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Abstract

In this dissertation, we present a novel service architecture for the Internet, which reconciles ap-

plication demand for strong service guarantees with the need for low computational overhead in

network routers. The main contribution of this dissertation is the definition and realization of a new

service, called Quantitative Assured Forwarding, which can offer absolute and relative differentia-

tion of loss, service rates, and packet delays to classes of traffic. We devise and analyze mechanisms

that implement the proposed service, and demonstrate the effectiveness of the approach through

analysis, simulation and measurement experiments in a testbed network.

To enable the new service, we introduce a set of new traffic control algorithms for network

routers. The main mechanism proposed in this dissertation uses a novel technique that performs

active buffer management (through dropping of traffic) and rate allocation (for scheduling) in a

single step. This is different from prior work which views dropping and scheduling as orthogonal

tasks. We propose several solutions for rate allocation and buffer management, through solutions

to an optimization problem, approximations of such a solution, and through a closed-loop control

theoretical approach. Measurement results from a testbed of PC-routers on an Ethernet network

indicate that our proposed service architecture is suitable for networks with high data rates.

We extend the service guarantees of Quantitative Assured Forwarding to TCP traffic by in-

tegrating our buffer management and rate allocation algorithms with the feedback capabilities of

TCP, and regulate the sending rate of TCP traffic sources at the microflow level. The presented

techniques show, for the first time, that it is feasible to give service guarantees to TCP traffic flows,

without per-flow reservations in the network.
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Chapter 1

Introduction

Since its creation in the early 1970s, the Internet has adopted a “best-effort” service, which relies

on the following three principles: (1) No traffic is denied admission to the network, (2) all traffic

is treated in the same manner, and (3) the only guarantee given by the network is that traffic will

be transmitted in the best possible manner given the available resources, that is, no artificial delays

will be generated, and no unnecessary losses will occur.

The best-effort service is adequate as long as the applications using the network are not sen-

sitive to variations in losses and delays (e.g., electronic mail), the load on the network is small,

and if pricing by network providers is not service-based. These conditions held in the early days

of the Internet, when the Internet merely consisted of network connections between a handful of

universities.

However, since the late 1980s, these conditions do not hold anymore, for two main reasons.

First, an increasing number of different applications, such as real-time video [80], peer-to-peer

networking (e.g.,napster[7], Gnutella[8]), or the World-Wide Web [17], to name a few, have been

using the Internet, as illustrated by several measurement studies, e.g., [58,123,130]. These different

applications have different needs in the service they must receive from the network. Second, the

Internet has switched from a government-supported research network to a commercial entity in

1994, thereby creating a need for service-based pricing schemes that can better recover cost and

maximize revenue than a best-effort network [132]. These two factors have created a demand for

different levels of service. In some ways, the Internet has been victim of its success, and finding a

1
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solution to the problem of providing different levels of services in the network has become critical

to ensure the long-term survival of the Internet.

Traffic control mechanisms to differentiate performance based on network-operator or applica-

tion requirements are referred to asQuality-of-Service(QoS). Some have argued that increasing the

capacity of the backbone network makes QoS obsolete [70]. Indeed, as reported by measurement

studies of backbone links [149], the core of the Internet is currently over-provisioned and supports

low latency and low loss service for almost all of its traffic [118]. On the other hand, increasing

the capacity of the Internet backbone has merely shifted the capacity bottleneck to the edge of the

backbone networks, and the service experienced by demanding applications remains inadequate.

As a result, mechanisms for service differentiation are urgently needed in the access networks that

connect end-users to the Internet backbone.

In fact, the explosion of link capacity in the network, instead of alleviating the need for service

guarantees, has put more stringent requirements on QoS architectures. Routers at the edges of the

Internet backbone now have to serve millions of concurrent flows at gigabit per second rates, which

induces scalability requirements. First, the state information kept in the routers for providing QoS

must be small. Second, the processing time for classifying and scheduling packets according to

their QoS guarantees must be small as well, even with the advent of faster hardware. In addition to

these two scalability requirements, the fact that the Internet is now mostly a commercial network

requires to utilize the existing network resources as efficiently as possible, for instance, maximizing

the utilization of the links.

A number of QoS architectures have been proposed to address the above requirements. QoS

architectures can be distinguished according to two criteria. The first criterion is whether guarantees

are expressed for individual traffic flows (per-flow guarantees), or for groups of flows with the same

service requirements (per-class guarantees). Per-flow guarantees generally require to perform per-

flow resource reservations in routers. That is, each flow has to reserve resources at all routers

from source to destination before starting to send data. When data is transmitted, each incoming

packet has to be inspected at each router to determine to which flow the packet belongs. Then,

the packet is mapped to the per-flow reservations in the router. These two operations constitute
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what is called per-flow classification. In a per-flow architecture, the classification overhead grows

linearly with the number of flows present in the network. Per-class guarantees usually do not rely

on reservations. Here, flows are grouped in classes of traffic. Each packet entering the network is

marked with the class of traffic to which it belongs. Routers in the network classify and transmit

packets according to the service guarantees offered to classes of traffic. Since there are only a few

classes of traffic in the network, the overhead incurred with per-class guarantees is smaller than

that of per-flow guarantees. As a disadvantage, per-class service guarantees do not immediately

translate into per-flow guarantees.

The second criterion to distinguish service architectures is whether guarantees are expressed

with reference to guarantees given to other flows or classes (relative guarantees), or if guarantees

are expressed as absolute bounds (absolute guarantees). As an example, absolute guarantees are of

the form “Class-2 Delay≤ 5 ms”, or “Flow-2 Throughput≥ 3 Mbps”. Such absolute bounds define

strong service guarantees. Relative service guarantees are weaker than absolute guarantees, and can

be further discriminated betweenqualitative guaranteesandproportional guarantees. Qualitative

guarantees impose an ordering between classes of traffic without quantifying the differentiation, as

in

Class-2 Delay≤ Class-1 Delay.

Proportional guarantees quantify the differentiation between classes of traffic by ensuring the ratios

of the QoS metrics of two classes is roughly constant, and held equal to a proportional differen-

tiation factor. For two priority classes, proportional service differentiation could specify that the

delays of packets from the higher-priority class be half of the delays from the lower-priority class,

e.g.,
Class-2 Delay
Class-1 Delay

≈ 2 ,

but without specifying an upper bound on the delays. Likewise, loss differentiation is defined in

terms of ratios of loss rates, such as

Class-2 Loss Rate
Class-1 Loss Rate

≈ 5 .
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The fundamental contribution of this dissertation is to explore the limits on the strength of

service differentiation that can be obtained by per-class QoS. To that effect, we consider the design

and implementation of a per-hop service architecture that provides absolute and proportional service

guarantees to classes of traffic, while avoiding resource reservations [33].

The remainder of this chapter motivates our research and is structured as follows. In Section 1.1,

we describe proposals for service architectures in packet networks that have tried, over the past

decade, to provide a solution to the service differentiation problem. These proposals seem to imply

the existence of a trade-off between strength of service differentiation and complexity of the service

architecture. In Section 1.2, we present our thesis statement and describe the contributions of

this dissertation. In Section 1.3, we give an overview of the service architecture we propose as

a solution to the service differentiation problem, by introducing the different components of our

service architecture. We outline the structure of the dissertation in Section 1.4.

1.1 History of Internet QoS

The need for service differentiation and QoS for the Internet became a topic of interest in the

late 1980s and early 1990s, with the advent of networked multimedia applications (e.g., [84, 85,

86, 150]). The first solution for service differentiation in packet-switched networks was the Tenet

protocol suite (see for instance [63, 64, 156]), developed by the Tenet group at UC Berkeley. At

approximately the same time, Clark, Shenker and Zhang proposed a service architecture designed

to provide QoS to real-time applications, and introduced the mechanisms associated with their

proposed service model in [38].

1.1.1 Integrated Services

Building on the initial work by the Tenet group and the work by Clark, Shenker and Zhang, the IETF

proposed the Integrated Services (IntServ) architecture [23] as a QoS architecture for IP networks.

IntServ, developed in the early and mid-1990s, provides the ability to give individual flows absolute

QoS guarantees on end-to-end packet delays (delay bounds) [133], and packet losses (no loss) [153],
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as long as the traffic of each flow conforms to a pre-specified set of parameters, e.g., peak sending

rate, or maximum burst size [134]. This type of per-flow, absolute service guarantees is particularly

appropriate for applications that cannot tolerate or adapt to a lower level of performance than they

require.

The IntServ architecture requires per-flow classification in routers. Additionally, IntServ im-

plementations require packet scheduling primitives, e.g., [16, 119], which run a dynamic priority

sorting algorithm. The scheduling overhead can become significant when the routers have to pro-

cess a large number of packets within a short period of time. Also, the IntServ architecture relies

on a signaling protocol (e.g., RSVP, [24]) for reserving network resources, and on admission con-

trol for determining which flows can be admitted with the assurance that no service violation will

occur. Both of these mechanisms require that each router keep per-flow state information. Fur-

thermore, it has been shown that using admission control mechanisms such as peak-rate allocation

could result in under-utilizing the network resources [152]. Last, because resource reservations

must be updated at routers every time a new flow with service guarantees enters the network, the

communication overhead associated with the signaling mechanisms cannot be neglected.

The open issues outlined above have prevented the IntServ architecture from being widely de-

ployed so far, despite the strength of the proposed service guarantees.

1.1.2 Differentiated Services

Taking a step back from the IntServ approach, the interest in Internet QoS shifted in the late 1990s

to architectures that make a distinction between operations performed in the network core, and

operations performed at the edges of the network. The basic idea is that the amount of traffic in

the network core does not permit complex QoS mechanisms, and that most of the QoS mechanisms

should be executed at the network edge, where the volume of traffic is smaller.

