.” After many delays in their third-party cookie deprecation

timeline [28], Google finally stated that it plans to leave third-party

cookies enabled in Chrome while also continuing to develop the

Privacy Sandbox APIs [4].

In this paper, we discuss one component of Google’s Privacy

Sandbox—the Shared Storage API. Google created the Shared Stor-

age API to be a low-level, multipurpose, and privacy preserving

replacement for third-party cookies. At the highest level, the API

provides per-origin memory that is not partitioned by top level site,

the same way third-party cookies are currently handled in Chrome,

but with limited read access to the data. Google specifically says

that the Shared Storage API “seeks to avoid the privacy loss and

abuses that third-party cookies have enabled. In particular, it aims

to limit cross-site re-identification of user(s)” [76]. While marketed

as a multipurpose API, many of the use cases that Google suggests

are directly related to advertising. This includes use cases such as

limiting how many times a user has seen a specific ad or reporting

how many unique users have seen an ad [51].

In this paper, we analyze the Shared Storage API to discover

the extent to which the current implementation and underlying

proposal meet its privacy goals. We discover and describe several

attacks that circumvent the protections that the API is supposed

to offer. Some of the issues we uncovered include several covert

timing channels, a caching covert channel, and a major limitation of

how the proposal quantifies the amount of data that can be leaked

with a single Shared Storage API operation. Several of these issues

are similar to the limitations of other Privacy Sandbox proposals.

We further discuss extensions to these attacks and possible ways to

mitigate them: though eliminating them altogether seems unlikely

without severe degradation to the usability of the API. Indeed,

we have disclosed these vulnerabilities to Google, and several of

the attacks remain feasible at the time of writing. To the best of

our knowledge, the only publicly disclosed issue with the Shared

Storage API prior to our work was about how much data can be

https://doi.org/10.1145/3719027.3744848
https://doi.org/10.1145/3719027.3744848
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3719027.3744848

CCS ’25, October 13–17, 2025, Taipei, Taiwan Alexandra Nisenoff, Deian Stefan, and Nicolas Christin

 tracker.com - 3rd party iframe
 <script>

 // write interest = tech

 </script>

tracker.com - Cookie Storage

• 	id = Taylor

• interest = tech

 tracker.com - 3rd party iframe
 <script>

 // write id = Taylor

 </script>

stackoverflow.comexample.com

ads.com - Cookie Storage

• id = unknown

 <script>

 // read id

 </script>

 ads.com - 3rd party iframe
 <script>

 // write id = unknown

 </script>

(a) Third-Party Cookies

 tracker.com - 3rd party iframe
 <script>

 // write interest = tech

 </script>

tracker.com - Shared Storage

• 	id = Taylor

• interest = tech

 tracker.com - 3rd party iframe
 <script>

 // write id = Taylor

 </script>

stackoverflow.comexample.com

ads.com - Shared Storage

• id = unknown

 <script>

 // read id

 </script>

 ads.com - 3rd party iframe
 <script>

 // write id = unknown

 </script>

(b) Shared Storage

Figure 1: Partitioning of cookies and shared storage data in Chrome

leaked over time through standard use of Shared Storage.We discuss

this problem for completeness and compare it to a similar issue

with federated learning of cohorts (FLoC) [30].

Creating APIs and tools that properly protect user privacy is an

incredibly important yet difficult challenge. The Shared Storage

API does have more limitations on data access than traditional

third-party cookies, but it currently fails to live up to its stated

goals and introduces new challenges. With Chrome being the most

widely used web browser, with over 60% of the browser market

share [25], any new feature that is rolled out in Chrome has the

potential to impact a large number of users. Despite concerns about

the API having been raised by other browser vendors in the normal

course of W3C discussion (see Section 6.4), the Shared Storage API

is currently available in Chrome and has been since as early as June

2022 in the canary and developer versions of Chrome [76]. This

paper also provides a first look at the use of the API in the wild,

despite privacy issues inherent to the design and implementation.

2 Background
Next, we describe relevant background, including how cookies can

be used for tracking and the relevant details about how the Shared

Storage API works.

Third-Party Cookies: Chrome currently allows arbitrary third

parties to utilize cookies. As Figure 1a shows, the third parties can

both write to and read from the same shared cookie storage across

top-level sites. If a user first visits example.com which includes

content from tracker.com, tracker.com can set a cookie that

represents the user’s identity. For the sake of this example, we will

say that the identifier for the user is “Taylor.” tracker.com can

then record that Taylor has visited example.com.
When Taylor visits stackoverflow.com that also includes con-

tent from tracker.com, tracker.com can read that identifier that

has been stored as a cookie and record that they have visited

stackoverflow.com. They can also choose to make the assump-

tion that Taylor is interested in technology. Since tracker.com
has already seen that identifier before they can start to build up a

profile about what Taylor is interested in based on the sites they

have visited and any other auxiliary information they might have.

While being interested in technology may be fairly innocuous, web-

sites could reveal something potentially more sensitive such as

health conditions, sexual orientation, or political affiliation. The

issue here is that by being able to read the cookie value the user

can be re-identified across websites by a third party on multiple

sites visited by the same user.

Shared Storage: This is where the Shared Storage API comes into

play. As Figure 1b shows, while writing data to storage that is

unpartitiond by top-level site is still allowed, the reading of values

through the Shared Storage API is intended to be severely limited.

While the cookies are sent alongside network requests and can

sometimes be read by JavaScript, values in shared storage cannot

be directly read. The idea is that even if the website were to store

“Taylor” in shared storage if that value cannot be read, then the user

cannot be re-identified.

Shared Storage attempts to accomplish this by only allowing

data stored in shared storage to be read in an isolated environment,

called a worklet.
One main use of the Shared Storage API is deciding what content

to show a user based on values stored in shared storage. This can

be done by calling the Select URL API which takes in up to eight

URLs and selects one to be shown to the user based on the values

in shared storage. The Select URL API can not be used without the

Shared Storage and consists of a single function: selectURL.
Figure 2 shows this selectURL being used for A/B testing by

tracker.com. With cookies this would be very simple, one would

simply read the cookie through the JavaScript of the webpage and

use an if statement to set the src attribute of an iframe to the URL

of the content the user should see.

Since the values in shared storage cannot be directly read outside

of the worklet, the branching logic must happen inside the worklet.

A call to selectURL triggers code inside the worklet. From there,

the code can decide which URL to show the user based on the

shared storage data and any auxiliary information passed in with

the selectURL function call. When the selectURL function returns

the content, the selected URL can be loaded either as an iframe or

a fenced frame.

Non Worklet Functions: In addition to functions that cause code

to run in the worklet. Developers can call Shared Storage functions

such as set1, append, batchUpdate, delete, and clear to modify

values in shared storage from the JavaScript of a page or in network

response headers in much the same way that cookies can be set.

Worklet Functions: The worklet has access to all of the Shared

Storage functions that are available to the JavaScript outside of the

worklet but with additional functionality such as being able to use

Private Aggregation API operations.

1
To prevent overwriting existing data the ignoreIfPresent attribute can be used

while calling the set function.

Exploiting the Shared Storage API CCS ’25, October 13–17, 2025, Taipei, Taiwan

 tracker.com - iframe

 <script>

	 sharedStorage.worklet.addModule('worklet.js')

 URLs = [tracker.com/ad0.html, tracker.com/ad1.html]

 iframe.src = sharedStorage.selectURL(…, URLs)

 </script>

tracker.com - Server

123.4.567.89 requested ad0.html

tracker.com - iframe

tracker.com - Worklet (Browser)

 URLs = [tracker.com/ad0.html,

	 tracker.com/ad1.html]

 if (sharedStorage.get(‘group’) == 0){

	 return 0 // index of ad0.html

 } else {

	 return 1 // index of ad1.html

 }

example.com
2) List of URLs passed to worklet through call to

selectURL and src of iframe set

3) URL selected based on contents of shared storage

4) URL returned to website JavaScript then iframe

5) iframe requests ad0.html

6) Server records request for ad0.html
7) server returns ad0.html

8) iframe displays ad0.html

1) tracker.com iframe loaded onto example.com
and loads JavaScript for worklet code

Figure 2: Selecting a URL from a list using the Shared Storage API for a user where the value for group has been set to 0.

Code that runs in the worklet must be defined in a separate

JavaScript file and loaded into the page prior to being invoked

using either the addModule or createWorklet functions.
Select URL Budget: While the number of URLs passed into select
URL limits the amount of information that can be learned about the

values with a single call, each time selectURL is called some infor-

mation could be leaked. This means that an unlimited number of

calls could leak an unlimited amount of information. To limit how

much information is leaked over short periods of time the API intro-

duces several “budgets.” With a starting budget of 12 bits per origin,

across all pages visited by a user in a day, each call to selectURL
costs 𝑙𝑜𝑔2 (|𝑈𝑅𝐿𝑠 |). The reasoning is that the 𝑙𝑜𝑔2 (|𝑈𝑅𝐿𝑠 |) deduc-
tion represents the information theoretic number of bits that are

leaked by knowing which of |𝑈𝑅𝐿𝑠 | was selected. If only two URLs

are passed in, there are only two possible outputs (i.e., URLs that

could be selected), which could be represented by a single bit (0 or

1). Similarly, if eight URLs are passed in there would be a budget

deduction of three because it would take three bits to represent

eight values. If the deduction for a given operation would make

the total of the budget deductions in the previous day exceed the

budget, the call would return the first element in the list of URLs

that have been passed in.

Google has also added two additional budgets to the API as a

way to patch issues in the proposal. To prevent a visit to any one

page from leaking too much there is an additional budget of 12 bits

per top-level page load. The other new budget seeks to prevent a

single origin from monopolizing this per page page load budget

giving each an individual budget of 6 bits per top-level page load.

Data Origin: For the most part, the origin of the context used to

invoke Shared Storage API functions determines the origin of the

data that the functions can access. However, cross-origin worklets

can be created allowing third parties to access their data when

using functions such as selectURL without the need for an iframe.

Operation Queue: Calls to all Shared Storage API functions are
placed in a queue for the corresponding origin responsible for the

function call and are executed in the order that they were added to

the queue. Having a unique queue for each origin prevents the API

from leaking some information about an origin’s actions to other

origins on the page.

Having this queue also means that calls to operations that may

take time to finish executing are completed before subsequent func-

tions execute. For example, if two calls to selectURL are made,

the first must finish executing before the second starts running. If

there were no queue, developers would not be able to reason about

whether a call to functions like set or appendwould execute before
a call to selectURL returned.

Data Persistence: By default, the values stored in shared storage

are retained for the 30 days following when they were written. This

time limit is far shorter than the current 400-day maximum lifetime

of a cookie in Chrome [14]. Users can also manually clear shared

storage values, along with other browser data, including cookies,

from the Chrome settings menu.

Attestation Requirement: A non-technical measure that Google

put in place to prevent misuse of the APIs is the requirement that

companies complete an enrollment and attestation process before

they can use the privacy sandboxAPIs (including the Shared Storage

API) on websites. During the process of requesting access to the

APIs companies must explicitly state that they do not intend to

identify users across sites. Companies can do this by filling out a

form from Google, where they must also specify which APIs they

want to use, as well as information about their company such as

the location of their privacy policy.

Once they receive approval, which is tied to a domain, they are

given a file that they must place at a standardized well-known
URL. Users may also manually list out domains that do not have

to complete the attestation process to access the privacy sandbox

APIs on their browser. This requirement went into place in August

2023 [35] and the implications of this requirement are discussed in

more depth in Section 6.

Fenced Frame: As mentioned earlier, the result of selectURL can

be loaded into a fenced frame. Fenced frames are another one of

Google’s privacy sandbox proposals [31]. Functionally, they per-

form a similar function to iframes creating a nested browsing con-

text in a page. The main difference is that communication between

the content of the fenced frame and the embedding context is highly

restricted. Eventually Google will require that the result of select
URL be loaded into a fenced frame but, Google is allowing the URLs

to be loaded into iframes through 2026 [76].