These recent efforts resulted in the Differentiated Services (DiffServ) architecture [18], which

bundles flows with similar QoS requirements in classes of traffic. The mapping from individual

flows to classes of traffic is determined at the edges of the network, by marking packet headers. In

the network core, scheduling primitives only work with a few classes of traffic, and can thus remain
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relatively simple. DiffServ currently offers two different types of service in addition to Best-Effort:

an Assured Forwarding (AF, [75]) service and an Expedited Forwarding (EF, [43]) service.

Assured Forwarding provides isolation between different classes of traffic. In each traffic class,

packets are marked to belong to one of three drop precedence levels. AF offers qualitative loss

differentiation between the drop precedence levels of each class, by dropping packets in times of

congestion with a probability function of their drop precedence. Assured Forwarding does not

require per-flow classification or signaling, but the qualitative guarantees offered provide weaker

service assurance than absolute guarantees.

Expedited Forwarding offers absolute service guarantees on delay variations to flows. In

essence, providing the EF service to a flow is equivalent to providing a virtual leased-line to

this flow, and involves per-flow peak-rate allocation. Because per-flow peak-rate allocation under-

utilizes the network resources, Expedited Forwarding can be offered only to a limited amount of

traffic. For instance, [142] shows that, to achieve delay bounds in the order of 240msat a given

link, the total amount of EF traffic should not exceed more than 10% of the total capacity of the

link.

1.1.3 Design Space of Service Architectures

The IntServ and DiffServ architectures indicate a trade-off between simplicity of the implementa-

tion and strength of service guarantees, which we illustrate in Figure 1.1. In Figure 1.1, we plot the

complexity of a few service architectures against the strength of service guarantees they offer. On

the one hand, IntServ and Expedited Forwarding provide strong, absolute service guarantees, but re-

quire per-flow mechanisms. On the other hand, per-class architectures such as Assured Forwarding

only support qualitative QoS guarantees.

Recently, researchers have explored the design space described in Figure 1.1, in search of an

ideal service with strong service differentiation and low complexity. For instance, theProportional

Differentiated Servicesarchitecture of [47] offers a stronger class-based service architecture than

Assured Forwarding, by providing proportional service guarantees to delays and losses. A very

significant advance in devising a service with relatively low overhead and absolute guarantees is



Chapter 1. Introduction 7

SCORE

Proportional
DiffServ

C
om

pl
ex

ity
 o

f t
he

 a
rc

hi
te

ct
ur

e

IntServ

Service guarantees

EF

Weaker (relative) Stronger (absolute)Lo
w

 (p
er

−c
la

ss
)

H
ig

h 
(p

er
−f

lo
w

)

DiffServ/AF

"Ideal" service

Figure 1.1:The trade-off between strength of service guarantees and complexity of the imple-
mentation. IntServ and Expedited Forwarding provide very strong service guarantees at the cost
of per-flow complexity, while Assured Forwarding only provides limited service assurance, but has
low complexity. Ideally, a service should be able to provide strong service differentiation with low
complexity. Note that the picture is qualitative.

the Scalable-Core (SCORE, [143]) architecture proposed by Stoica and Zhang, and architectures

derived from it [26, 39, 91, 113]. SCORE tries to keep the strength of the IntServ guarantees with-

out resorting to per-flow operations, using a technique called Dynamic Packet State (DPS). DPS

puts the state information needed to provide IntServ-like service guarantees in IP packets headers,

thereby alleviating the need for maintaining per-flow state information in routers. The algorithm

central to the SCORE architecture, called Core Stateless Fair Queueing (CSFQ, [141]) uses DPS

to provide end-to-end delay guarantees to flows without requiring per-flow state information at net-

work routers. The basic idea for meeting end-to-end delay requirements is to keep track of the

delays experienced by packets along the path from the source to the destination, by storing the val-

ues of the experienced delays in the packet headers. The stored information is used for adjusting

the priority of packets so that end-to-end requirements are met. The SCORE architecture does not

require any per-flow information be maintained in the network core, but relies on packet classifica-

tion at network boundaries, for instance, interconnects between two ISP’s. Mechanisms to alleviate
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per-flow classification at inter-network boundaries in SCORE have been recently proposed in [145].

Per-flow classification remains necessary at the network edge.

1.2 Thesis Statement and Contributions

Our thesis research advances the understanding of the limits on the strength of service differentia-

tion that can be provided by class-based architectures for the Internet, without resource reservations.

Our thesis statement is as follows:

The scope of class-based service guarantees can be significantly enhanced by using

appropriate buffer management, scheduling, and the feedback capabilities of the net-

work.

The goal of this dissertation is to present a new point in the design space described in Figure 1.1, by

devising the strongest possible class-based service without reservations. To achieve this goal, we

have revisited the tenets of Internet QoS.

Router mechanisms to support service differentiation include scheduling and buffer manage-

ment. Scheduling determines the order of transmission of packets leaving the router, while buffer

management controls which packets enter the router. Until very recently, scheduling and buffer

management were handled separately, even though both mechanisms address the issue of managing

a transmission queue at a given router. The only difference between the two mechanisms lies in the

fact that scheduling manages the head of the transmission queue, deciding which packet will leave

the queue next, while buffer management manages the end of the transmission queue, deciding if

new packets can be admitted to the queue.

The first contribution of this dissertation is to show that considering buffer management and

scheduling in a single step allows for significantly enhancing the service guarantees that class-based

architectures can provide, without resorting to resource reservation. We present a scheme based on

an adaptive service rate allocation, conditioned by the instantaneous backlog of traffic classes, the

service guarantees, and the availability of the resources. Packet scheduling immediately follows

from the rate allocation.
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The second contribution of this dissertation is to show that a practical algorithm based on feed-

back control theory to allocate service rates and drop traffic can enforce the desired service guaran-

tees.

The third contribution of this dissertation is to demonstrate that the proposed service architec-

ture can be realized at relatively high speeds. To that effect, we describe our reference implemen-

tation in PC-routers of the algorithms we propose, and present measurement experiments obtained

from a testbed network.

Mechanisms for providing QoS guarantees have to work in concert with end-to-end mecha-

nisms, such as TCP feedback mechanisms for congestion avoidance and control [10,82]. However,

to the best of our knowledge, with the exception of RIO [37], which builds on the RED algo-

rithm [68] in an effort to reduce packet drops, none of the algorithms used in the proposed service

architectures takes into account of the feedback capabilities of TCP traffic. Traffic regulation is

always realized by admission control mechanisms or traffic policers, which are separate from the

scheduling and dropping mechanisms.

The fourth contribution of this dissertation is to demonstrate that one can extend a service archi-

tecture to take into account the particularities of TCP traffic. In particular, we show that exploiting

TCP feedback mechanisms to regulate the traffic arrivals by dropping or marking traffic “smartly”

is a viable alternative to admission control, signaling or policing for service differentiation.

1.3 Overview of the Proposed Service Architecture

We illustrate how our proposed service architecture is deployed in a network in Figure 1.2. In Fig-

ure 1.2, traffic is sent from a source host to a destination host. The source host is connected to

the backbone via a router, which supports local, per-class service guarantees. Likewise, a router

connects the destination host to the backbone. The backbone consists of a number of routers. In the

example of Figure 1.2, only the two routers connecting the hosts to the backbone provide service

differentiation. Based on the service guarantees and the available resources, both routers dynami-

cally allocate service rates to traffic classes. Packet scheduling at both routers directly follows from
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Figure 1.2: Illustration of the deployment of the proposed service in a network.Routers are
in charge of transmitting and dropping packets according to the available resources and the QoS
desired. Routers set the regulation signals (ECN), which are used by the end-hosts to regulate their
traffic.

the service rate allocation. The volume of traffic in the network is controlled by discarding traffic

at both routers, and by sending feedback from the destinations to the traffic sources to reduce the

volume of traffic. There is no communication (i.e., signaling) between the different routers, the rate

allocation is independent at each router, and the service guarantees provided are also independent

at each router. The service architecture can be incrementally deployed, in the sense that each router

that supports the proposed service improves the QoS observed in the entire network. The example

of Figure 1.2 assumes that QoS is only needed at access links. However, we emphasize that the

service can also be implemented in routers in the network core. We next discuss in more details the

service guarantees, packet scheduling and dropping, and traffic regulation.

1.3.1 Service Guarantees

The service we propose consists of per-hop, per-class guarantees, on delay, losses, and throughput

of traffic. These guarantees do not immediately translate into end-to-end service guarantees. How-

ever, a per-hop, per-class service architecture can be used to build end-to-end service guarantees,

for instance if the end applications are in charge of dynamically selecting which class of traffic they

require [49].

Our goal is to provide a set of service guarantees that can encompass all of AF, Proportional
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Differentiated Services, and other class-based services without reservations. More generally, we

want to be able to enforceany mix of absolute and proportional guarantees at each participating

router. The service guarantees are independent at each participating router. We refer to this service

as “Quantitative Assured Forwarding” service (QAF, [34]). Absolute guarantees apply to loss rates,

delays, or throughput, and define a lower bound on the service received by each class. Proportional

guarantees apply to loss rates and queueing delays, and can be used to differentiate average-case

performance. As an example of the service guarantees of Quantitative Assured Forwarding for three

classes of traffic, one could specify service guarantees of the form

• Class-1 Delay≤ 2 ms,

• Class-2 Delay≈ 4·Class-1 Delay,

• Class-2 Loss Rate≤ 1%,

• Class-3 Loss Rate≈ 2·Class-2 Loss Rate, and

• Class-3 Service Rate≥ 1 Mbps

at a given router, and other values at another router. The QAF service does not require resource

reservations or signaling, and can be realized without communication between different routers. As

a per-hop service, Quantitative Assured Forwarding, used in conjunction with routing mechanisms

that can perform route-pinning, can be used to infer end-to-end service differentiation, and can be

used to select the most appropriate route for a particular application given the service demands.

Note that, contrary to the AF service, which provides three levels of drop precedence within

a class of traffic, Quantitative Assured Forwarding offers a single drop level per class. However,

it can be shown that Quantitative Assured Forwarding can be used to emulate the AF service, by

assigning each AF drop precedence level to a separate QAF class. Since the QAF service supports

absolute guarantees on delays, QAF can also be used to emulate the delay guarantees offered by the

EF service. Therefore, our proposed service model can implement and inter-operate with DiffServ

networks, with the possible addition of remarking primitives at the boundaries between DiffServ

and QAF domains in charge of mapping the different AF drop levels to different QAF classes.
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1.3.2 Scheduling and Dropping

The desired service guarantees are realized independently at each router by scheduling and drop-

ping algorithms. Scheduling is based on a service rate allocation to classes of traffic, which share a

common buffer. The rate allocation adapts to the traffic demand from different classes. The rates are

set so that the per-hop service guarantees are met. If this is not feasible, traffic is dropped. In prac-

tice, rate allocation and buffer management are combined in a single algorithm, which recomputes

the service rate allocation to classes of traffic at the same time it makes dropping decisions. The

service rate allocation is independent at each router, and there is no coordination among different

routers.

1.3.3 Regulating Traffic Arrivals

A mechanism has to be in charge of controlling the amount of traffic that enters the network, to

ensure that service guarantees can be met. Traditional approaches to QoS use a combination of

admission control and per-flow traffic policing. These approaches require to keep per-flow infor-

mation, which we want to avoid in our architecture. Furthermore, they do not consider the salient

feature of TCP traffic, which is to reduce the sending rate when losses occur. Hence, we do not

use admission control and policing, but instead, we regulate the amount of traffic that enters the

network by dropping traffic at routers and by relying on the congestion control algorithms of TCP.

1.4 Structure of the Dissertation

The remainder of this dissertation presents the details of each of the three components of our ser-

vice architecture, the service guarantees, the scheduling and buffer management algorithms, and

our approach to controlling traffic. The remainder of this dissertation is organized as follows. In

Chapter 2, we review previous work. We focus on the different class-based services that have been

recently proposed, and discuss the mechanisms required to implement them.

In Chapter 3, we express the provisioning of per-class QoS within a formal framework that

inspired by Cruz’s network calculus [41, 42]. We define the metrics we use to quantify the level of
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service received by classes of traffic, and we offer a formal definition of the set of service guarantees

supported by our service architecture.

In Chapter 4, we express the problem of providing Quantitative Assured Forwarding service

guarantees as an optimization problem. We show that, assuming infinite computational power, one

can design a reference algorithm which dynamically allocates service rates and drop packets ac-

cording to the solution to a non-linear optimization problem. We discuss the optimization function

and the constraints of the optimization problem. We provide numerical simulation examples to

illustrate the effectiveness of the approach with respect to service differentiation, and to compare

our reference algorithm to existing methods for loss and delay differentiation. We also provide a

heuristic approximation of the optimization problem.

While the performance of the reference algorithm with respect to satisfying the service guaran-

tees is excellent, its computational overhead prohibits its implementation in network routers. Thus,

we propose in Chapter 5 a closed-loop control algorithm to approximate the reference algorithm.

We apply linear feedback control theory for the design of the closed-loop control, and, to this ef-

fect, make assumptions to circumvent the non-linearities in the system of study. To illustrate the

validity of the assumptions, we use simulation results to show that the closed-loop algorithm and

the optimization algorithm have comparable performance.

In Chapter 6, we describe the implementation of our service architecture in PC-routers using

the BSD family of operating systems [32]. We present measurement results obtained from a testbed

of PC-routers to show that the implementation can realize the desired service guarantees in links

with speeds in the order of a few hundred megabits-per-second on a 1 GHz PC-router. We point out

that the implementation is being disseminated as part of the popular KAME [3] and ALTQ-3.1 [30]

networking extensions to the BSD kernels.

In Chapter 7, we extend our service architecture to TCP traffic. Assuming at first that infinite

computational power is available, we present a per-flow reference algorithm which exploits TCP

feedback mechanisms for the purpose of avoiding packet losses and regulating traffic. We then

discuss a set of approximations to this reference algorithm for implementation purposes. We use

multi-stage filters to avoid per-flow management and devise an efficient heuristic approximation.
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We present our conclusions and summarize the contributions of this dissertation in Chapter 8.

We also outline future research directions.



Chapter 2

Previous Work

The past decade has seen numerous proposals for service architectures, e.g., [14,18,23,38,47,73,78,

100,113,143]. Not all of the proposed service architectures directly relate to the work presented in

this dissertation. For instance, deployment of per-flow services such as the Tenet protocol suite [14],

or the Integrated Services architecture [23] discussed in the introduction is currently not actively

pursued.

The research community seems to have reached a consensus that per-class architectures will be

a viable solution for providing service guarantees in the Internet, because class-based architectures

have the advantage that they work with simpler algorithms for enforcing QoS guarantees than per-

flow architectures, and can be deployed with only minor changes to the network architecture.

The discussion in this chapter focuses on recently proposed class-based service architectures,

and the mechanisms required to implement them. The remainder of this chapter is organized as

follows. In Section 2.1, we discuss in greater detail the Differentiated Services architecture we

briefly introduced in Chapter 1. Then, in Section 2.2, we discuss the Proportional Differentiated

Services architecture from [47] which has been the starting point of our work. Last, in Section 2.3,

we discuss other class-based services that have been recently proposed to improve on either the

Best Effort model, or the Differentiated Services architecture.

15
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2.1 Differentiated Services

The Differentiated Services architecture (DiffServ, [18]) is the class-based service architecture pro-

posed by the Internet Engineering Task Force (IETF) for service differentiation on the Internet.

DiffServ relies on three fundamental ideas.

First, DiffServ uses flow aggregation to avoid per-flow operations in the core of the network. In

DiffServ terminology, individual flows, ormicroflows, are bundled inmacroflowswith similar ser-

vice requirements. Service guarantees are only provided to macroflows. To that effect, macroflows

use different classes of service, called Per-Hop Behavior (PHB). The aggregation of microflows in

macroflows requires per-flow classification [137], which is performed at the edge of the network,

where computational resources are less scarce than in the core. At the edge, in each packet, the

DiffServ CodePoint (DSCP, [114]) of the IP header is marked with a value denoting which class

of traffic the packet belongs to. The notion of “edge” is not precisely defined in DiffServ, but one

can envision two possibilities. The edge can be the host-network interface at an individual host,

in which case, per-flow classification is performed by the host operating system or applications, as

in [46,49]. Alternatively, the edge can be the router that connects a local, microflow-aware network,

to the rest of the Internet. A router connecting a microflow-aware network to the rest of the Internet

is typically called an access (or edge) router.

Second, the DiffServ architecture only provides local, per-hop differentiation at routers, which

motivates the name of Per Hop Behavior (PHB) for classes of service. Providing per-hop differenti-

ation has the advantage of eliminating the need for communication between different routers in the

network. A second advantage is that service differentiation can only be deployed at points of con-

gestion, without requiring deployment in the rest of the network. As an illustration, [46] gives the

example of a network operator, who can over-provision most of its network, thereby alleviating the

need for service differentiation, and only deploy DiffServ at transoceanic links where link capacity

becomes more expensive, and congestion can occur.

Third, there is no signaling in the DiffServ architecture. Even though some proposals for end-to-

end service differentiation in DiffServ, such as the Virtual Wire per-domain behavior [88], originally
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called the Virtual Leased Line service [87, 115], require to reserve some resources, the reservation

is handled by a centralized agent, called a bandwidth broker [115].

In addition to supporting the traditional best-effort service, the Differentiated Services architec-

ture supports two per-hop behaviors: Expedited Forwarding, and Assured Forwarding.

2.1.1 Expedited Forwarding

The Expedited Forwarding (EF) PHB was initially proposed by Jacobson et al. in 1997 [115],

and was refined in [87], as a service that provides a guaranteed peak rate service with negligible

queueing delays or losses. While EF only provides local, per-hop guarantees, the objective is to use

EF as a building block for network-wide services such as the Virtual Wire [88] per-domain behavior.

The goal of the Virtual Wire service is to provide each EF macroflow with a service equivalent to a

virtual leased line, or a virtual circuit in ATM networks.

The authors of [87] envision that EF requires shaping at the network edge, so that EF traffic does

not enter the network at a rate exceeding a peak rateR. A capacity ofR is reserved in the entire

network for EF traffic, so that EF macroflows do not experience delay or losses. The bandwidth

reservationR is statically configured in a bandwidth broker. The bandwidth broker is a centralized

agent configured with a set of policies, which determine the level of service different classes should

receive. The bandwidth broker keeps track of the current allocation of traffic to different classes, and

handles new requests to mark new traffic subject to the configured policies and current allocation.

Routers in turn query the bandwidth broker to determine how much link capacity shall be reserved

for EF traffic.