Private Aggregation API: The Shared Storage API can also be

used in conjunction with Google’s Private Aggregation API. As the

name suggests the API can be used to create reports of aggregated

data, including data from shared storage [32]. Use cases for this

include reporting on approximately how many unique users have

seen an ad or the demographics of those users. To preserve privacy,

CCS ’25, October 13–17, 2025, Taipei, Taiwan Alexandra Nisenoff, Deian Stefan, and Nicolas Christin

these reports do not include exact numbers, but also include some

level of noise.

The Shared Storage proposal also currently allows event level re-

porting which allows developers to send reports triggered by events

in the fenced frame to URLs specified in the initial call to select
URL. Like fenced frames, this less privacy preserving temporary

measure will be allowed through 2026 [76].

3 Threat Model & Attacker Capabilities
We evaluate the feasibility of attacks from a third-party attacker

against Shared Storage. The attacker has previously stored data

(e.g., a unique identifier) in shared storage, in any context, and aims

to circumvent the Shared Storage budget and read those data when

the user visits a different page. We primarily discuss how those

data could be used by third parties to re-identify users, because that

is precisely what the Shared Storage API intends to prevent, but

those data could be used for other purposes as well.

For an attacker to use the Shared Storage API at all, and sub-

sequently for our attacks to work, they must have completed the

attestation process as described in Section 2. This would be true for

developers intending to use the Shared Storage API for legitimate

reasons. The same process would need to be completed by com-

panies if they wanted to make use of the attacks that have been

shown to work against other Privacy Sandbox APIs such as the

Topics API or the Protected Audience API.

Rather than considering an attacker that can directly load any

content (e.g., an image or JavaScript file) onto the top level page

that is not controlled by them, we assume that the attacker is only
able to load their content into an iframe on the page.

2
The attacker

model and capabilities of the attacker described above are meant

to mimic the situation where content from an advertiser or known

tracker is loaded into an iframe.

4 Attacks
In this section we present several methods for the attacker described

in Section 3 to circumvent the protections that the Shared Storage

API is designed to provide. Specifically, we identify a network tim-

ing attack, a crash attack, a queue timing attack, and a caching

attack. We discuss these next. We also discuss the known issue of

the API’s budget resets leaking information over time. A summary

of Google’s responses to disclosures of the attacks described in this

paper can be found in Section 4.6.

4.1 Network Timing Attack
By definition, a network request to a URL selected by selectURL
cannot be made before the function in the worklet returns (i.e.,

in Figure 2, step 5 must happen after step 4). Through the attack

described below, this allows us to exfiltrate data from shared stor-

age. As the function called by selectURL runs in a worklet, it has

unfettered access to the values stored in shared storage. This means

that the function’s behavior, including how long it takes for the

function to return, can vary based on these stored values.

2
Google recently added support for cross-origin worklets as described in Section 2.

However, we describe the attacks in the rest of the paper in the context of an attacker

that simply has content loaded into an iframe.

Writing a Value: Writing a value that will subsequently be used for

tracking can be done in the standard way any data can be written to

shared storage (e.g., with JavaScript code or via response headers).

The pseudocode in Algorithm 1 gives an example of how this can be

done by an attacker iframe (running JavaScript) for a single binary

variable stored in shared storage.

Algorithm 1 Network Timing Attack - Write

1: procedureWrite(𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟)

2: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 0

3: for 𝑏𝑖𝑡 in 𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟 do
4: window.sharedStorage.set("𝑐𝑜𝑢𝑛𝑡𝑒𝑟",

bit, {ignoreIfPresent:true});
5: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1
6: end for
7: end procedure

Algorithm 2 Network Timing Attack - Read

1: procedureWorklet(𝑐𝑜𝑢𝑛𝑡𝑒𝑟)

2: 𝑣𝑎𝑙𝑢𝑒 ←sharedStorage.get(𝑐𝑜𝑢𝑛𝑡𝑒𝑟)
3: if value == 1 then
4: Sleep for a predetermined amount of time

5: end if
6: return 0 ⊲ Network request for URL made

7: end procedure
procedure Page JS(𝑤𝑜𝑟𝑘𝑙𝑒𝑡_𝑠𝑐𝑟𝑖𝑝𝑡,𝑈𝑅𝐿_𝑙𝑖𝑠𝑡)

2: sharedStorage.worklet.addModule(𝑤𝑜𝑟𝑘𝑙𝑒𝑡_𝑠𝑐𝑟𝑖𝑝𝑡);

𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 0

4: while 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 < length of identifier do
make a nested iframe i ⊲ or fenced frames

6: opaqueURL← await sharedStorage.selectURL(

𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ,𝑈𝑅𝐿_𝑙𝑖𝑠𝑡);

i.src← opaqueURL;

8: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1
end while

10: end procedure

Reading a Value: Algorithm 2 shows how to read this value.

Within an iframe they control, the attacker creates as many (nested)

iframes as there are bits in their identifier, to load the results of

selectURL and make network requests. From there, the attacker

can call selectURL as previously described and immediately set the

src attribute of the iframe or the equivalent attribute for a fenced

frame to the value that the call to selectURL returns. To prevent
the code that called selectURL from learning when the function

in the worklet returns, a promise is returned as soon as the call is

placed in the operation queue which resolves when the function

in the worklet returns and the embedding page is prevented from

directly reading the value of the URL that was returned. Inside the

worklet, if the function sees that the first bit of the data
3
it wants to

exfiltrate out of the worklet is a 0, it returns immediately; if it sees

a 1, it waits before returning. When the function in the worklet

3
For reidentification of a user across sites this data would be an identifier.

Exploiting the Shared Storage API CCS ’25, October 13–17, 2025, Taipei, Taiwan

W
ith

 D
el

ay
W

ith
ou

t D
el

ay

selectURL called
Value read from shared storage

Artificial delay
Index returned

Network request sent
Network request

received by server

selectURL called

Value read from shared storage
Index returned

Network request sent
Network request

received by server

Time

Difference in when the server would
receive the network request based on
if there is a delay or not

 W
or

kl
et

 W
or

kl
et

Figure 3: Server-side timing difference with delayed worklet.

returns the promise from selectURL resolves, a network request

can be made, and the server can learn what value was stored in

the first bit of the data based on the relative time that it receives a

request relative to some earlier request or through auxiliary infor-

mation sent from the browser about when the call to selectURL
was made. Figure 3 shows the difference in the time at which the

server receives a request generated by a call to selectURL, based
on how long the function in the worklet takes to return (i.e., if an

attacker chooses to add an artificial delay to the function in the

worklet).

By doing this, an attacker can leak an additional bit of informa-

tion that will not be accounted for in the existing privacy budgets.

This is because the proposal only considers information leakage

based on which URL is selected:
4
not any covert channels. Hence,

how much data can be transmitted and how quickly depends on

how long the user stays on the page and the delay parameter used

by the attacker.

Practicality: To understand if this attack is practical, we must

consider the average time a user spends on a page and the length

of an identifier that an attacker wants to leak. For data to leak with

this attack, the user must remain on the page through when the

call to selectURL returns so that the page can make a network

request to the server, leaking the information. Since calls to select
URL happen in series rather than in parallel, if an attacker wanted

to leak two bits of data, each one requiring a delay, the user would

need to stay on the page for a minimum of approximately 2 delays.

Prior works have estimated that the median time that a user

stays on a webpage ranges from around 12 seconds to just under

a minute [36, 47, 52, 53]. We also take the identifier to be 33 bits

long, as that is the minimum number of bits required to uniquely

identify every person on Earth (2
33 ≈ 8.5 Bn).

To determine the longest delay that would allow a 33-bit long

identifier, that requires 33 delays, to be leaked within the median

time a user spends on a page, we can simply divide the number

4
In this scenario, the actual URL that is returned by the call to selectURL can also

be used to reveal information concurrently with the delay as long as the select URL

budget has not been exhausted.

of seconds by 33. A longer delay may be more noticeable to the

server as it is less likely to be due to network conditions. Since

the iframes that these resources are loaded into can be hidden

from users, even a longer delay could go unnoticed by users. By

doing this, we find that the maximum delay would be between 0.36

seconds (for a 12s dwell time) and 1.82 seconds (for a 1-min dwell

time). For identifiers that do not require a delay to transmit every

bit, the maximum delay could be larger since finishing all of the

calls to selectURL would happen more quickly. A delay of 0.36

seconds is in line with the round-trip time between the US and

Australia, meaning that an additional delay of that length would

likely allow an attacker to distinguish an intentional delay from

normal variations in the latency of the request.

Even in the case where a full identifier cannot be transmitted,

the information that is leaked can be used in conjunction with

other methods of identifying users (e.g., browser fingerprinting)

to improve a tracker’s ability to re-identify a user if the Shared

Storage API had not existed.

Extensions: Several slight modifications can extend this attack

by making it faster, avoiding any deduction from the Select URL

budget, or leaking more information per call to selectURL.
Avoiding Select URL budget deduction: If JavaScript makes a

call to selectURL and only passes in a single URL the call will

not decrease the Select URL budget (log
2
(1) = 0). Paired with this

covert channel, this means that information about the values in

shared storage can be leaked without any deduction from the Select

URL budget as long as the user remains on the same page.

Leaking more than one bit with a single call to selectURL: We

assumed above that this covert channel uses a single predetermined

delay, but, conceptually, there is no reason an attacker could not

use different delays to pass more information to the server (e.g., no

delay, short delay, long delay to reveal which of three values were

stored). This may be more beneficial in a scenario in which limiting

the number of requests being made is more of a priority than the

amount of time it takes to convey information.

Optimizing the speed at which data can be leaked: Tailoring
delays to current network conditions would be useful to balance

how long it takes to reveal the information, while ensuring that the

delay is long enough that it is not obfuscated by normal variability

in network conditions. An attacker could simply time how long the

request for the worklet script from addModule took to get a sense of
the current network conditions without requiring an unnecessary

network request. Repeating the transmission of the value could

also help with any noise introduced by network variability.

If a tracker were creating identifiers, they could optimize their

selection to assign identifiers that minimize the number of delays

used to transmit that information, thereby decreasing the total time

needed to convey information to the server. Furthermore, putting as

many of these values towards the beginning of the identifier would

allow the largest number of bits to be sent in the shortest amount

of time in case the user left the page before the entire identifier

could be transmitted.

Potential Mitigations: As an attacker can currently add arbitrary

delays to functions in the worklet, attempting to mitigate this covert

channel by adding small delays to the return times of the code in

the worklet could easily be defeated by the attacker making their

delays longer. Concretely limiting the runtime of functions in the

CCS ’25, October 13–17, 2025, Taipei, Taiwan Alexandra Nisenoff, Deian Stefan, and Nicolas Christin

worklet could also help with this issue. In a public post, made after

our disclosure, the developers did mention potentially adding a

limit to the run time of another worklet function [45], suggesting

their openness to limiting function run times in the worklet.

In their response to our disclosure, Google mentioned various ad-

hoc solutions from requiring “that all of the URLs [be] prefetched

as web bundles,” to “fetch[ing] from some CDN that has a trusted

policy that it won’t leak its logs,” to requiring “the server [execute]

in a trusted execution environment running trusted code”, and

using “some sort of private information retrieval service.” As URLs

may point to dynamic content or additional external resources,

both the initial request and any subsequent requests would need

to be thus restricted. These solutions are not just ad hoc, but also

heavy-weight and a significant departure from open web standards.

Adding these types of network access restrictions to fenced

frames has also been discussed [67]. But these plans have not been

implemented and, as long as the result of selectURL can be loaded

into an iframe, the benefits of fenced frames are a moot point.

By preventing calls to selectURL with one URL the API could

limit how much information is leaked through several attacks de-

scribed in this paper. When calling selectURL with a single URL

only one URL can be returned and could simply be loaded directly.
5

4.2 Crash Attack
When the network conditions (e.g., slow mobile networks) require

prohibitively long, or highly variable delays, using a termination
covert channel (instead of an external timing covert channel) may

make it easier for an attacker to leak data.

Writing a Value: Writing an identifier is done in the same way

as the previous attack: the attacker simply writes values to shared

storage using JavaScript or via response headers.