Subsequent research led by Charny, Le Boudec and others [15, 29, 22] showed that even with

peak rate allocation for EF macroflows, an EF service cannot be guaranteed negligible losses and

delays. Indeed, multiplexing EF traffic from several input ports in routers can result in bursty traffic,

which, in turn, may cause delay and losses. This finding led to a change to the original definition of

the Expedited Forwarding PHB [43]. Instead of guaranteeing no losses and negligible delays, the

authors of [43] propose to guarantee bounded delay variations to EF macroflows. More formally,

each EF packet arriving at a router obtains a a delay guaranteeD < F +E, whereF is a target delay
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guarantee, andE is an error.

2.1.2 Assured Forwarding

The Assured Forwarding service is based on a proposal that was originally called the “Allocated

Capacity framework”, introduced by Clark and Fang in [37]. In the Allocated Capacity framework,

a class of traffic is provided with a certain bandwidth profile, defined by a rateR. As long as the

aggregate amount of traffic from that class has a rate lower thanR, traffic is marked asin-profile;

otherwise it is marked asout-of-profile. In times of congestion, out-of-profile traffic is dropped

more aggressively than in-profile traffic. In other words, a class is allowed to exceed its profileR

when there is no congestion and the network load is low, but is restricted to sending traffic within its

profile when the network is congested. The rateR is statically reserved, or provisioned, at network

design time.

The AF service of the DiffServ architecture supports qualitative guarantees, but no classes are

provided absolute service guarantees, and the difference in the service received by different classes

is not quantified. While some have argued that Assured Forwarding provides absolute differenti-

ation, because the profileR can be viewed as a throughput guarantee, we point out that in-profile

traffic is not guaranteed a lossless service. Hence, traffic sending at a rateR′ < R, thereby remaining

in-profile, can still experience traffic losses, and obtain a service rateR′′ < R′ < R, which contra-

dicts the notion thatR is a throughput guarantee. The absence of throughput guarantee is clearly

exhibited in the case of TCP traffic, as discussed in [154]: regardless of how well provisioned the

network is, it may be impossible to provide throughput guarantees to TCP flows with the AF ser-

vice. In fact, the only assurance that in-profile traffic gets is that, should congestion occur, it will

not be dropped as aggressively as out-of-profile traffic. In other words, AF only provides isolation

between different AF classes, and qualitative loss differentiation between the drop precedence lev-

els within each class. We refer to the discussion in [65] to summarize concerns raised about the

actual differentiation offered between different classes of traffic.
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2.1.3 Mechanisms

The DiffServ, AF and EF specifications given in [18, 75, 43] do not impose a particular scheduling

or buffer management algorithm. EF can for instance be implemented using well-known fixed-

priority scheduling algorithms [115], or rate-based scheduling algorithms, e.g., Class-Based Queue-

ing (CBQ, [69]).

While EF can be realized through appropriate scheduling algorithms, the Assured Forwarding

service, on the other hand, can be enforced with buffer management algorithms. Indeed, as long

as the network is correctly provisioned, i.e., enough link capacity has been reserved in advance

for each class of traffic, scheduling in Assured Forwarding can be realized with a first-in-first-

out (FIFO) discipline. Service differentiation can be enforced by marking packets as in-profile

or out-of-profile, and using a buffer management algorithm that drops out-of-profile packets more

aggressively.

The literature regarding buffer management algorithms, also called active queue management

algorithms, is rich, and we present here a brief summary of the proposed buffer management al-

gorithms, that can be used or extended to provide qualitative loss differentiation, as in the Assured

Forwarding PHB.

The key mechanisms of a buffer management algorithm are thebacklog controller, which spec-

ifies the time instances when traffic should be dropped, and thedropper, which specifies the traffic

to be dropped. We refer to a recent survey article [97] for an extensive discussion of buffer man-

agement algorithms.

Backlog Controllers. Initial proposals for active queue management in IP networks [60,68] were

motivated by the need to improve TCP performance, without considering service differentiation.

More recent research efforts [37, 105, 117, 129] enhance these initial proposals in order to provide

service differentiation, and can be used to realize the AF service.

Among backlog controllers for IP networks, Random Early Detection (RED, [68]) is probably

the best known algorithm. RED was motivated by the goal to improve TCP throughput in highly

loaded networks. RED operates by probabilistically dropping traffic arrivals, when the backlog

at a node grows large. RED has two threshold parameters for the backlog at a node, denoted as
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Figure 2.1:Drop probability in RED. The probability of dropping a packet is a function of an
estimate on the average queue size in RED andgentle RED.

minTH and maxTH. RED estimates the average queue size,Qest and compares the estimate to the

two thresholds. IfQest < minTH, RED does not drop any arrival. IfQest > maxTH, RED drops

all incoming traffic. If minTH ≤Qest≤maxTH, RED will drop an arrival with probabilityP(Qest),

where 0≤ P(Qest) ≤ 1 is a function which increases linearly inQest, and satisfiesP(maxTH) =

maxP. We illustrate the drop probability function in RED in Figure 2.1(a). Thegentle variant of

RED has a smoother piecewise-linear drop probability function, as depicted in Figure 2.1(b), and

reportedly improves the robustness of RED with respect to parameter setting [67].

Several algorithms that attempt to improve or extend RED have been proposed, e.g., [13,37,60,

77,105,117,129,148]. For example, Blue [60] uses different metrics to characterize the probability

of dropping an arrival. Instead of the backlog, Blue uses the current loss ratio and link utilization

as input parameters.

RIO, originally proposed to implement the Allocated Capacity framework [37] from which the

Assured Forwarding service is derived, WRED [148], and multi-class RED [129] are extensions to

RED which aim at class-based service differentiation. All three schemes have different dropping

thresholds for different classes, in order to ensure loss differentiation. Note that in an per-flow

context, the idea of using different threshold values is pursued for Flow-RED (FRED, [105]), which

uses per-flow thresholds. In FRED, flows are discriminated by their source-destination address

pairs.
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CHOKe [117] tries to provide per-flow loss differentiation without keeping any per-flow state

information. The algorithm works as follows. When the queue size exceeds a first threshold value,

a packet is drawn at random from the queue. If the incoming packet and the packet drawn from

the queue belong to the same flow, both are dropped. If they belong to different flows, and the

queue size does not exceed a second threshold, the incoming packet is dropped with a probability

linearly dependent on the size of the queue. If the queue size does exceed this second threshold, the

incoming packet is dropped.

Random Early Marking (REM, [13]) is close in spirit to the dropping mechanisms of the algo-

rithm we will present in Chapter 4, since it treats the problem of marking (or dropping) arrivals as

an optimization problem. The objective is to maximize a utility function subject to the constraint

that the output link has a finite capacity. The REM algorithm marks packets with a probability

exponentially dependent on the cost of a link. The cost is directly proportional to the buffer occu-

pancy.

REM can also be expressed in terms of a feedback control problem. Based on a closed-loop

formulation of TCP throughput in [110], Hollot et al. propose to use a proportional-integral (PI)

backlog controller to achieve fast convergence to the desired queue length and to increase robustness

of the system [77]. It can be shown that REM and PI are in fact equivalent [155].

For a link of capacityC and buffer sizeB, the Adaptive Virtual Queue algorithm (AVQ, [96])

maintains a virtual queue of sizeB, served at a capacitỹC < C. Packets are marked or dropped

when they overflow the virtual queue. The valueC̃ varies over time as a function of the difference

between arrival and departures, and relies on the closed-loop formulation of the TCP throughput

in [110].

Droppers. The simplest and most widely used dropping scheme is Drop-Tail, which discards

arrivals to a full buffer. For a long time, Drop-Tail was thought to be the only dropper implementable

in high-speed routers. Recent implementation studies [147] demonstrated that other, more complex,

dropping schemes, which discard packets that are already present in the buffer (push-out), are viable

design choices even at high data rates.

The simplest push-out technique is called Drop-from-Front [98]. Here, the oldest packet in the
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transmission queue is discarded. In comparison to Drop-Tail, Drop-from-Front lowers the queueing

delays of all packets waiting in the system. Note that with Drop-Tail, dropping of a packet has no

influence on the delay of currently queued packets.

Other push-out techniques include Lower Priority First (LPF, [94, 104]), Complete Buffer Par-

titioning (CBP, [104]), and Partial Buffer Sharing (PBS, [94]). LPF always drops packets from the

lowest backlogged priority queue. CBP assigns a dedicated amount of buffer space to each class,

and drops traffic when this dedicated buffer is full. PBS uses a partitioning scheme similar to CBP,

but the decision to drop is made after having looked at the aggregated backlog of all classes. The

static partitioning of buffers in LPF, CBP, and PBS is not suitable for relative per-class service

differentiation, since noa priori knowledge of the incoming traffic is available [48].

2.1.4 DiffServ Deployment

Despite the availability of algorithms suitable for implementing the different DiffServ PHB’s, de-

ploying the Expedited Forwarding service as originally specified in [87] turns out to be more dif-

ficult than initially expected. The lack of deployment is in part due to open issues regarding the

configuration of the components in charge of the resource reservations, that is, the bandwidth bro-

kers. On the one hand, a centralized bandwidth broker, as advocated in [115], is a single point of

failure, which may be undesirable for a service with strong guarantees such as the EF service. On

the other hand, maintaining consistency with distributed bandwidth brokers schemes remained an

open problem, as discussed in [143]. Additionally, the potential difficulties in realizing the service

with bursty traffic exhibited in [29] imply that the total amount of EF traffic must be only a small

fraction of the network capacity to be able to guarantee low queueing delays [142].

Assured Forwarding seems more amenable to deployment, but relies on weaker service guar-

antees. The main focus of the research on QoS networks in the past five years has thus been to

strengthen the service assurance that can be given within the context of class-based services such

as Assured Forwarding.