Reading a Value: To read a value, the attacker goes through

the same steps as in the previous attack, but instead of delaying

when the function returns, the attacker intentionally crashes the

JavaScript in the worklet depending on the value stored. When the

worklet JavaScript crashes, no request is made to the server. Like

in the previous attack, the server can then infer the value stored in

shared storage depending on whether it receives a request (i.e., the

worklet has not crashed), or not (i.e., the worklet has crashed). The

deductions from the Select URL budget take place whenever the

navigation of a frame occurs since that is when the information is

hypothetically leaked to the server. Crashing the worklet prevents

this navigation, and therefore, budget deduction from happening.

In terms of implementation, we initially found a bug that allowed

us to crash the worklet by calling console.log on an array inside

the worklet. While this specific bug was patched, a simple strategy

involving computations on a massive array could still crash the

worklet, and prevent a request from being made.

Besides the worklet, other elements on the page will also crash

in accordance with Chrome’s site isolation policy [63]. For instance,

an iframe embedding a worklet that crashes itself also crashes,

preventing subsequent requests. In Figure 4, this means that every-

thing from tracker2.com will crash. To handle this, the attacker

5
All other worklet operations that otherwise would have been runwhen calling select
URL could be handled with the run function which allows code to run in the worklet

without selecting a URL.

 tracker1.com - 3rd party iframe

 <script>

 // reload tracker2.com iframe

 </script>

 tracker2.com - 3rd party iframe

 <script>

 URLs = [https://tracker.com/ad1.html, …]

 sharedStorage.selectURL(…, URLs)

 </script>

tracker2.com - frame

example.com

Figure 4: The iframe format necessary for the crash attack.

simply needs to nest the tracker2.com iframes in another iframe

from a separate domain (that does not need to have completed

the attestation process). In the figure, this is tracker1.com. Since
tracker1.com is from a different domain it will not crash with

tracker2.com. From here, the tracker1.com iframe can reset the

src attribute of the top most tracker2.com iframe forcing the

frame to reload. By reloading the nested iframe, the attacker is

given another opportunity to either make a request or crash, leak-

ing another bit in the same way the first bit was leaked.

Practicality: To assess the practicality of this attack, we implement

it as described above and experimentally determine what delay be-

tween reloading the outermost iframe is necessary to consistently

allow the worklet to crash or make a request for a resource. Our

tests were completed on a 2020 MacBook Pro with 32 GB of memory

and a 2.3 GHz Quad-Core Intel Core i7 processor running Chrome

version 135.0.7049.115. We find that with a delay of approximately

0.5 seconds, we can consistently recover randomly selected identi-

fiers. With delays shorter than this we begin to see a degradation

in performance: not all bits of the identifier are exfiltrated. In these

cases, partial data are still revealed, which could be used in con-

junction with auxiliary information to aid in reidentifying a user.

If we consider an identifier of 33 bits this would require a user

to stay on a page for 16.5 seconds. While this delay falls within

the range of median dwell times identified in the literature, it is

potentially slower than the network timing attack. We stress that

this is simply a ballpark estimation, as it is likely that the necessary

delay between reloads of the page is deeply dependent on several

other factors including, but not limited to, the hardware used to

run Chrome and the method used to crash the worklet.

Extensions: As with the previous attack, calling selectURL with
a single URL would result in no budget deduction, even if the

JavaScript did not crash. Crashing the worklet can also be paired

with delaying requests to leak more information.

A similar result can be achieved by causing a crash in the fenced

frame that is loaded as a result of a selectURL call. Similar to crash-

ing a worklet, crashing a fenced frame causes cascading failures.

This could be used to circumvent mitigation strategies that depend

on pre-loading all possible resources as it leaks information to the

embedding frame.

Potential Mitigations: If a worklet crashes, preventing the frame

that calls it from crashing and returning the default URL could

prevent the server from learning about the crash, since the server

would still receive a request. Unfortunately, developers might not

Exploiting the Shared Storage API CCS ’25, October 13–17, 2025, Taipei, Taiwan

5 10 15 20 25
Seconds After Page Navigation

0

10

20

30

40

50

60

of

 C
al

ls
Re

tu
rn

ed

(a) Only webpage JavaScript writing to shared storage.

0 10 20 30 40
Seconds After Page Navigation

0

100

200

300

400

of

 C
al

ls
Re

tu
rn

ed

(b) Webpage JavaScript and worklet writing to shared storage.

Figure 5: Return times of calls to set from webpage JavaScript

expect this behavior from the API and this would also (erroneously)

decrease the Select URL budget.

4.3 Queue Timing Attack
An attacker whowants to minimize the number of network requests

and calls to selectURL could take advantage of the queue for Shared
Storage API operations from an origin. This queue is the same for

both the webpage JavaScript and the worklet. Outside the worklet,

calls to functions such as sharedStorage.set return as soon as

they have been successfully added to the queue. If code inside of

the worklet simultaneously makes calls to these functions, it can

result in delays in when the calls from outside of the worklet are

successfully added to the queue.

Writing a Value: This step remains the same as earlier attacks,

simply writing to shared storage as usual.

Reading a Value: Inside the worklet, the code either does nothing
or floods the queue for predetermined time intervals to represent

data that the attacker wants to exfiltrate. The attacker can use exist-

ing network communication schemes for encoding (and decoding)

this information.

Outside of the worklet, the attackers can, e.g., look for spikes in

the number of returned function calls in a given time interval to

reveal when the worklet was or was not flooding the queue. The

time between those spikes reveals the behavior inside the worklet.

For instance, if the worklet were trying to convey a value of zero,

it could simply not do anything, and the JavaScript of the webpage

would see the baseline number of function calls being returned.

If, on the other hand, the worklet saw a value of one, they could

flood the queue. The webpage JavaScript would see fewer of their

requests returning over a given period of time, which would lead

that JavaScript code to be able to infer the value in shared storage

is a one.

As a concrete example, Figure 5a shows the return times for 5,000

calls to window.sharedStorage.set without the worklet calling
the same function. Meanwhile, Figure 5b shows the return times

for the same number of calls in the scenario where the code in

the worklet alternates between two seconds of flooding the queue

with calls to window.sharedStorage.set and two seconds of not

taking any action. To read a value the attacker must trigger code

to run in the worklet so that they can make the necessary func-

tion calls from inside the worklet. While code is running inside

the worklet, the attacker starts flooding the queue with calls to

window.sharedStorage.set from outside the worklet and record-

ing the return times of those calls.

Practicality: Compared to attacks discussed earlier in the paper, the

attack on the queue is less directly controllable. While a one-second

delay in the network timing attack almost directly corresponds to

a one second delay in when the server receives the response, that

correlation is not quite as direct for the queue timing attack. As can

be seen in Figure 5b a two second period of flooding the queue does

not necessarily match with a two second period of delayed return

times. Thus, an attacker would have to be careful about potentially

flooding the queue again before it has had a chance to get cleared,

and fail to transmit information in the process.

Another approach that an attacker may have more control over

is to break up the information that they want to leak into smaller

chunks. Rather than leaking all information in a single call to

selectURL, they could make a call for each bit with a delay in

between, to allow pending API calls to finish. Both of these meth-

ods would likely be much slower than other attacks but would still

be able to leak at least as many bits as is allowed by the current per

page budget without any budget deduction.

Potential Mitigations: Limiting the run time of functions in the

worklet could limit how much information is leaked for a given

call that triggers code in the worklet. However, multiple sequential

calls to trigger code in the worklet could circumvent this. Limiting

the total number of calls to functions that interact with the shared

storage queue or rate limiting these requests could also help.

Making the return times of API calls outside of the worklet

independent from what happens in the worklet would be necessary

for fully preventing this avenue for leaking information. Having

initial queues that are separate for the worklet and other JavaScript

may help but would require additional overhead.

While Google acknowledged our report, and discussed several

of the above mitigation strategies, they also commented that “while

this particular side-channel could be mitigated, not all [side chan-

nels] can and we potentially need to lean on after-the-fact analysis

to detect these patterns and adapt over time.” While potential tech-

nical mitigations for this attack were mentioned, they have not

been implemented. On the other hand, Google does appear to be

CCS ’25, October 13–17, 2025, Taipei, Taiwan Alexandra Nisenoff, Deian Stefan, and Nicolas Christin

moving forward with data collection that would help with the more

reactive, instead of proactive, after the fact forensics.
6

4.4 iframe Caching Attack
While the attacks above can be carried out without decreasing the

Select URL budget, they have downsides such as requiring a large

number of calls to Shared Storage functions. By taking advantage

of a caching covert channel on iframes, an attacker can learn what

URL a call to selectURL returned in the past for that top-level page

without decreasing the Select URL budget or making any calls to

Shared Storage API functions after the writing phase. This attack

mainly takes advantage of the fact that in the normal use of the

selectURL function to load a resource into an iframe, that resource

can be cached, and it is possible to determine if those resources

have been cached without interacting with the Shared Storage API.

 tracker.com - 3rd party iframe

 <script>

 URLs = [tracker.com/ad0.html,

	 tracker.com/ad1.html]

 iframe.src = sharedStorage.selectURL(

	 	 	 	 	 	 	 	 …, URLs)

 // ad1.html selected by selectURL

 </script>

tracker.com - iframe

iframe src = ad1.html
// loaded from server

example.com
 tracker.com - 3rd party iframe

tracker.com - iframe

iframe src = ad1.html

//loaded from iframe cache

example.com

tracker.com - iframe

iframe src = ad0.html

Writing:
server responds to requests

Reading:
server does not respond to requests

Figure 6: Writing a value from shared storage to the iframe
cache and reading it on a subsequent visit to the page.

Writing a Value: For this attack, we assume that an identifier

has already been written to shared storage in the same way as

in earlier attacks and that the attacker now wants to store this

identifier in a way that does not require the Shared Storage API

to retrieve it. To accomplish this, the page makes a call to select
URL, passing multiple URLs as described in Figure 2, and loads the

selected resource into an iframe. For the sake of simplicity, let us

assume that two URLs were passed in ad0.html and ad1.html
and ad1.html was selected and loaded into an iframe. ad0.html
would not be loaded into an iframe and would not be cached. The

server should respond as usual, resulting in the selected URL being

loaded and cached for that top-level page (if the URL were to be

subsequently requested from a different top-level page it would not

be in the cache for that top-level page).

Reading a Value: In the reading phase, the page attempts to load

both ad0.html and ad1.html by setting the src attribute of an

iframe to each of those URLs. This does not involve any calls to any

Shared Storage API functions and therefore no deduction from the

Select URL budget.

The server should not respond to requests in this phase so that

only resources that have previously been cached would be loaded

without an error. Figure 6 shows the result of this process: only

ad1.html, which had previously been cached, is loaded.

6
In fact, part of their data collection efforts seems to be driven by our disclosure of the

fact that calling selectURL with a single URL can circumvent the privacy budget in

https://github.com/WICG/shared-storage/issues/86

Since these nested iframes are from the same domain (tracker.
com) communication with the top-level tracker.com iframe is pos-

sible, allowing the attacker to determine what resource was loaded

from the cache. This essentially provides the same information as

previous calls to selectURL without the Select URL budget deduc-

tion since in both cases ad1.html was loaded into the page and

ad0.html was not.

This reading process is similar to reading an identifier based on

favicon caching as described in prior research [69].

As Chrome partitions the iframe cache per top-level site, this

circumvention method is only helpful to a tracker if a user revisits

a site and the same iframe is loaded onto the page. Previous studies

have shown revisitation rates of top-level pages to be 60% to 78%

within a 20-day period [15, 86]. Paired with the fact that popular

trackers appear on a large percentage of websites [26] there is a

good chance that those trackers could take advantage of iframe

caching. Attackers would also need to be sure that they do not

accidentally poison their cache by loading the resource outside of a

call to selectURL. In our Figure 6 example, if the server ever loaded

ad0.html into that iframe, it would be cached, and both ad0.html
and ad1.htmlwould be loaded from the cache in the reading phase

and the attacker would not know which one was added to the cache

by the call to selectURL.
To summarize, this caching of resources loaded into iframes

allows an attacker to replay calls to selectURL across reloads of

the page without a deduction from the Select URL budget.