Two approaches have emerged: some efforts focused on quantifying the differentiation between

classes of traffic, without enforcing absolute service guarantees, while other efforts attempt to provi-
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sion absolute service guarantees for certain classes, without quantifying the differentiation between

other classes.

2.2 Proportional Service Differentiation

Proportional service differentiation, initially proposed by Dovrolis et al. [47] in their Proportional

Differentiated Services model is an effort to quantify the differentiation between classes of traffic

without absolute service guarantees. The Proportional Differentiated Services model for instance

attempts to enforce that the ratios of delays or loss rates of successive priority classes be roughly

constant. Proportional Differentiated Services was proposed at approximately the same time as the

work by Moret and Fdida on proportional queue control [112], which is a scheduling algorithm to

realize proportional delay differentiation.

Proportional service differentiation can be implemented through scheduling algorithms and/or

buffer management algorithms. The service guarantees are enforced on a per-node basis and do not

require any communication between participating nodes. We next present the scheduling and buffer

management algorithms that have been proposed for proportional differentiation.

2.2.1 Scheduling

The majority of work on per-class service differentiation suggests to use well-known fixed-priority,

e.g., [115], or rate-based scheduling algorithms, e.g., [69]. A few scheduling algorithms have been

specifically designed for proportional delay differentiation.

A number of scheduling algorithms, including those we describe in this dissertation, are based

on a rate allocation. Rate allocation to classes of traffic for meeting service guarantees is illustrated

by the Generalized Processor Sharing (GPS) algorithm [119]. GPS traffic consists of sessions,

which can be flows or classes of traffic. GPS takes a fluid-flow interpretation of traffic, which means

that multiple sessions can be served simultaneously at the link governed by GPS. Each sessioni is

allocated a weightφi . GPS is work-conserving, which means that a GPS link is always busy serving

traffic when a backlog is present. Traffic from a given backlogged session, say sessionj, is served at
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a service rate at least equal toφ j

∑i φi
C, whereC is the total capacity of the GPS link. Approximations

of GPS in a packet network, where the fluid-flow assumption does not hold, include Packetized

GPS (PGPS, [119]) and Weighted Fair Queueing (WFQ, [45]).

With respect to proportional delay differentiation, the Proportional Queue Control Mechanism

(PQCM, [112]) and Backlog-Proportional Rate (BPR, [50]) are variations of GPS. Both PQCM

and BPR dynamically adjust service rate allocations of classes to meet proportional guarantees.

The service rate allocation is based on the backlog of classes at the scheduler. For two classes with

backlogsB1(t) andB2(t), at a link of capacityC, PQCM assigns a service rate of

r1(t) =
B1(t)

B1(t)+αB2(t)
C ,

to the first class, where 0< α < 1 is the proportional differentiation factor characterizing the ratio of

the delays of the first class over the delays of the second class. BPR extends PQCM to an arbitrary

number of classes. In BPR, the class-i service rate is set to

r i(t) =
Bi(t)

∑ j
sj

si
B j(t)

,

wheresj

si
characterizes the proportional delay guarantee between classesi and j.

Different from the rate-based schedulers discussed above, a number of algorithms instead use

dynamic time-dependent priorities to provide proportional delay guarantees. For instance, Waiting-

Time Priority (WTP, [50]) implements a scheduling algorithm with dynamic time-dependent pri-

orities initially proposed in [92], Ch. 3.7. A class-i packet, which arrives at timeτ, is assigned a

time-dependent priority as follows. If the packet is backlogged at timet > τ, then WTP assigns this

packet a priority of(t− τ) ·δi , whereδi is a class-dependent priority coefficient [92]. WTP packets

are transmitted in the order of their priorities. In [50], the coefficientsδi are chosen so that

δ1 = k ·δ2 = k2 ·δ3 = . . . = kQ ·δQ ,

resulting in a delay differentiation under high loads, where Class-(i +1) Delay≈ k·Class-i Delay.
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The Mean-Delay Proportional scheduler (MDP, [113]) has a dynamic priority mechanism simi-

lar to WTP, but uses estimates of the average delay of a class to determine the priority of that class.

Thus, the priority of a class-i packet is set toδi ·Di(t), whereDi(t) is the estimated average delay

for classi, averaged over the entire up-time of the link. The coefficientsδi , are as in WTP, i.e.,

δ1 = k ·δ2 = k2 ·δ3 = . . . = kQ ·δQ.

The Hybrid Proportional Delay scheduler (HPD, [46, 51]) uses a combination of waiting-time

and average experienced delay to determine the priority of a given packet. Therefore, the priority

of a given class is set to

δi(g(t− τ)+(1−g)Di(t)) ,

with 0 < g < 1.

A slightly different approach, pursued by the Weighted-Earliest-Due-Date scheduler of [20],

is to provide proportional differentiation in terms of probabilities of deadline violation for a set of

classes.

2.2.2 Buffer Management

The Proportional Loss Rate (PLR) dropper [48] is specifically designed to support proportional

differentiated services. PLR enforces that the ratio of the loss rates of two successive classes re-

mains roughly constant at a given value. There are two variants of PLR. PLR(M) uses only the

last M arrivals for estimating the loss rate of a class, whereas PLR(∞) has no such memory con-

straints. Average Drop Distance (ADD, [21]) is a variant of PLR(M) which aims at providing loss

differentiation regardless of the timescale chosen for computing the loss rates.

Different from PLR and ADD, the authors of [95] propose an algorithm that attempts to enforce

end-to-end proportional loss differentiation. To that effect, the proposed algorithm records infor-

mation about the loss rates observed at each hop in the packet header, using a technique similar to

Dynamic Packet State [143].

The recently proposed Class-Distance-Based-Priority-Delay-Loss scheduler (C-DBP-Delay-

Loss, [146]) tries to provide proportional delay and proportional loss differentiation in a single
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algorithm. Note that C-DBP-Delay-Loss is more recent than our initial proposal for an algorithm

combining scheduling and buffer management [102]. At any time, C-DBP-Loss-Delay keeps state

information as a set of(mi ,k) pairs, where, for each classi, mi represents the number of packets that

have been successfully transmitted in the lastk packets. For each packet, C-DBP-Loss-Delay com-

putes the distance between the current state of the system, and a “failure state”, defined as any state

wheremi is less than a desired valuêmi . The lower the distance, the higher the priority assigned to

the packet. The authors of [146] conjecture that settingm̂i = k−δi , whereδi is selected as in WTP

and MDP, can be used to provide proportional loss and delay differentiation.

2.3 Other Class-Based Services

The Proportional Differentiated Services model aims at strengthening the guarantees of the Diff-

Serv architecture by quantifying the differentiation provided by AF-like services. In parallel to

these efforts to strengthen the guarantees of the Assured Forwarding service, other researchers have

explored different directions in the design space of Figure 1.1 [73,78,100].

For instance, the Alternative Best-Effort (ABE) service explores simpler mechanisms for ser-

vice differentiation. The ABE service considers two traffic classes. The first class obtains absolute

delay guarantees, and the second class has no delay guarantees, but is given a lower loss rate than

the first class. Scheduling and buffer management algorithms for the ABE service are presented

in [78], and rely on a combined scheme called Duplicate Scheduler with Deadlines, which enforces

delay guarantees for the first class by dropping all traffic that has exceeded a given delay bound. A

type of service similar to ABE, called Balanced Forwarding, is proposed in [73].

The Dynamic Core Provisioning service model [100] is a class-based service, which supports

absolute delay bounds, and qualitative loss and throughput differentiation, but no proportional dif-

ferentiation. The mechanisms used in [100] prevent violations on service guarantees by dynami-

cally adjusting scheduler service weights and packet dropping thresholds in core routers. Traffic

aggregates are dimensioned at the network ingress by a distributed admission control mechanism

that uses knowledge of the entire traffic present in the network. Full knowledge of the traffic travers-



Chapter 2. Previous Work 27

ing a network is generally not available in practice, and the algorithm needs to be approximated.



Chapter 3

A Framework for Per-Class Service Guarantees

In this chapter, we introduce a framework for reasoning about per-class service differentiation in a

packet network without information on traffic arrivals. We will use the framework described in the

present chapter as a basis for the mechanisms we propose throughout this dissertation.

In particular, the proposed framework will allow us to describe a scheme for providing service

differentiation at the output link of a router. The scheme relies on treating buffer management and

scheduling as two instances of the same problem, namely, management of the transmission queue.

That is, buffer management and scheduling are considered in a single step. We give the nameJoint

Buffer Management and Scheduling(JoBS) to this scheme, which we present in [102, 103]. This

dissertation will show that using algorithms based on JoBS at the output link of a router enables us

to enhance class-based service differentiation without any a priori information on the traffic arrivals.

In parallel to our efforts, there were other proposals that considered scheduling and buffer man-

agement in a single step [106,146]. We assert that our approach is more rigorous and more general.

In [146], Striegel and Manimaran use a scheme combining buffer management and scheduling to

simultaneously provide proportional differentiation to losses and delays in the context of the C-

DBP-Delay-Loss algorithm discussed in Chapter 2. There are no absolute guarantees. In [106], Liu

et al. use a joint buffer management and scheduling scheme in the context of input-queued switches

to address the issue of maximizing both the aggregate throughput and buffer utilization at the same

time, revisiting a problem first described by Lapiotis in [99]. The approaches in [99, 106] solely

focus on efficiently using router resources, and do not attempt to apply the combined scheme to

28
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Figure 3.1:Router architecture. In this dissertation, we consider an output-queued router, where
all queueing occurs at the output links, in the transmission queues. There is no contention at the
input links or in the fabric interconnect. The figure shows a 3×3 switch.

provide any service guarantees.