Practicality: The speed bottleneck for this attack is writing the

identifier. As this attack requires calls to selectURL with more

than one URL writing the identifier is constrained by the Select

URL budget and the fact that the iframe cache is partitioned by

top-level page. How long writing an identifier to a cache would

take depends on how many sites the tracker wants to move their

identifier from shared storage into the cache and how often a user

revisits these top-level sites. If the tracker were to focus on writing a

33 bit identifier to the iframe cache from shared storage for a single

top level site and the user was to visit the page every day after the

tracker’s Select URL budget resets, this would have to take place

over three days given the current 12 bit per day budget. That being

said, on the second and third day the bits that had already been

cached could be read and used in conjunction with other methods

(e.g., browser fingerprinting) to identify the user.

The reading process of this attack only involves making normal

network requests to a server without having to invoke aspects

of the Shared Storage API that would involve budget deductions.

This means that reading a long value in this way does not rely

on a user repeatedly visiting a page. If we use the setup described

above, where loading one resource represents a value of zero and

the other represents one, this would require 66 requests to read a 33

bit identifier as the two possible resources must be unique for each

bit of the identifier. To the extent that the browser is capable, these

requests can happen in parallel. The median number of requests

made by a webpage at the beginning of 2025 was over 70 [38], so

an additional 66 would be a proportionally large increase but, in

the reading phase the server does not have to return any content.

In terms of storage, this attack requires caching a resource for

each bit of the identifier. Still, the resources themselves could consist

https://github.com/WICG/shared-storage/issues/86

Exploiting the Shared Storage API CCS ’25, October 13–17, 2025, Taipei, Taiwan

of merely a text file with a single character in it making the impact

on the amount of content stored in the cache relatively small.

Potential Mitigations: Preventing resources loaded from the re-

sult of a call to selectURL from being cached or loaded into iframes

could be avenues to mitigating this particular issue. By taking these

steps, the API would prevent “free” API calls when a user revisits a

page that had previously made a call to selectURL. Google plans
to address this class of attacks by preventing the results of select
URL from being loaded into iframes and requiring that the URLs be

loaded into a fenced frame. Currently, this change is not planned

to take effect until 2026 at the earliest. Moreover this, ties the miti-

gation to the effectiveness and the adoption of fenced frames.

4.5 Data Leakage Over Time Attack
Since the Select URL budget periodically resets (every 24 hours),

additional data can be leaked over time, in stages. This means the

Shared Storage API is susceptible to a vulnerability similar to one

observed in the FLoC proposal [6, 75], which we summarize below.

This issue of arbitrary amounts of data being leaked over time

has long been acknowledged by the developers of the API as an

inherent issue with any proposal where the limits on how much

data can be leaked reset after a given amount of time [55].

In FloC users were sorted into “cohorts” with similar browsing

histories. After every time period (initially 7 days), users would be

sorted into a new cohort. Websites could read what cohort a user

belonged to, but since thereweremany users in each cohort, the idea

was that the users could not be uniquely identified. Unfortunately,

research showed that over time the sequences of cohorts that a user

was assigned to were often unique [6]. To derive that sequence of

cohorts, a (third-party) attacker could take advantage of various

types of partitioned storage that are accessible, even if third-party

cookies are not. A similar attack can be used against the Shared

Storage API. Specifically, an attacker can read different parts of

their chosen identifier every time the budget resets.

Writing a Value: Writing an identifier is identical to the network

timing attack or crashing attack. The attacker simply writes val-

ues to shared storage either with JavaScript or through network

response headers.

Reading a Value: When the Select URL budget resets for a given

page the attacker reads the next few bits of the identifier that they

have previously stored in shared storage, by calling selectURL, and
storing the bits that were leaked based on what URL was requested

in any form of partitioned storage they have access to. This moves

the identifier that was stored in shared storage, and is therefore

the same across all top-level pages, into storage that is partitioned

by the top-level page but has no limit on the frequency at which it

can be read. Over time this means that the partitioned storage for a

tracker on each top-level page will have the same identifier stored

for a user. This is similar in concept to the iframe caching attack in

which the calls to selectURL are essentially reused across reloads

of a single top-level site.

Differences from FLoC Attack: With the Shared Storage API an

attacker can have more control over making an identifier unique to

a given user, rather than relying on the cohorts FLoC assigns the

user to based on their browsing history. With each call to select
URL the attacker can choose to read a new part of the identifier,

while new information can only be gained from FLoC when the

user is assigned to a new cohort.

The Shared Storage API has the privacy benefit that for a given

time period there is a limit on how often even part of an identifier

can be read, whereas for FLoC, reading which cohort a user has

been assigned to does not suffer from the same limitation.

Practicality: This attack does not involve deviating from the in-

tended use of the Shared Storage API or the selectURL function
so, in this case, the Select URL budget is the limiting factor in how

much data can be leaked. This means that only 12 bits of data can

be leaked in this way per day. Individual calls to selectURL are

negligibly fast when the code that is run inside the worklet is simple.

A single call to selectURL is intended to leak up to three bits of

information due to the limit on the number of URLs that can be

passed in to the function. Three calls to selectURL, which would

leak 12 bits, could easily take place in far less time than even the

lowest estimates for median dwell time on a page [36, 47, 52, 53].

As discussed in relation to the iframe caching attack, users fre-

quently revisit sites so it is likely that attackers could continue to

leak information as users revisit these sites over time.

PotentialMitigations: The Select URL budget is an integral part of
the Shared Storage proposal because some information is inherently

leaked when selectURL is called. Lowering the budget would slow

down the rate at which the data could be leaked but would not stop

it. Limiting even partitioned storage methods could help to prevent

third parties from building up the identifiers but would impact

far more than just the Shared Storage API. If fenced frames were

required and did not leak the result of selectURL to the server the

embedding frame could not build up an identifier, but this requires

many changes to the status quo and would make using the API for

anything other than static content very difficult.

4.6 Google’s Responses

Attack Status Link
Location of
Disclosure

Network Timing Proposed

Solution

https://github.com/WICG/shared-

storage/issues/86

Initial Issue

Crash Partially

Fixed

https://github.com/WICG/shared-

storage/issues/86

Issue Thread

Queue Timing Proposed

Solution

https://github.com/WICG/shared-

storage/issues/136

Initial Issue

iframe Caching Planned

Fix

https://github.com/WICG/shared-

storage/issues/86

Initial Issue

Data Leakage Over Time No Planned

Fix

https://github.com/WebKit/standards-

positions/issues/10

Issue Thread

Figure 7: Details of Google’s responses to disclosures of pos-
sible attacks.

For each attack described in this paper Google directly replied

discussing potential fixes or acknowledging the inherent limitation

of the API, as was the issue of the amount of data that can be

leaked over time. For two of our disclosures, Google’s response also

referenced relying on identifying indications of misuse (e.g., making

a large number of requests or intentional crashes) to identify misuse

of the API. Recently, Google added more logging capability to the

implementation of the API, which references our GitHub issue for

the Network Timing Attack, to help identify cases where many

calls to selectURL with a single URL are made. Disclosures as well

https://github.com/WICG/shared-storage/issues/86
https://github.com/WICG/shared-storage/issues/86
https://github.com/WICG/shared-storage/issues/86
https://github.com/WICG/shared-storage/issues/86
https://github.com/WICG/shared-storage/issues/136
https://github.com/WICG/shared-storage/issues/136
https://github.com/WICG/shared-storage/issues/86
https://github.com/WICG/shared-storage/issues/86
https://github.com/WebKit/standards-positions/issues/10
https://github.com/WebKit/standards-positions/issues/10

CCS ’25, October 13–17, 2025, Taipei, Taiwan Alexandra Nisenoff, Deian Stefan, and Nicolas Christin

as Google’s responses to all of the attacks can be accessed at the

links in Table 7.

5 Usage of the Shared Storage API
To understand the adoption of the Shared Storage API, we perform

multiple measurements across different aspects of the API: the

proportion of domains that have completed the attestation process,

both among popular and tracking domains, and the prevalence of

Shared Storage API usage in the wild. These measurements provide

insight into users’ current exposure to the API as well as provide

an overview of the characteristics of companies that have access to

the API and would therefore be able to exploit the API if desired.

5.1 Attestation Completion
As discussed in Section 2, companies must complete Google’s at-

testation process before being able to use the Shared Storage API.

Understanding which companies have completed this process di-

rectly relates to who could carry out these attacks as well as attacks

on several other APIs in the Privacy Sandbox ecosystem.

To compile a list of sites that may have completed the attestation

process we used two sources: Google’s Privacy Sandbox Enrollment

Report, a public list of what companies have completed the enroll-

ment process which was last updated on June 28th, 2024,
7
and a list

of domains shipped with Google Chrome titled privacy-sandbox-
-attestations.dat from December 25th, 2024 from which we

extracted all plaintext domains.

After excluding URLs used exclusively for demos of the Privacy

Sandbox API, provided by Google, we were left with 289 domains.

Google requires that the attestation files be hosted at a well-known
URL and available to researchers. In late December 2024, for each

domain, we used the Python request library to make a request to

the path on the domain where the attestation file should be hosted.

For domains where this process did not successfully retrieve a

valid attestation file we manually visited the URL in an attempt to

retrieve the file. From this process we were able to obtain 245 valid

attestation files, meaning that 85% of the domains that we checked

were hosting an attestation file.

During the process of getting access to these APIs from Google,

developers can request access to all or a subset of the APIs that

require an attestation. Of the attestation files we collected, 61% (149)

reported that the domain had access to the Shared Storage API.With

public information, it is only possible to know if the domain was

ultimately granted access to the Shared Storage API; on the other

hand, no information is available about requests Google may have

denied.

5.1.1 Popularity of Domains With Shared Storage Access. To under-
stand the popularity of the domains, which we use as a proxy for

companies, that have completed the attestation process we check

the rank of these domains in the Tranco list
8
[50] from the same

date as the Chrome browser file. Figure 8 shows the cumulative

proportion of domains from this list that we found hosting an at-

testation file and had access to the Shared Storage API specifically.

6.4% of the top 1,000 domains host valid attestation files while 4.3%

host valid attestation files that include the Shared Storage API.

7
https://github.com/privacysandbox/attestation/blob/main/enrollment_report.csv

8
The Tranco list used here can be found at https://tranco-list.eu/list/932Q2

0 25000 50000 75000 100000 125000 150000 175000 200000
Tranco Rank

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Cu
m

ul
at

iv
e

Pr
op

or
tio

n
of

At
te

st
at

io
n

Fil
es

Attestation File Includes Any API
Attestation File Includes Shared Storage

Figure 8: The cumulative proportion of attestation files with
a domain in the Tranco top 200K.

In short, while a relatively small number of domains have com-

pleted the attestation process, at least some companies are aware of

the Privacy Sandbox APIs, including the Shared Storage API, and

have made efforts to secure access to them.

5.1.2 Tracking Affiliation of Domains With Shared Storage Access.
While comparing the domains that have completed the attestation

process to the Tranco list provides insight into the popularity of the

domains with access to the API, Shared Storage should be primarily

useful to advertisers. Companies associated with advertising and

tracking may have more of an incentive to exploit Shared Storage

for tracking users.

To get a sense of how many of the companies with attestation

files are associated with these areas we checked the domains with

attestation files, which we previously compared to the Tranco list,

against tracking-related domains from the Disconnect Tracker Pro-

tection list [19]. Of the domains that have a valid attestation file

48.2% appeared in the Disconnect list. Similarly, 56.4% of the do-

mains with access to the Shared Storage API appeared in the Dis-

connect list.

From the other direction, out of all of the companies listed in the

disconnect file, 112 (7.2%) have at least one URL that completed the

attestation process and 78 (5.0%) of companies had at least one URL

that had completed the process and been granted access to Shared

Storage. When we only consider companies that the list designates

as related to advertising, we see that 9.2% (104) had completed

the attestation process and 6.5%(73) of those companies had been

granted access to Shared Storage, both of which are slightly higher

percentages than in the list as a whole. Altogether, this shows us

that many of the companies that have gone through the attestation

process are associated with tracking, but there are still many known

tracking domains that do not have access to the API.

5.2 Shared Storage in the Wild
To better understand users’ exposure to the Shared Storage API we

conducted an additional crawl in early February 2025 to look for

usage of the API on popular websites. This is necessary because,

even if a website has not completed the attestation process them-

selves, it may include content from a domain that has. Companies

that complete the attestation process may also choose not to use

the APIs that they have access to.

https://github.com/privacysandbox/attestation/blob/main/enrollment_report.csv
https://tranco-list.eu/list/932Q2

Exploiting the Shared Storage API CCS ’25, October 13–17, 2025, Taipei, Taiwan

For each of the top 10,000 domains and a random sample of 5,000

domains from the remaining top 1 million domains from the Tranco

list of popular domains
9
we visited the page in a fresh instance

of Puppeteer with the Shared Storage API enabled. Through the

Chrome developer tools, we captured all instances of the API being

called both outside and within the worklet.

From this crawl, we found that approximately 10.1% (1,311) of the

12,955 sites we were able to reach did invoke the Shared Storage API

in someway.Most relevant to our attacks, 1,250 of these pages (9.6%)

made at least one call to selectURL, with 1,613 calls to selectURL
across all pages.

All of these interactions can be traced back to four unique

domains. Two domains associated with Google, securepubads-
.g.doubleclick.net and ep3.adtrafficquality.google, were
the most prolific in their use of the API, using Shared Storage on

1,222 and 177 websites respectively. crcldu.com (46 websites) and

ads.optable.co (17 websites) made up the other domains respon-

sible for these instances.

The reality that the Shared Storage API is being used on popu-

lar websites indicates that end users are already being exposed to

the API. In the course of these measurements, we did not look for

any evidence of the attacks described in the paper being currently

exploited on websites. However, historically, fingerprinting com-

panies have used a variety of methods to learn about users [48].

Additionally, attacks that were initially discussed theoretically, such

as canvas fingerprinting [58], have later been found to be used in

practice [1, 21, 48]. While the adoption of code that calls functions

that read from Shared Storage remains fairly low and originates

from a small set of domains, it does occur, and many more compa-

nies have completed the process necessary to start using the Shared

Storage API if they choose to in the future.

6 Discussion
In this section, we discuss the limitations of our study and possible

future work (Section 6.1), ethical considerations (Section 6.2), impli-

cations for user choice (Section 6.3), the positions of other browsers

(Section 6.4), and the impact on cross browser compatibility and

centralization (Section 6.5).

6.1 Limitations and Future Work
Shared storage is a complicated proposal that depends on several

other technical proposals (e.g., fenced frames and the Private Ag-

gregation API), and its feature set and complexity is continuing to

grow over time. With the continued evolution of the API and the

other proposals that it depends on new issues might be introduced.

In this paper, we identify several exploitable issues in the Shared

Storage API as designed and implemented today but there may be

more attacks that are possible than we identified. If Google were

able to fix all of the issues we laid out in the paper, the API would

undergo significant changes, including to functionality, and would

require additional analysis. More generally, our paper highlights the

need for a more principled API design, since these APIs introduce

new covert channels, rather than post-hoc fixes.

Unfortunately, our findings are not isolated events. With the

similarities and interactions between different privacy sandbox

9
The Tranco list used for this crawl is the same one as used in Section 5.1.1.

proposals, we expected (1) new proposals could be susceptible to the

same attacks that have been identified in previous privacy sandbox

proposals (e.g., Protected Audience API is susceptible to similar

timing attacks as the worklet for the Shared Storage API [73]) and

(2) interactions between the APIs may introduce vulnerabilities

to the privacy protections the individual proposals are attempting

to provide (e.g., the new queue introduced by the Shared Storage

API itself introduces a new covert channel that can be abused to

violate privacy). Future work could look for additional attacks that

updates to the API introduce or for new opportunities to improve

both Shared Storage and similar proposals in the Privacy Sandbox.

Our measurement of the usage of the Shared Storage API in

Section 5 has limitations. If is possible that if a real user were to

interact with the same sites that were a part of our measurement

they could cause additional code to run that could trigger calls to the

Shared Storage API or avoid some level of bot detection. In practice,

this means that the true rate at which the API is used on websites

could be higher than what was found in our measurement. Further,

the measurements presented in this paper are only snapshots in

time, with the changes in Google’s position on third-party cookies

this use may vary.

While other work has addressed the prevalence of other privacy

sandbox APIs on the Internet [10], as new or less studied APIs crop

up, further analysis may be warranted to understand the scope of

how the APIs are being used and interact. While our study did not

look for potential misuse of the APIs, looking for these types of

usage across Privacy Sandbox APIs could be very beneficial to users,

considering Google’s comments on addressing privacy violations

due to Shared Storage as they appear.

Covert channels frequently have their limitations and the attacks

proposed in this paper are no exception. Variability in network

conditions could cause issues for the network timing attack, such

as abnormally high RTTs being misinterpreted as a delay. More

generally, interference from factors outside of an attacker’s control

on any of these covert channels may lead to an attacker not being

able to accomplish their goal. Many attacks also rely on the user

actively remaining on a page for a period of time. If users spend

only a few seconds on a page, it is unlikely that an attacker would

be able to exfiltrate the entirety of an identifier.

If attacks start to noticeably degrade a user’s browsing experi-

ence, such as the browser slowing down due to extensive use of the

API, or delays in legitimate network requests due to a large number

of requests being sent in an attempt to exfiltrate data, the user may

take steps such as reloading a page or navigating away from a tab.

This could interrupt some of the attacks presented in this paper.

6.2 Ethics
As the Shared Storage API is currently implemented and available

for use through the Chrome browser, it was necessary that we

report these issues. Therefore, we disclosed the attacks presented

in this paper to the Shared Storage API team through several issue

reports to the W3C GitHub repository for the project.
10

10
https://github.com/WICG/shared-storage/issues/86

https://github.com/WICG/shared-storage/issues/136

https://github.com/WICG/shared-storage/issues/86
https://github.com/WICG/shared-storage/issues/136

CCS ’25, October 13–17, 2025, Taipei, Taiwan Alexandra Nisenoff, Deian Stefan, and Nicolas Christin

All experiments were conducted from our own machines, on

ourselves, and on self-hosted websites under our control. We delib-

erately used local exceptions to the attestation requirement rather

than going through the formal attestation approval process, as the

attestation process requires agreeing not to use the API for the

identification of users across websites. This also avoided the issue

of requiring Google to review an attestation form submitted by us,

which could have unnecessarily slowed down the review for any

other companies that were simultaneously completing the attesta-

tion process. Our approach also had the advantage of ensuring that

the scripts for identifying users on our websites would not impact

anyone who accidentally visited the site, as they would presumably

not have set up the custom exceptions.

6.3 User Choice
Currently, there does not seem to be a way to individually disable

the Shared Storage API in the normal settings menus of Chrome as

of version 128. At present, disabling third-party cookies, disabling

all privacy sandbox APIs, or experimental flags appear to be the

only available methods for users to prevent sites from using the

Shared Storage API. There has been some discussion of adding a

dedicated setting for the API, but it has been wrapped into the

general Privacy Sandbox Setting which does not explicitly mention

the Shared Storage API.
11
Providing similar levels of control for the

API as currently exist for third-party cookies would allow users to

make choices about their usage of the API if they are uncomfort-

able with individual proposals within the set of privacy sandbox

proposals. As with any technical setting, explaining what it is to a

general audience in an accurate and accessible way would require

significant effort as previous work has shown [37, 60, 84]. As a

result of the UK Information Commissioner’s Office raising similar

concerns about the lack of end user facing information about how

the API can be used, Google is planning on making unspecified

changes to their user interface [13].

More generally, with the move towards alternatives to cookies,

existing tracking protection tools that empower users to make

choices about data storage and currently only focus on cookies will

need to adapt to these new APIs to continue to provide users with

the same level of protection in the absence of existing methods for

users to manage their data. Current consent management platforms

will also need to adapt to these new proposals as legal consent

requirements (e.g., GDPR) can also apply to data stored and accessed

via these APIs [27].

Since the Shared Storage API has garnered less public scrutiny

than other other privacy sandbox proposals (e.g., FLoC and Topics)

it is unlikely that even fairly tech-savvy users are aware of this new

API and the potential implications for their privacy.

6.4 Industry Positions
Other browser vendors have also expressed their concerns about

the Shared Storage API and its ability to preserve user privacy. Ap-

ple [55] expressed concerns that “sites that users visit often would

be able to extract an arbitrary amount of data over time” due to the

resetting budget and the dependence on other proposals such as

fenced frames which, at the time, did not have full specifications.

11
https://github.com/WICG/shared-storage/issues/9

Mozilla’s negative position on the proposal was that they had “sig-

nificant concerns about the viability of the isolation components of

this design,” although they did not cite any specific attacks against

the API. They also stated that the use cases for the API did not “jus-

tify the complexity and privacy risks” [23, 56]. While these other

major browsers have not implemented the API, Shared Storage is

already deployed in Chrome and therefore in play for many users.

6.5 Compatibility and Centralization
As mentioned in Section 2, Google had added the requirement that

companies complete an attestation process before being allowed to

use privacy sandbox APIs including the Shared Storage API.

While companies may follow this agreement, there is always the

chance that they will surreptitiously renege on their word and use

the API for tracking. Having companies publicly attest that they

will not use the API to re-identify users could potentially open the

companies up to action from the Federal Trade Commission in the

United States for deceptive practices or at least public backlash if

they are found to be breaking that agreement.

While having platform specific review processes has precedent

in the app ecosystem (e.g., Apple App Store Review for iOS apps)

this goes significantly further forcing any website developer that

wants to use the Privacy Sandbox APIs to go through this process.

This provides extra friction for companies trying to take advantage

of the privacy benefits that these APIs provide over technologies

like third-party cookies. As Google is presumably reviewing these

submissions, it makes them a gatekeeper for who gets to use the

API. Since there are no practical techniques for detecting privacy

leaks via covert channels, this also positions Google as the sole,

arbitrary executioner. With Google also being a large player in the

advertising space, what this means for competition is unclear.

Going against the opinions of other major browser vendors,

Google has moved forward with the Shared Storage API. Were

this API to majorly take off this would force website developers to

customize their websites even more based upon which browser a

user is visiting their website from.

7 Related Work
We introduce related work by first discussing relevant steps that

are being taken by various stakeholders to address tracking. We

then explain how these mitigation strategies can break down and

become avenues for tracking in themselves sometimes in similar

ways to the Shared Storage API. Finally, we discuss the deployment

of Google Privacy Sandbox APIs.

7.1 Tracking and Advertising Mitigations
Many steps have been taken to prevent the potential negative im-

pacts on users of tracking and advertising. Browser extensions

like Privacy Badger and uBlock Origin have been developed to

prevent tracking and/or stop ads from being displayed through

blocking/modifying network requests and cookies. These tools

have become widely adopted. A 2023 report from eye/o found that

912 million users were actively using ad-blockers [24].

Many browsers have even started to roll out their own forms

of built-in protections. Their strategies take various forms such

as limiting the use of third-party cookies, disabling APIs that are

https://github.com/WICG/shared-storage/issues/9

Exploiting the Shared Storage API CCS ’25, October 13–17, 2025, Taipei, Taiwan

primarily used for tracking, and more [14]. In Firefox, many of these

efforts are bundled under the umbrella of the “Enhanced Tracking

Protection” setting, Safari has “Intelligent Tracking Protection,” and

Brave has “Shields”. As discussed, Google has been moving forward

with its “Privacy Sandbox” proposals, which in addition to the

Shared Storage API, includes proposals such as federated learning

of cohorts (FLoC) [30], the Topics API [34], Protected Audience

API [33], and Aggregate Reporting API [32]. Each of these browsers

has a different approach and they vary in how strict the protections

they offer are, with each having different tradeoffs. Unlike browser

extensions that require users to go out of their way to install them,

tools that are built into browsers are frequently rolled out to users

without their intervention.

There is also extensive development and research on additional

methods of preventing tracking and making the advertising ecosys-

tem more privacy preserving, while still enabling the benefits

that users find in being shown relevant ads. Some of these pro-

posals are focused on measuring ad conversions and effective-

ness [18, 42, 71, 85, 87], allowing ad networks to charge advertisers

without knowing what ad was shown [66, 74], and more [81].

7.2 Privacy-Enhancing Technologies as
Tracking Vectors

Unfortunately, sometimes the very steps taken to prevent tracking

can then become vectors used by companies to re-identify users.