The remainder of this chapter is organized as follows. In Section 3.1, we first give an infor-

mal discussion of the operations used by an algorithm based on the Joint Buffer Management and

Scheduling scheme. In Section 3.2, we discuss the notions of arrival, input, and output curves,

which are adapted from the network calculus formalism originally presented by Cruz in [41, 42].

We use this formalism to introduce the metrics we use to quantify and enforce service differenti-

ation. In Section 3.3, we delve into the details of the service guarantees of Quantitative Assured

Forwarding [34] we are interested in providing.

3.1 Overview

In this section, we present an overview of the JoBS scheme. We start by outlining the assumptions

we use in our presentation, before succinctly describing the operations one can use in the context

of JoBS.
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3.1.1 Assumptions

We consider an individual router in the network. For the presentation of this framework, we consider

that all traffic backlogged in the router is queued in the transmission queues at the output links. In

other words, we assume that the router under consideration uses an output queueing architecture.

In Figure 3.1, we give a simplified representation of the router (or switch) architecture we consider.

The router consists ofN input and output links (N = 3 in the example of Figure 3.1), connected by

a fabric interconnect. Demultiplexers are used to direct packets from the input links to the proper

output links. Each output link is governed by a transmission queue. In the figure, packets flow

from left to right. Two packets, marked 1 and 2, are in contention for the same output link, while a

third packet, 3, is coming from the same input link as 2. The output queueing architecture implies

that the switch interconnect is fast enough to move packets from all input ports to the output ports

and completely avoid any contention at the input links or in the switch fabric. In the example of

Figure 3.1, packets 2 and 3 are immediately sent to their respective output links and do not create a

backlog at the input link they share.

By avoiding traffic backlogs at the input links or in the fabric, the output queueing assumption

enables us to solely focus on the operations performed at the output links. However, ifC is the

capacity of an input link andN is the number of input links, output queueing requires the switch

interconnect to have a speed-up of at leastN, that is, to have a throughput of at leastNC. The

throughput requirement on the interconnect can pose practical challenges whenN andC are both

high, that is, for routers with a large number of high-speed line cards. Even though current hardware

may be able to handle the required throughput for interconnects withN ≈ 10 andC ≈ 10 Gbps,

memory access speeds prevent us from writing packets into the output links transmission queues at

such speeds [66].

Therefore, typical high-speed routers generally use input queues in lieu of the demultiplexers

of Figure 3.1. Popular router architectures using input queues include Virtual Output Queueing

(VOQ, introduced in [12]), where all traffic is queued atN2 input queues, and Combined Input-

Output Queueing (CIOQ), where traffic can be backlogged at both input and output links. Our

framework can be extended to CIOQ switches as follows. Previous research contributions showed
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that it is possible to perfectly emulate output queueing routers with CIOQ routers with a speed-up of

only two, and specific interconnect arbitration mechanisms, such as Critical Cells First (CCF, [35]).

Therefore, with CCF and an interconnect throughput of 2C, we can implement our approach in

CIOQ switches.

Another solution to implement output queueing in high speed switches is the Feedback Output

Queueing (FOQ) architecture proposed in [66]. FOQ approximates output queueing at high speeds

with a modest speedup (between one and two) using a feedback control algorithm that drops packets

at the input lines, based on the congestion experienced at the output lines. Because FOQ switches

only enqueue traffic at the output links, FOQ switches rely on an output queuing architecture.

Hence, our proposed framework directly applies to FOQ switches.

In addition to assuming an output queueing router architecture, we take a fluid-flow interpre-

tation of traffic. That is, the output link is viewed as simultaneously serving traffic from several

classes. Since actual traffic is sent in discrete-sized packets, a fluid-flow interpretation of traffic is

idealistic. However, scheduling algorithms that closely approximate fluid-flow schedulers with rate

guarantees are available [119, 157]. In Chapter 5, we discuss in more detail how we realize the

fluid-flow interpretation in a packet network.

Last, we assume for now that no a priori information on the traffic arrivals is available.

3.1.2 JoBS Operations

With the assumptions described above, let us now consider a single router in the network and de-

scribe the operations performed by algorithms based on the JoBS scheme. In the router under

consideration, each output link performs per-class buffering of arriving traffic and traffic is trans-

mitted from the buffers using a rate-based scheduling algorithm such as [119,157], with a dynamic,

time-dependent service rate allocation for classes. Traffic from the same class is transmitted in a

First-Come-First-Served order. There is no admission control and no policing of traffic.

The set of performance requirements are specified to the router as a set of per-class QoS guar-

antees. As an example, for three classes, the QoS guarantees could be of the form:

• Class-2 Delay
Class-1 Delay≈ 2,
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• Class-3 Loss Rate
Class-2 Loss Rate≈ 10−1, or

• Class-3 Delay≤ 5 ms.

Using the definitions of Chapter 1, the first two guarantees are proportional guarantees, character-

ized by a proportional differentiation factor, and the last one is an absolute guarantee, characterized

by a bound. All QoS guarantees are deterministic. Statistical guarantees as in [27, 28], which, for

instance, provide a delay bounddi to class-i traffic with probability 1− ε whereε > 0 are outside

the scope of this dissertation.

The set of guarantees we consider can be any mix of proportional and absolute guarantees.

There is no limit on the number of classes that are supported, and we further require that the al-

gorithms used to implement the service be independent of the choice of specific bounds or propor-

tional differentiation factors for each class. Our objective is that the proposed service generalizes

all previous efforts on class-based services.

Because we want to support absolute guarantees and do not use admission control, a set of

service guarantees may be infeasible at certain times. For example, it may be impossible to meet

both a delay bound and a loss rate bound at the time of a burst of traffic. In case the system of

service guarantees is infeasible, some guarantees may need to be relaxed. For instance, proportional

guarantees may be relaxed in favor of absolute bounds, or loss guarantees may be relaxed in favor

of delay guarantees. We assume that all QoS guarantees are given a precedence order, which is used

to determine which constraints are relaxed in case of an infeasible system.

The service rate allocation operates as follows. For each arrival, the service rate allocation to

traffic classes is modified so that all QoS service guarantees are met. If there exists no feasible rate

allocation that meets all service guarantees, traffic is dropped, either from a new arrival or from the

current backlog. We identify two methods of modifying the service rate allocation for meeting the

service guarantees:

• Using apredictiveservice rate allocation and buffer management. Here, a prediction on the

service differentiation received by all backlogged traffic is made, and based on the prediction,



Chapter 3. A Framework for Per-Class Service Guarantees 33

the service rates are adjusted and traffic is dropped so that per-class QoS guarantees will be

met in the future. This approach is discussed in Chapter 4.

• Using areactiveservice rate allocation and buffer management. Here, the performance of

the system with respect to service differentiation is continuously monitored, and compared to

the offered per-class QoS guarantees. Upon each arrival, the service rate allocation to each

class is adjusted in an effort to attenuate the difference between the service experienced and

the QoS guarantees. This approach is presented in Chapter 5.

Using a predictive service rate allocation allows to formulate the service differentiation problem

in terms of an optimization problem, as we will demonstrate in Chapter 4. On the other hand, a

reactive service rate allocation can help characterize the service rate allocation in terms of a closed-

loop problem, as we will show in Chapter 5.

3.2 Formal Description of the Metrics Used in JoBS

We next provide a more formal presentation of the metrics that we use to quantify and enforce

service differentiation. To that effect, we use results from the network calculus [41, 42] to express

backlog and delay of traffic in the transmission queue of a router. These definitions are useful to

describe algorithms based on a reactive service rate allocation and buffer management. Then, we

provide a formal definition of the metrics used in the context of a predictive service rate allocation

and buffer management. Last, we discuss how we extend the delay and loss metrics to per-class

metrics. In this section, we assume that the link at which service differentiation is provided has a

capacityC and a total buffer spaceB.

We assume that all traffic that arrives to the link is marked to belong to one ofQ classes. In

general, we expectQ to be small, e.g.,Q = 4. We use a convention whereby a class with a lower

index receives a better service. We useai(t) and l i(t), respectively, to denote the class-i arrivals

and the amount of class-i traffic dropped (“lost”) at timet. We user i(t) to denote the service rate

allocated to class-i at timet. The service rate of a classi is a fraction of the output link capacity,

which can vary over time, and is set to zero if there is no backlog of class-i traffic in the transmission
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queue. That is,

r i(t) > 0 ,

only if there is a backlog of class-i traffic in the buffer and

r i(t) = 0 ,

otherwise. In addition, we require that scheduling be work-conserving, that is,

∑
i

r i(t) = C , (3.1)

if there is at least one backlogged class at timet. Note that systems that are not work-conserving,

i.e., where the link may be idle even if there is a positive backlog, may be undesirable for networks

that need to achieve a high resource utilization or that need to support the best-effort service.

3.2.1 Arrival, Input and Output Curves

We now introduce the notions ofarrival curve, input curve, andoutput curvefor a traffic classi in

the time interval[t1, t2]. The arrival curveAi and the input curveRin
i of classi are defined as

Ai(t1, t2) =
Z t2

t1
λi(x)dx︸ ︷︷ ︸

ai(x)

, (3.2)

whereλi(t) is the instantaneous class-i arrival rate at timet, defined by

λi(t) =
dAi

dt
(t) ,

and

Rin
i (t1, t2) = Ai(t1, t2)−

Z t2

t1
ξi(x)dx︸ ︷︷ ︸

l i(x)

, (3.3)
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whereξ(t) is the instantaneous class-i drop rate at timet, defined by

ξi(t) =
d(Ai−Rin

i )
dt

(t) .