This paper focuses on how that is possible for one specific tool, but

the Shared Storage API is far from the only privacy-enhancing tool

that can be misused in this way. For example, the presence of the

Do Not Track header, which was originally an attempt to allow

users to opt out of tracking, can also be used for browser finger-

printing [20, 61]. Having privacy preserving (or other) extensions

installed may also make a user more identifiable [49]. Similarly, ac-

cessing awebsite via a less widely used but more privacy-preserving

browser or having extraneous APIs and features disabled can also

factor into a browser fingerprinting profile for a user [20]. User-

Agent Client Hints were intended to allow access to User-Agent

string information in a more privacy-preserving way but were still

found to be used for tracking [65]. Shared Storage could become

a similar telltale since a Chrome user disabling the API in their

browser would look different than a user with the API enabled.

Many of the Google Privacy Sandbox proposals have been shown

to have flaws that leakmore information than intended, which could

lead to the re-identification of users. One of the earliest Privacy

Sandbox proposals to draw public scrutiny was the FLoC proposal.

For each block of time, FLoC assigned users into cohorts based
on the similarities of their browsing histories. Several papers have

demonstrated how the sequences of cohorts users would be assigned
to could be used to re-identify those users over time [6, 75]. In Sec-

tion 4.5 we showed that data stored in Shared Storage can similarly

be used to build up identifiers across websites.

The successor of FLoC, the Topics API, had the users’ browsers

learn the interests of the users and expose those interests through

the API rather than have advertisers track cohorts across the Web

to learn the interests of the groups. The Topics API was similarly

shown to not prevent the re-identification of users [3, 7, 40, 41].

Despite this, the API continues to be a part of Chrome much like the

Shared Storage API. Academics are not the only ones to have raised

concerns about these proposals, which have also drawn scrutiny

from industry [68, 72, 73] as well as privacy advocate groups like

the EFF [16, 46] and the Competition and Markets Authority in the

UK [12]. Further works have also sought to accurately assess the

privacy risks of the API to users [8, 11, 22].

The Protected Audience API facilitates on-device ad auctions by

the browser. Part of this process involves the execution of code in

an isolated environment that is susceptible to timing attacks [73].

As we described in Section 4.1, the Shared Storage API has a similar

concept of running code in an isolated environment, and is also

susceptible to a similar type of timing attack. Many other limitations

of the privacy guarantees of the Protected Audience API have also

been shown [2, 10, 54, 73]. Ourwork falls within this line of research,

showing how the privacy-preserving aspects of the Shared Storage

API can still be circumvented to the detriment of users.

7.3 Privacy Sandbox Deployment
Privacy Sandbox APIs are actively being used by companies on web-

sites that users frequent [10, 43, 44, 62]. Johnson et al. found that

in 2023 the Topics API was used on over 35% of the approximately

60K websites they surveyed [44]. The use of these APIs is also not

uniform across all of the Privacy Sandbox, with less popular APIs

such as the Protected Audience API being used on less than 10%

of the surveyed sites [44]. Chrome Status metrics for the Privacy

Sandbox APIs also show a similar trend, with the Protected Audi-

ence API being used on less than 6% of Chrome page loads at the

beginning of 2025 and the method that retrieves information from

the Topics API being used on over 11% of Chrome page loads in

the same time period [29]. In Section 5.2 we similarly described the

adoption of the Shared Storage API on popular websites which, to

the best of our knowledge, has not been previously reported. Prior

work has also shown that well known advertisers are active users

of the Privacy Sandbox APIs [44, 62] and often early adopters [78],

which we find to also be true for the Shared Storage API (Section 5).

8 Conclusion
In this paper, we have shown the Shared Storage API is vulnerable

to several covert channels that undermine the stated privacy goals

of the API. These covert channels have the potential to allow users

to be re-identified by third parties across websites. We have notified

Google of the vulnerabilities in the API, but several attacks currently

remain feasible in Chrome, and are not likely to be addressable

without rethinking the API from first principles. Creating APIs

that are more privacy preserving than existing technologies can

greatly benefit users but can be very difficult to get right. And,

while the Shared Storage API does take a step towards this goal, it

also introduces new complexities and unknowns that detract from

the potential benefits it offers.

Acknowledgments
This material is based upon work supported by the National Sci-

ence Foundation Graduate Research Fellowship under Grant No.

DGE2140739. Additionally, we thank Eric Zeng, Arjun Brar, Ari-

ana Mims, and Hanan Hibshi for their advice and feedback on this

project.

CCS ’25, October 13–17, 2025, Taipei, Taiwan Alexandra Nisenoff, Deian Stefan, and Nicolas Christin

References
[1] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez, Arvind

Narayanan, and Claudia Diaz. 2014. The web never forgets: Persistent tracking

mechanisms in the wild. In Proceedings of the 2014 ACM Conference on computer
and communications security. 674–689.

[2] Mir Masood Ali, Binoy Chitale, Mohammad Ghasemisharif, Chris Kanich, Nick

Nikiforakis, and Jason Polakis. 2023. Navigating Murky Waters: Automated

Browser Feature Testing for Uncovering Tracking Vectors. In Network and Dis-
tributed System Security (NDSS) Symposium.

[3] Mário S. Alvim, Natasha Fernandes, Annabelle McIver, and Gabriel H. Nunes.

2024. The Privacy-Utility Trade-off in the Topics API. In Proceedings of the
2024 on ACM Conference on Computer and Communications Security (CCS ’24).
Association for Computing Machinery, Salt Lake City, UT, USA, 1106–1120.

doi:10.1145/3658644.3670368

[4] Anthony Chavez. 2024. A new path for Privacy Sandbox on the web Share .

https://privacysandbox.com/news/privacy-sandbox-update/.

[5] Joshua Asplund, Motahhare Eslami, Hari Sundaram, Christian Sandvig, and

Karrie Karahalios. 2020. Auditing Race and Gender Discrimination in Online

Housing Markets. Proceedings of the International AAAI Conference on Web and
Social Media 14, 1 (May 2020), 24–35. doi:10.1609/icwsm.v14i1.7276

[6] Alex Berke and Dan Calacci. 2022. Privacy Limitations of Interest-based Ad-

vertising on The Web: A Post-mortem Empirical Analysis of Google’s FLoC. In

Proceedings of the 2022 ACMConference on Computer and Communications Security
(CCS ’22). ACM, Los Angeles, CA, USA, 337–349. doi:10.1145/3548606.3560626

[7] Yohan Beugin and Patrick McDaniel. 2024. Interest-disclosing Mechanisms

for Advertising are Privacy-Exposing (not Preserving). Proceedings on Privacy
Enhancing Technologies (2024).

[8] Yohan Beugin and PatrickMcDaniel. 2024. A Public and Reproducible Assessment

of the Topics API on Real Data. In 2024 IEEE Security and Privacy Workshops. 1–8.
doi:10.1109/SPW63631.2024.00005

[9] Brave Help Center. 2024. How Do I Manage Cookies In Brave?

https://support.brave.com/hc/en-us/articles/360050634931-How-Do-I-Manage-

Cookies-In-Brave.

[10] Giuseppe Calderonio, Mir Masood Ali, and Jason Polakis. 2024. FledgingWill Con-

tinue Until Privacy Improves: Empirical Analysis of Google’s Privacy-Preserving

Targeted Advertising. In 33rd USENIX Security Symposium. USENIX, Philadel-

phia, PA, 4121–4138. https://www.usenix.org/conference/usenixsecurity24/

presentation/calderonio

[11] CJ Carey, Travis Dick, Alessandro Epasto, Adel Javanmard, Josh Karlin, Shankar

Kumar, Andres Muñoz Medina, Vahab Mirrokni, Gabriel Henrique Nunes, Sergei

Vassilvitskii, et al. 2023. Measuring re-identification risk. Proceedings of the ACM
on Management of Data 1, 2 (2023), 1–26.

[12] Competition and Markets Authority. 2024. Investigation into Google’s ‘Privacy

Sandbox’ browser changes. https://www.gov.uk/cma-cases/investigation-into-

googles-privacy-sandbox-browser-changes.

[13] Competitions & Markets Authority. 2024. CMA Q1 2024 update re-

port on implementation of the Privacy Sandbox commitment. https:

//assets.publishing.service.gov.uk/media/662baa3efee48e2ee6b81eb1/1._CMA_

Q1_2024_update_report_on_Google_Privacy_Sandbox_commitments.pdf.

[14] Cookie Status. 2024. Cookie Status. https://www.cookiestatus.com.

[15] Kyle Crichton, Nicolas Christin, and Lorrie Faith Cranor. 2021. How Do Home

Computer Users Browse the Web? ACM Trans. Web 16, 1, Article 3 (Sept. 2021),
27 pages. doi:10.1145/3473343

[16] Bennett Cyphers. 2021. Google’s FLoC Is a Terrible Idea. https://www.eff.org/

deeplinks/2021/03/googles-floc-terrible-idea.

[17] Amit Datta, Michael Carl Tschantz, and Anupam Datta. 2015. Automated Ex-

periments on Ad Privacy Settings: A tale of opacity, choice, and discrimination.

Proceedings on Privacy Enhancing Technologies 2015, 1 (2015), 92–112.
[18] John Delaney, Badih Ghazi, Charlie Harrison, Christina Ilvento, Ravi Kumar,

Pasin Manurangsi, Martin Pál, Karthik Prabhakar, and Mariana Raykova. 2024.

Differentially Private Ad Conversion Measurement. Proc. Priv. Enhancing Technol.
(2024).

[19] Disconnect. 2024. Tracker Protection lists. https://github.com/disconnectme/

disconnect-tracking-protection/blob/master/services.json.

[20] Electronic Frontier Foundation. [n. d.]. Cover Your Tracks. https://

coveryourtracks.eff.org.

[21] Steven Englehardt and Arvind Narayanan. 2016. Online Tracking: A 1-million-

site Measurement and Analysis. In Proceedings of the 2016 ACM Conference on
Computer and Communications Security (CCS ’16). ACM, Vienna, Austria, 1388–

1401. doi:10.1145/2976749.2978313

[22] Alessandro Epasto, Andres Munoz Medina, Christina Ilvento, and Josh Karlin.

2022. Measures of cross-site re-identification risk: An analysis of the Topics

API Proposal. https://raw.githubusercontent.com/patcg-individual-drafts/topics/

main/topics_analysis.pdf.

[23] Eric Trouton. 2022. Request for Mozilla Position on Shared Storage. https:

//github.com/mozilla/standards-positions/issues/646.

[24] eye/o. 2024. 2023 eyeo Ad-Filtering Report. https://info.eyeo.com/adfiltering-

report.

[25] Justas Gaubys. 2023. Most popular web browsers in 2023. https://www.oberlo.

com/statistics/browser-market-share.

[26] Ghostery. 2021. Tracking the Trackers 2020: Web Tracking’s Opaque Buisness

Model of Selling Users. https://www.ghostery.com/blog/tracking-the-trackers-

2020.

[27] Google. 2023. Privacy-related compliance FAQs. https://developers.google.com/

privacy-sandbox/overview/privacy-compliance-faqs.

[28] Google. 2024. Update on the plan for phase-out of third-party cookies on Chrome

Share. https://privacysandbox.com/intl/en_us/news/update-on-the-plan-for-

phase-out-of-third-party-cookies-on-chrome/.

[29] Google. 2025. Privacy Sandbox metrics. https://pscs.glitch.me.

[30] Google Privacy Sandbox. 2021. FLoC. https://developers.google.com/privacy-

sandbox/archive/floc.

[31] Google Privacy Sandbox. 2022. Fenced frames overview. https://developers.

google.com/privacy-sandbox/relevance/fenced-frame.

[32] Google Privacy Sandbox. 2022. Private Aggregation API overview. https:

//developers.google.com/privacy-sandbox/relevance/private-aggregation.

[33] Google Privacy Sandbox. 2022. Protected Audience API overview. https://

developers.google.com/privacy-sandbox/relevance/protected-audience.

[34] Google Privacy Sandbox. 2022. Topics API for Web overview. https://developers.

google.com/privacy-sandbox/relevance/topics.