From Eqn. (3.3), the difference between the arrival and input curve is the amount of dropped traffic.

The output curveRout
i of class-i is the transmitted traffic in the interval[t1, t2], given by

Rout
i (t1, t2) =

Z t2

t1
r i(x)dx . (3.4)

From now on, we will use the following shorthand notations to denote the arrival, input and output

curves at a given timet, respectively:

Ai(t) = Ai(0, t) ,

Rin
i (t) = Rin

i (0, t) ,

Rout
i (t) = Rout

i (0, t) .

We refer to Figure 3.2 for an illustration. In the figure, the service rate is adjusted at timest1, t2,

andt4, and drops occur at timest2 andt3.

The vertical and the horizontal distance between the input and output curves from classi, re-

spectively, are the backlogBi and the delayDi . This is illustrated in Figure 3.2 for timet. The delay

Di at timet is the delay of an arrival which is transmitted at timet. Backlog and delay at timet are

defined as

Bi(t) = Rin
i (t)−Rout

i (t) , (3.5)

and

Di(t) = max
x<t
{x | Rout

i (t)≥ Rin
i (t−x)} . (3.6)

Upon a traffic arrival, say at times, JoBS sets new service ratesr i(s) and the amount of traffic to

be droppedl i(s) for all classes.r i(s) andl i(s) are selected such that all QoS guarantees can be met

at times greater thans. If all service guarantees cannot be satisfied at the same time, then some
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Figure 3.2:Delay and backlog.Ai is the arrival curve,Rin
i is the input curve andRout

i is the output
curve.
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Figure 3.3:Predicted input curve, predicted output curve, and predicted delays.The prediction
is performed at times for the time interval[s,s+ T̃i,s].

guarantees are relaxed in a predetermined order. For instance, absolute guarantees can be given

higher precedence than proportional guarantees.

3.2.2 Predictions

The metricsDi , Ai , Rin
i , Rout

i and Bi discussed above characterize past and present state of the

system. These metrics are therefore useful in the context of a reactive service rate allocation and

buffer management. However,Di , Ai , Rin
i , Rout

i andBi do not convey any information regarding

potential future behavior and are therefore not adequate in the context of predictive algorithms.

Here, we introduce the predictions used by a predictive rate allocation and buffer management

algorithm.

For the purpose of the predictions, we assume that the current state of the link will not change

after times. Specifically, indicating predicted values by a tilde (˜), for timest > s, we assume that

1. Service rates remain as they are:r̃ i(t) = r i(s),
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2. There are no further arrivals:̃ai(t) = 0,

3. There are no further drops:l̃ i(t) = 0.

With these assumptions, we now define the notions of predicted input curveR̃in
i,s, predicted output

curveR̃out
i,s , and predicted backlog̃Bi,s, for t > s as follows:

R̃in
i,s(t) = Rin

i (s) , (3.7)

R̃out
i,s (t) = Rout

i (s)+(t−s)r i(s) , (3.8)

B̃i,s(t) = R̃in
i,s(t)− R̃out

i,s (t) . (3.9)

We refer to thepredicted horizonfor classi at times, denoted as̃Ti,s, as the time when the predicted

backlog becomes zero, i.e.,

T̃i,s = min
x>0
{x | B̃i,s(s+x) = 0} . (3.10)

With this notation, we now express predictions for delays in the time interval[s,s+ T̃i,s]. We define

the predicted delaỹDi,s(t) at timet ∈ [s,s+ T̃i,s] as

D̃i,s(t) = max
t−s<x<t

{x | R̃out
i,s (t)≥ Rin

i (t−x)} . (3.11)

If there are no arrivals after times, the delay predictions are correct, in the sense that the predicted

delay at times is the delay that will be encountered when the traffic element departs the system at

time t.

In Figure 3.3, we illustrate the predicted input curve, predicted output curve, and predicted

delays for predictions made at times. In the figure, all values fort > s are predictions and are

indicated by dashed lines. The figure includes the predicted delays for timest5 andt6.

Note that the prediction given in Eqn. (3.11) assumes that, when drops occur, traffic is dropped

from the tail of the queue (Drop-Tail). Indeed, if drops are performed at the head of the queue

(Drop-from-Front, [98]), drops affect traffic that was admitted in the past. A Drop-from-Front

policy has therefore an influence onpastvalues ofRin
i , which changes the shape of the entire input
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curve at any time traffic is dropped. More formally, with a Drop-from-Front policy, Eqn. (3.11)

does not hold anymore and must be replaced by

D̃i,s(t) = max
t−s<x<t

{x | R̃out
i,s (t)≥ Rin

i (t−x)−
Z t

s
ξ(τ)dτ} , (3.12)

Eqn. (3.12) imposes knowledge of future drops to make a meaningful prediction. Because it is

practically difficult to evaluate how much traffic will be dropped in the future, we will consider a

Drop-Tail policy in the remainder of the dissertation.

3.2.3 Per-Class Delay and Loss Metrics

When defining proportional QoS guarantees as in Chapter 1, e.g., Class-2 Delay≈ 2·Class-1 Delay

or Class-2 Loss Rate≈ 10−1 ·Class-3 Loss Rate, we have assumed that a single metric is available

to specify the “delay” or the “loss” of a class. In general, since there are several packets backlogged

from a class, each likely to have a different delay, the notion of “delay of classi” needs to be further

specified. Likewise, the notion of “loss rate of classi” requires further clarification.

3.2.3.1 Delay Metrics

Beginning with the delay metricDi(t) from Eqn. (3.6), we provide the rationale for our choices of

per-class delay metrics.

Instantaneous Delay. The measureDi(t), given by Eqn. (3.6) describes the delay of the class-i

packet that is in transmission at times. Di(t) is a good measure for the delay of all class-i traffic

if Di(t) is roughly constant.Di(t) may be an appropriate metric if the service rate allocation is

formulated in terms of a closed-loop control problem, i.e., if the service rate allocation to classes is

regarded as taking corrective actions to an “error” in the current rate allocation.

Average Delay.Averaging the instantaneous delayDi(t) over a time window of lengthτ provides

a simple measure for the history of delays experienced by “typical” class-i packets. We obtain

Davg
i,t (τ) =

1
τ

Z s

s−τ
Di(x)dx . (3.13)
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Alternatively, one may want to give more weight to the most recent delays. Using an exponentially

weighted moving average, denoted byDewma
i,t , one obtains

Dewma
i,t = Dewma

i,t−τ +w · (Di(s)−Dewma
i,s−τ ) , (3.14)

whereτ defines the window size of the moving average, and 0≤ w≤ 1 is the smoothing factor.

Average delay metrics as defined above only take into consideration the history of delays. Since

the recent history of delays may not be a good indicator for the delays to be experienced by currently

backlogged traffic, using Eqs. (3.13) and (3.14) may lead to poor predictions of delay guarantee

violations. On the other hand, Eqs. (3.13) and (3.14) can be appropriate for closed-loop control,

when the service rate allocation attempts to correct past observed behavior. Compared toDi(t), an

average delay metric will yield a more conservative, and likely more stable control, at the expense

of a reduced reactivity.

The instantaneous and average delay metrics are suitable for a closed-loop control, characteris-

tic of a reactive service rate allocation. Different from the above, the per-class delay metrics used

in the case of a predictive rate allocation should attempt to measure the delay for the currently

backlogged traffic. Per-class delay metrics we propose to use in the context of a predictive rate al-

location take advantage of the notion of predicted delayD̃i,s(t) as defined in Eqn. (3.11). Under the

assumption that there are no arrivals and no losses after times, and using the service rate allocation

from times, the predicted delaỹDi,s(t) provides the delay of the packet in transmission at timet.

We define two delay metrics for the backlog from classi at times, one for the worst-case delay and

one for the “typical” delay.

Maximum Predicted Delay. As a metric for predicting the worst-case delay of the currently back-

logged traffic from classi, we define themaximum predicted delayat times, as

D̃max
i,s = max

s<t<s+T̃i,s

D̃i,s(t) . (3.15)

If there are no arrivals and no changes to the rate allocation after times, thenD̃max
i,s is an upper

bound of the future delays of traffic which is backlogged at times.
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Average Predicted Delay.We define theaverage predicted delayDi,s as the time average of the

predicted delays from a class, averaged over the horizonT̃i,s. We obtain

Di,s =
1

T̃i,s

Z s+T̃i,s

s
D̃i,s(x)dx . (3.16)

Note that this metric takes into account both the time that has already been spent in the scheduler,

and the predicted time before the packet is serviced.

3.2.3.2 Loss Metrics

Similar to delays, there are several sensible choices for defining “loss”. In this dissertation, we

select one specific loss measure, denoted bypi(t), which expresses the fraction of lost traffic since

the beginning of the current busy period at timet0. A busy period is a time interval with a positive

backlog of traffic. For timex with ∑i Bi(x) > 0, the beginning of the busy periodt0 is given by

t0 = max
y<x

{
∑

i

Bi(y) = 0

}
.

So,pi(t) expresses the fraction of traffic that has been dropped in the time interval[t0, t], that is,

pi(t) =

R t
t0 l i(x)dxR t
t0 ai(x)dx

= 1− Rin
i (t0, t−)+ai(t)− l i(t)

Ai(t0, t)
. (3.17)

with

t− = sup{x|x < t} .

With the metrics just defined, we can now formally introduce the service guarantees our service

architecture can support.
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3.3 Quantitative Assured Forwarding

We propose here a formal definition of the Quantitative Assured Forwarding service guarantees.