[35] Google Privacy Sandbox. 2023. Developer enrollment for the Privacy Sand-

box. https://developers.google.com/privacy-sandbox/blog/announce-enrollment-

privacy-sandbox.

[36] Kirstie Hawkey and Kori Inkpen. 2005. Web browsing today: the impact of

changing contexts on user activity. In CHI ’05 Extended Abstracts on Human
Factors in Computing Systems (CHI EA ’05). Association for ComputingMachinery,

Portland, OR, USA, 1443–1446. doi:10.1145/1056808.1056937

[37] Franziska Herbert, Steffen Becker, Leonie Schaewitz, Jonas Hielscher, Marvin

Kowalewski, Angela Sasse, Yasemin Acar, and Markus Dürmuth. 2023. A World

Full of Privacy and Security (Mis)conceptions? Findings of a Representative

Survey in 12 Countries. In Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems (CHI ’23). ACM, Hamburg, Germany, Article 582,

23 pages. doi:10.1145/3544548.3581410

[38] http archive. [n. d.]. Report: State of the Web. https://httparchive.org/reports/

state-of-the-web.

[39] Basileal Imana, Aleksandra Korolova, and John Heidemann. 2021. Auditing

for Discrimination in Algorithms Delivering Job Ads. In the Web Conference
(WWW ’21). ACM, Ljubljana, Slovenia, 3767–3778. doi:10.1145/3442381.3450077

[40] Nikhil Jha, Martino Trevisan, Emilio Leonardi, and Marco Mellia. 2023. On the

Robustness of Topics API to a Re-Identification Attack. Proceedings on Privacy
Enhancing Technologies 4 (2023), 66–78.

[41] Nikhil Jha, Martino Trevisan, Emilio Leonardi, and Marco Mellia. 2024. Re-

Identification Attacks against the Topics API. ACM Trans. Web (June 2024).

doi:10.1145/3675400

[42] John Wilander. 2021. Introducing Private Click Measurement, PCM. https:

//webkit.org/blog/11529/introducing-private-click-measurement-pcm/.

[43] Garrett Johnson. 2024. Unearthing Privacy-Enhancing Ad Technologies (PEAT):

The Adoption of Google’s Privacy Sandbox. Available at SSRN (Oct. 2024). http:

//dx.doi.org/10.2139/ssrn.4983927.

[44] Garrett A Johnson and Nico Neumann. 2024. The advent of privacy-centric

digital advertising: Tracing privacy-enhancing technology adoption. https:

//pep.gmu.edu/wp-content/uploads/sites/28/2024/04/Johnson-Neumann.pdf.

[45] Josh Karlin. 2023. Intent to Ship: Shared Storage API. https://groups.google.com/

a/chromium.org/g/blink-dev/c/dZ0NRwh7cvs.

[46] Thorin Klosowski. 2023. How To Turn Off Google’s “Privacy Sandbox” Ad

Tracking-and Why You Should. https://www.eff.org/deeplinks/2023/09/how-

turn-googles-privacy-sandbox-ad-tracking-and-why-you-should.

[47] Ravi Kumar and Andrew Tomkins. 2010. A characterization of online browsing

behavior. In Proceedings of the 19th International Conference on World Wide Web
(WWW ’10). Association for Computing Machinery, Raleigh, North Carolina,

USA, 561–570. doi:10.1145/1772690.1772748

[48] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry. 2016. Beauty and the

Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints.

In 2016 IEEE Symposium on Security and Privacy (SP). 878–894. doi:10.1109/SP.
2016.57

[49] Pierre Laperdrix, Oleksii Starov, Quan Chen, Alexandros Kapravelos, and Nick

Nikiforakis. 2021. Fingerprinting in Style: Detecting Browser Extensions via

Injected Style Sheets. In 30th USENIX Security Symposium. USENIX, 2507–2524.

[50] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Ko-

rczyński, and Wouter Joosen. 2019. Tranco: A Research-Oriented Top Sites

Ranking Hardened Against Manipulation. In Symposium on Network and Dis-
tributed System Security (NDSS ’19). ISOC, San Diego, California, USA. doi:10.

14722/ndss.2019.23386

[51] Kevin K Lee, Sam Dutton, and Alex Turner. 2023. Shared storage API DEMO.

https://shared-storage-demo.web.app.

[52] Janette Lehmann, Mounia Lalmas, Georges Dupret, and Ricardo Baeza-Yates.

2013. Online multitasking and user engagement. In Proceedings of the 22nd ACM

https://doi.org/10.1145/3658644.3670368
https://privacysandbox.com/news/privacy-sandbox-update/
https://doi.org/10.1609/icwsm.v14i1.7276
https://doi.org/10.1145/3548606.3560626
https://doi.org/10.1109/SPW63631.2024.00005
https://support.brave.com/hc/en-us/articles/360050634931-How-Do-I-Manage-Cookies-In-Brave
https://support.brave.com/hc/en-us/articles/360050634931-How-Do-I-Manage-Cookies-In-Brave
https://www.usenix.org/conference/usenixsecurity24/presentation/calderonio
https://www.usenix.org/conference/usenixsecurity24/presentation/calderonio
https://www.gov.uk/cma-cases/investigation-into-googles-privacy-sandbox-browser-changes
https://www.gov.uk/cma-cases/investigation-into-googles-privacy-sandbox-browser-changes
https://assets.publishing.service.gov.uk/media/662baa3efee48e2ee6b81eb1/1._CMA_Q1_2024_update_report_on_Google_Privacy_Sandbox_commitments.pdf
https://assets.publishing.service.gov.uk/media/662baa3efee48e2ee6b81eb1/1._CMA_Q1_2024_update_report_on_Google_Privacy_Sandbox_commitments.pdf
https://assets.publishing.service.gov.uk/media/662baa3efee48e2ee6b81eb1/1._CMA_Q1_2024_update_report_on_Google_Privacy_Sandbox_commitments.pdf
https://www.cookiestatus.com
https://doi.org/10.1145/3473343
https://www.eff.org/deeplinks/2021/03/googles-floc-terrible-idea
https://www.eff.org/deeplinks/2021/03/googles-floc-terrible-idea
https://github.com/disconnectme/disconnect-tracking-protection/blob/master/services.json
https://github.com/disconnectme/disconnect-tracking-protection/blob/master/services.json
https://coveryourtracks.eff.org
https://coveryourtracks.eff.org
https://doi.org/10.1145/2976749.2978313
https://raw.githubusercontent.com/patcg-individual-drafts/topics/main/topics_analysis.pdf
https://raw.githubusercontent.com/patcg-individual-drafts/topics/main/topics_analysis.pdf
https://github.com/mozilla/standards-positions/issues/646
https://github.com/mozilla/standards-positions/issues/646
https://info.eyeo.com/adfiltering-report
https://info.eyeo.com/adfiltering-report
https://www.oberlo.com/statistics/browser-market-share
https://www.oberlo.com/statistics/browser-market-share
https://www.ghostery.com/blog/tracking-the-trackers-2020
https://www.ghostery.com/blog/tracking-the-trackers-2020
https://developers.google.com/privacy-sandbox/overview/privacy-compliance-faqs
https://developers.google.com/privacy-sandbox/overview/privacy-compliance-faqs
https://privacysandbox.com/intl/en_us/news/update-on-the-plan-for-phase-out-of-third-party-cookies-on-chrome/
https://privacysandbox.com/intl/en_us/news/update-on-the-plan-for-phase-out-of-third-party-cookies-on-chrome/
https://pscs.glitch.me
https://developers.google.com/privacy-sandbox/archive/floc
https://developers.google.com/privacy-sandbox/archive/floc
https://developers.google.com/privacy-sandbox/relevance/fenced-frame
https://developers.google.com/privacy-sandbox/relevance/fenced-frame
https://developers.google.com/privacy-sandbox/relevance/private-aggregation
https://developers.google.com/privacy-sandbox/relevance/private-aggregation
https://developers.google.com/privacy-sandbox/relevance/protected-audience
https://developers.google.com/privacy-sandbox/relevance/protected-audience
https://developers.google.com/privacy-sandbox/relevance/topics
https://developers.google.com/privacy-sandbox/relevance/topics
https://developers.google.com/privacy-sandbox/blog/announce-enrollment-privacy-sandbox
https://developers.google.com/privacy-sandbox/blog/announce-enrollment-privacy-sandbox
https://doi.org/10.1145/1056808.1056937
https://doi.org/10.1145/3544548.3581410
https://httparchive.org/reports/state-of-the-web
https://httparchive.org/reports/state-of-the-web
https://doi.org/10.1145/3442381.3450077
https://doi.org/10.1145/3675400
https://webkit.org/blog/11529/introducing-private-click-measurement-pcm/
https://webkit.org/blog/11529/introducing-private-click-measurement-pcm/
http://dx.doi.org/10.2139/ssrn.4983927
http://dx.doi.org/10.2139/ssrn.4983927
https://pep.gmu.edu/wp-content/uploads/sites/28/2024/04/Johnson-Neumann.pdf
https://pep.gmu.edu/wp-content/uploads/sites/28/2024/04/Johnson-Neumann.pdf
https://groups.google.com/a/chromium.org/g/blink-dev/c/dZ0NRwh7cvs
https://groups.google.com/a/chromium.org/g/blink-dev/c/dZ0NRwh7cvs
https://www.eff.org/deeplinks/2023/09/how-turn-googles-privacy-sandbox-ad-tracking-and-why-you-should
https://www.eff.org/deeplinks/2023/09/how-turn-googles-privacy-sandbox-ad-tracking-and-why-you-should
https://doi.org/10.1145/1772690.1772748
https://doi.org/10.1109/SP.2016.57
https://doi.org/10.1109/SP.2016.57
https://doi.org/10.14722/ndss.2019.23386
https://doi.org/10.14722/ndss.2019.23386
https://shared-storage-demo.web.app

Exploiting the Shared Storage API CCS ’25, October 13–17, 2025, Taipei, Taiwan

International Conference on Information & Knowledge Management (CIKM ’13).
Association for Computing Machinery, San Francisco, California, USA, 519–528.

doi:10.1145/2505515.2505543

[53] Chao Liu, RyenW.White, and Susan Dumais. 2010. Understanding web browsing

behaviors through Weibull analysis of dwell time. In Proceedings of the 33rd
International ACM SIGIR Conference on Research and Development in Information
Retrieval (Geneva, Switzerland) (SIGIR ’10). ACM, New York, NY, USA, 379–386.

doi:10.1145/1835449.1835513

[54] Minjun Long and David Evans. 2024. Evaluating Google’s Protected Audience

Protocol. Proceedings on Privacy Enhancing Technologies (2024).
[55] Marcos Cáceres. 2022. Shared Storage - Request for position on an emerging web

specification. https://github.com/WebKit/standards-positions/issues/10.

[56] Martin Thomson. 2022. Negative position on shared stor-

age. https://github.com/mozilla/standards-positions/commit/

b6b62635c23000228f3061adeb18ed55da62a730.

[57] Jonathan R. Mayer and John C. Mitchell. 2012. Third-Party Web Tracking: Policy

and Technology. In IEEE Symposium on Security and Privacy (SP ’12). IEEE, San
Jose, California, USA, 413–427. doi:10.1109/SP.2012.47

[58] Keaton Mowery and Hovav Shacham. 2012. Pixel perfect: Fingerprinting canvas

in HTML5. Proceedings of W2SP (2012).

[59] Mozilla. 2023. Firefox rolls out Total Cookie Protection by default to more users

worldwide. https://blog.mozilla.org/en/products/firefox/firefox-rolls-out-total-

cookie-protection-by-default-to-all-users-worldwide/.

[60] Alexandra Nisenoff, Ranya Sharma, and Nick Feamster. 2023. User Awareness

and Behaviors Concerning Encrypted DNS Settings in Web Browsers. In USENIX
Security Symposium (SSYM ’23). USENIX, Anaheim, CA, 3117–3133. https://www.

usenix.org/conference/usenixsecurity23/presentation/nisenoff-awareness

[61] Mike Perry. 2012. Do Not Beg: Moving Beyond DNT through Privacy by Design.

https://www.w3.org/2012/dnt-ws/position-papers/21.pdf.

[62] Michiel Philipse, Güne Acar, and Christine Utz. 2024. Post-Third-

Party Cookies: Analyzing Google’s Protected Audience API. (2024).

https://www.cs.ru.nl/masters-theses/2024/M_Philipse___Post-Third-

Party_Cookies_Analyzing_Google’s_Protected_Audience_API..pdf.

[63] Charles Reis, AlexanderMoshchuk, and Nasko Oskov. 2019. Site Isolation: Process

Separation for Web Sites within the Browser. In 28th USENIX Security Sympo-
sium. USENIX, Santa Clara, CA, 1661–1678. https://www.usenix.org/conference/

usenixsecurity19/presentation/reis

[64] Eduardo Schnadower Mustri, Idris Adjerid, and Alessandro Acquisti. 2023. Be-

havioral Advertising and Consumer Welfare: An Empirical Investigation. In

PrivacyCon. https://www.ftc.gov/system/files/ftc_gov/pdf/PrivacyCon-2022-

Acquisiti-Mustri-Behavioral-Advertising-Consumer-Welfare.pdf

[65] Asuman Senol and Gunes Acar. 2023. Unveiling the Impact of User-Agent Reduc-

tion and Client Hints: A Measurement Study. In Proceedings of the 22nd Workshop
on Privacy in the Electronic Society (WPES ’23). Association for Computing Ma-

chinery, Copenhagen, Denmark, 91–106. doi:10.1145/3603216.3624965

[66] Sacha Servan-Schreiber, Kyle Hogan, and Srinivas Devadas. 2021. AdVeil: A

Private Targeted Advertising Ecosystem. Cryptology ePrint Archive, Paper

2021/1032. https://eprint.iacr.org/2021/1032 https://eprint.iacr.org/2021/1032.

[67] Shivani Sharma. 2024. Fenced Frames Network side channel. https://github.com/

WICG/fenced-frame/blob/master/explainer/network_side_channel.md.

[68] Peter Snyder. 2022. Privacy And Competition Concerns with Google’s Pri-

vacy Sandbox. https://brave.com/web-standards-at-brave/6-privacy-sandbox-

concerns/.

[69] Konstantinos Solomos, John Kristoff, Chris Kanich, and Jason Polakis. 2021. Tales

of favicons and caches: Persistent tracking in modern browsers. In Network and
Distributed System Security Symposium.

[70] Latanya Sweeney. 2013. Discrimination in online ad delivery. Commun. ACM 56,

5 (2013), 44–54.

[71] Martin Thomson. 2022. Privacy Preserving Attribution for Advertising. https:

//blog.mozilla.org/en/mozilla/privacy-preserving-attribution-for-advertising/.

[72] Martin Thomson. 2023. A Privacy Analysis of Google’s Topics Proposal. https:

//mozilla.github.io/ppa-docs/topics.pdf.

[73] Martin Thomson. 2024. Protected Audience Privacy Analysis. https://mozilla.

github.io/ppa-docs/protected-audience.pdf.

[74] Vincent Toubiana, Arvind Narayanan, Dan Boneh, Helen Nissenbaum, and Solon

Barocas. 2010. Adnostic: Privacy preserving targeted advertising. In Proceedings
Network and Distributed System Symposium.

[75] Florian Turati, Karel Kubicek, Carlos Cotrini, and David Basin. 2023. Locality-

Sensitive Hashing Does Not Guarantee Privacy! Attacks on Google’s FLoC and

the MinHash Hierarchy System. Proceedings on Privacy Enhancing Technologies
(2023).

[76] Alex Turner, Camilla Smith Barnes, Josh Karlin, and Yao Xiao. 2023. WICG/shared-

storage: Explainer for proposed web platform shared storage API. https://github.

com/WICG/shared-storage.

[77] Giridhari Venkatadri, Piotr Sapiezynski, Elissa M. Redmiles, Alan Mislove, Oana

Goga, Michelle Mazurek, and Krishna P. Gummadi. 2019. Auditing Offline Data

Brokers via Facebook’s Advertising Platform. In The World Wide Web Conference
(WWW ’19). ACM, San Francisco, CA, USA, 1920–1930. doi:10.1145/3308558.

3313666

[78] Alberto Verna, Nikhil Jha, Martino Trevisan, and Marco Mellia. 2024. A First

View of Topics API Usage in the Wild. In Proceedings of the 20th International
Conference on Emerging Networking EXperiments and Technologies (CoNEXT ’24).
Association for Computing Machinery, Los Angeles, CA, USA, 48–54. doi:10.

1145/3680121.3697810

[79] Sophie Veys, Daniel Serrano, Madison Stamos, Margot Herman, Nathan Reitinger,

Michelle L. Mazurek, and Blase Ur. 2021. Pursuing Usable and Useful Data

Downloads Under GDPR/CCPA Access Rights via Co-Design. In Symposium on
Usable Privacy and Security (SOUPS ’21). USENIX, Virtual Conference, 217–242.
https://www.usenix.org/conference/soups2021/presentation/veys

[80] Miranda Wei, Madison Stamos, Sophie Veys, Nathan Reitinger, Justin Goodman,

Margot Herman, Dorota Filipczuk, Ben Weinshel, Michelle L. Mazurek, and

Blase Ur. 2020. What Twitter Knows: Characterizing Ad Targeting Practices,

User Perceptions, and Ad Explanations Through Users’ Own Twitter Data. In

29th USENIX Security Symposium. USENIX, 145–162. https://www.usenix.org/

conference/usenixsecurity20/presentation/wei

[81] WICG. 2024. Ad Selection API Proposal. https://github.com/WICG/privacy-

preserving-ads.

[82] John Wilander. 2020. Full Third-Party Cookie Blocking and More. https://webkit.

org/blog/10218/full-third-party-cookie-blocking-and-more/.

[83] Yuxi Wu, Sydney Bice, W. Keith Edwards, and Sauvik Das. 2023. The Slow

Violence of Surveillance Capitalism: How Online Behavioral Advertising Harms

People. In Proceedings of the 2023 ACM Conference on Fairness, Accountability,
and Transparency (FAccT ’23). Association for Computing Machinery, Chicago,

IL, USA, 1826–1837. doi:10.1145/3593013.3594119

[84] Yuxi Wu, Panya Gupta, Miranda Wei, Yasemin Acar, Sascha Fahl, and Blase

Ur. 2018. Your Secrets Are Safe: How Browsers’ Explanations Impact Miscon-

ceptions About Private Browsing Mode. In Proceedings of the 2018 World Wide
Web Conference (Lyon, France) (WWW ’18). International World Wide Web Con-

ferences Steering Committee, Republic and Canton of Geneva, CHE, 217–226.

doi:10.1145/3178876.3186088

[85] Yingtai Xiao, Jian Du, Shikun Zhang, Wanrong Zhang, Qiang Yan, Danfeng

Zhang, and Daniel Kifer. 2025. Click Without Compromise: Online Advertising

Measurement via Per User Differential Privacy. arXiv:2406.02463 [cs.CR] https:

//arxiv.org/abs/2406.02463

[86] Haimo Zhang and Shengdong Zhao. 2011. Measuring web page revisitation in

tabbed browsing. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’11). ACM, Vancouver, BC, Canada, 1831–1834. doi:10.

1145/1978942.1979207

[87] Ke Zhong, Yiping Ma, and Sebastian Angel. 2022. Ibex: Privacy-preserving Ad

Conversion Tracking and Bidding. In Proceedings of the 2022 ACM Conference on
Computer and Communications Security (CCS ’22). Association for Computing

Machinery, Los Angeles, CA, USA, 3223–3237. doi:10.1145/3548606.3560651

https://doi.org/10.1145/2505515.2505543
https://doi.org/10.1145/1835449.1835513
https://github.com/WebKit/standards-positions/issues/10
https://github.com/mozilla/standards-positions/commit/b6b62635c23000228f3061adeb18ed55da62a730
https://github.com/mozilla/standards-positions/commit/b6b62635c23000228f3061adeb18ed55da62a730
https://doi.org/10.1109/SP.2012.47
https://blog.mozilla.org/en/products/firefox/firefox-rolls-out-total-cookie-protection-by-default-to-all-users-worldwide/
https://blog.mozilla.org/en/products/firefox/firefox-rolls-out-total-cookie-protection-by-default-to-all-users-worldwide/
https://www.usenix.org/conference/usenixsecurity23/presentation/nisenoff-awareness
https://www.usenix.org/conference/usenixsecurity23/presentation/nisenoff-awareness
https://www.w3.org/2012/dnt-ws/position-papers/21.pdf
https://www.cs.ru.nl/masters-theses/2024/M_Philipse___Post-Third-Party_Cookies_Analyzing_Google's_Protected_Audience_API..pdf
https://www.cs.ru.nl/masters-theses/2024/M_Philipse___Post-Third-Party_Cookies_Analyzing_Google's_Protected_Audience_API..pdf
https://www.usenix.org/conference/usenixsecurity19/presentation/reis
https://www.usenix.org/conference/usenixsecurity19/presentation/reis
https://www.ftc.gov/system/files/ftc_gov/pdf/PrivacyCon-2022-Acquisiti-Mustri-Behavioral-Advertising-Consumer-Welfare.pdf
https://www.ftc.gov/system/files/ftc_gov/pdf/PrivacyCon-2022-Acquisiti-Mustri-Behavioral-Advertising-Consumer-Welfare.pdf
https://doi.org/10.1145/3603216.3624965
https://eprint.iacr.org/2021/1032
https://eprint.iacr.org/2021/1032
https://github.com/WICG/fenced-frame/blob/master/explainer/network_side_channel.md
https://github.com/WICG/fenced-frame/blob/master/explainer/network_side_channel.md
https://brave.com/web-standards-at-brave/6-privacy-sandbox-concerns/
https://brave.com/web-standards-at-brave/6-privacy-sandbox-concerns/
https://blog.mozilla.org/en/mozilla/privacy-preserving-attribution-for-advertising/
https://blog.mozilla.org/en/mozilla/privacy-preserving-attribution-for-advertising/
https://mozilla.github.io/ppa-docs/topics.pdf
https://mozilla.github.io/ppa-docs/topics.pdf
https://mozilla.github.io/ppa-docs/protected-audience.pdf
https://mozilla.github.io/ppa-docs/protected-audience.pdf
https://github.com/WICG/shared-storage
https://github.com/WICG/shared-storage
https://doi.org/10.1145/3308558.3313666
https://doi.org/10.1145/3308558.3313666
https://doi.org/10.1145/3680121.3697810
https://doi.org/10.1145/3680121.3697810
https://www.usenix.org/conference/soups2021/presentation/veys
https://www.usenix.org/conference/usenixsecurity20/presentation/wei
https://www.usenix.org/conference/usenixsecurity20/presentation/wei
https://github.com/WICG/privacy-preserving-ads
https://github.com/WICG/privacy-preserving-ads
https://webkit.org/blog/10218/full-third-party-cookie-blocking-and-more/
https://webkit.org/blog/10218/full-third-party-cookie-blocking-and-more/
https://doi.org/10.1145/3593013.3594119
https://doi.org/10.1145/3178876.3186088
https://arxiv.org/abs/2406.02463
https://arxiv.org/abs/2406.02463
https://arxiv.org/abs/2406.02463
https://doi.org/10.1145/1978942.1979207
https://doi.org/10.1145/1978942.1979207
https://doi.org/10.1145/3548606.3560651

	Abstract
	1 Introduction
	2 Background
	3 Threat Model & Attacker Capabilities
	4 Attacks
	4.1 Network Timing Attack
	4.2 Crash Attack
	4.3 Queue Timing Attack
	4.4 iframe Caching Attack
	4.5 Data Leakage Over Time Attack
	4.6 Google's Responses

	5 Usage of the Shared Storage API
	5.1 Attestation Completion
	5.2 Shared Storage in the Wild

	6 Discussion
	6.1 Limitations and Future Work
	6.2 Ethics
	6.3 User Choice
	6.4 Industry Positions
	6.5 Compatibility and Centralization

	7 Related Work
	7.1 Tracking and Advertising Mitigations
	7.2 Privacy-Enhancing Technologies as Tracking Vectors
	7.3 Privacy Sandbox Deployment

	8 Conclusion
	Acknowledgments
	References