In QAF, service differentiation is enforced over the duration of a busy period. An advantage of

enforcing service differentiation over short time intervals such as the busy period is that the output

link can react quickly to changes of the traffic load. Further, providing differentiation only within

a busy period requires little state information to be maintained. As a disadvantage, at times of

low load, when busy periods are short, providing service differentiation only with information on

the current busy period can be unreliable. However, at underloaded links transmission queues are

mostly idle and all service classes receive a high-grade service. So, from now on, we consider

t0 = 0.

We want the QAF service to be able to generalize all recently proposed class-based services. In

particular, the proposed service should be able to emulate the Assured Forwarding and Expedited

Forwarding services of the DiffServ architecture. We also want the proposed service to support

the guarantees of the Proportional Differentiated Services architecture, and of other class-based

services such as the Alternative Best Effort service.

Quantitative Assured Forwarding provides proportional and absolute differentiation on losses,

delays, and throughputs of classes of traffic. The guarantees are expressed as follows.

An absolute delay bound on classi is specified as

∀t : Di(t)≤ di , (3.18)

wheredi is the desired upper bound on the delay of classi. An absolute loss rate bound for classi

is defined by

∀t : pi(t)≤ Li . (3.19)

Throughput guarantees guarantee a minimum throughput to classes that are backlogged. The

throughput guaranteed to classes that are not backlogged should be usable by backlogged classes.
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A throughput guarantee is defined by a bound on the service rates of classi, specified as

∀t : Bi(t) > 0 , r i(t)≥ µi . (3.20)

Proportional differentiation on delay and loss, respectively, is defined, for allt such thatBi(t) >

0 andBi+1(n) > 0, as
Di+1(t)
Di(t)

= ki , (3.21)

and
pi+1(t)
pi(t)

= k′i , (3.22)

whereki andk′i are proportional differentiation factors, that is, constants that quantify the propor-

tional differentiation desired. Note that even though Eqs. (3.21) and (3.22) impose that proportional

differentiation only apply to classes with contiguous indices, simply reordering class indices enables

to provide proportional differentiation between any two classes.

We have fully specified the service guarantees of Quantitative Assured Forwarding, and we now

turn to a description of the specifics of the algorithms we propose to realize the QAF service.



Chapter 4

Service Rate Allocation and Traffic Drops: An

Optimization Problem

In this chapter, we discuss two algorithms based on the JoBS scheme to provide the service guar-

antees of the Quantitative Assured Forwarding service at a given output link. The algorithms we

propose in this chapter use a predictive rate allocation and buffer management. That is, every time

an arrival occurs, the algorithms predict the delays that will be experienced by backlogged traffic

if the current rate allocation stays in force and if no traffic is dropped. If the predicted delays indi-

cate impending service violations, the rate allocation is changed so that the predictions satisfy all

proportional and absolute guarantees on delays. Traffic is dropped, subject to loss guarantees, only

if no feasible rate allocation can satisfy all delay and throughput guarantees. In other words, at a

given times, the goal is to compute the rate allocationr i(s) and traffic dropsl i(s) so that service

guarantees are met in the future, at timest ≥ s.

We describe a first algorithm where the service rate allocation and traffic drops are expressed in

terms of the solution to an optimization problem [103]. An optimization problem is defined by

• An optimization variable, which is the unknown in the problem,

• A set of constraints, which define the solution space of the problem, and

• An objective function, which selects a specific solution in the solution space.

44
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The optimization is performed each times at which an arrival occurs. Considering a numberQ

of classes, the optimization variable is a time-dependent vector

xs = (r1(s) . . . rQ(s) l1(s) . . . lQ(s))T ,

which contains the service ratesr i(s) and the amount of traffic to be droppedl i(s) for each class.

The optimization problem has the form

Minimize F(xs)

Subject to g j(xs) = 0, j = 1, . . . ,M

h j(xs)≥ 0, j = M +1, . . . ,N,

(4.1)

whereF(.) is the objective function, and theg j ’s andh j ’s are constraints. More precisely,g j ’s

define equality constraints, andh j ’s define inequality constraints. The optimization at times is

done with knowledge of the system state before times, that is the optimizer knowsRin
i andRout

i for

all timest < s, andAi for all timest ≤ s.

We use an objective function that minimizes the amount of traffic to be dropped, and, as a

secondary objective, aims at maintaining the current service rate allocation. The first objective

prevents traffic from being dropped unnecessarily, and the second objective tries to avoid frequent

fluctuations of the service rate allocation. The constraints are the Quantitative Assured Forwarding

service guarantees defined in Chapter 3 (QoS constraints), and constraints on the link and buffer

capacity (system constraints).

The computational complexity of the algorithm effectively in charge of the rate allocation and

traffic drops is determined by the number and the type of constraints, and by the frequency of

running the above optimization. For now, we assume that sufficient computing resources are avail-

able. The optimization-based algorithm can be used as a reference algorithm against which more

practical scheduling and dropping algorithms can be compared. We will later approximate the

optimization-based algorithm with a heuristic algorithm that incurs less computational overhead.

The remainder of this chapter is organized as follows. In Section 4.1, we present the constraints
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of the optimization problem in details. In Section 4.2, we give a formal definition of the objective

function. In Section 4.3, we introduce a heuristic algorithm to approximate the solution to the

optimization problem. In Section 4.4, we evaluate the performance of both the optimization and

heuristic algorithms with respect to meeting service guarantees through simulation experiments,

and provide a numerical comparison with other algorithms available in the literature.

4.1 System and QoS Constraints

We next discuss the constraints of the optimization problem. There are two types of constraints:

system constraintsdescribe constraints and properties of the output link, whileQoS constraints

enforce the desired service differentiation. All constraints in the optimization problem must be

expressed in function of the optimization variablexs. Hence, the object of the present section is to

to derive expressions for the constraint functionsg j(xs) andh j(xs) in Eqn. (4.1).

4.1.1 System Constraints

The system constraints specify physical limitations and properties at the output link and the associ-

ated transmission queue where service guarantees are enforced.

The first system constraint enforces that scheduling at the output link is work-conserving. At a

work-conserving link servingQ classes of traffic, Eqn. (3.1) holds for all timest where∑i Bi(t) > 0.

For the optimization problem as defined by Eqn. (4.1), Eqn. (3.1) is written as an equality constraint

defined by the functiong1(xs) as follows:

g1(xs) =
Q

∑
i=1

r i(s)−C . (4.2)

The second set of system constraints characterizes bounds on the service rates and traffic drops.

In particular, service rates and traffic drops cannot be negative, and the amount of traffic that can be



Chapter 4. Service Rate Allocation and Traffic Drops: An Optimization Problem 47

dropped is bounded by the current backlog. So, we obtain, for each classi, at any timet,

r i(t) ≥ 0 ,

l i(t) ≥ 0 ,

l i(t) ≤ Bi(t) .

We use a convention wherebyhi
j denotes thej-th inequality constraint, applied to classi, and obtain

three inequality constraints per class,

hi
2(xs) = r i(s) , i = 1, . . . ,Q ,

hi
3(xs) = l i(s) , i = 1, . . . ,Q ,

hi
4(xs) = Bi(s)− l i(s) , i = 1, . . . ,Q .

(4.3)

The last system constraint states that the total backlog in the transmission queue cannot exceed

the buffer sizeB, that is,
Q

∑
i=1

Bi(t)≤ B , (4.4)

for all timest. Since we have, for alli,

Bi(s) = Bi(s−)+ai(s)− l i(s) , (4.5)

the buffer size constraint in Eqn. (4.4) can be rewritten as

Q

∑
i=1

(
Bi(s−)+ai(s)− l i(s)

)
≤ B , (4.6)

where the only unknown isl i(s). Eqn. (4.6) directly translates into an inequality constraint charac-

terized by

h5(xs) = B−
Q

∑
i=1

(
Bi(s−)+ai(s)− l i(s)

)
. (4.7)
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4.1.2 QoS Constraints

The QoS constraints describe the service guarantees offered by the Quantitative Assured Forward-

ing Service. We consider two types of QoS constraints, relative constraints and absolute constraints.

Relative constraints are used to enforce proportional service differentiation, while absolute con-

straints translate absolute bounds on the service received. QoS constraints can be expressed for

delays, loss rates and service rates.

The number and type of QoS constraints is not limited. However, since absolute QoS constraints

may result in an infeasible system of constraints, one or more constraints may need to be relaxed

or eliminated at certain times. We assume that the set of QoS constraints is assigned some total

order, and that constraints are relaxed in the given order until the system of constraints becomes

feasible. For our optimization-based algorithm, we select a specific relaxation order that gives

absolute guarantees priority over proportional guarantees, and that gives loss guarantees priority

over delay or rate guarantees. So, using “<” to denote the order in which guarantees are relaxed,

we have

RDC< RLC < ADC < ARC < ALC < System constraints. (4.8)

QoS constraints for classes which are not backlogged are simply ignored.

Quantitative Assured Forwarding service guarantees in Eqs. (3.18)–(3.22) are expressed in

terms of delays, loss, and service rates, but the only parameters the optimization-based algorithm

can directly control at timesare the components of the optimization variablexs, that is, the service

ratesr i(s) and the amount of dropped trafficl i(s). Furthermore, the optimization-based algorithm

uses the predictions of the delays of all backlogged traffic to express the delay guarantees. There-

fore, we have to rewrite the service guarantees in Eqs. (3.18)–(3.22) as constraints onr i(s) andl i(s)

depending on the predictions.

We next discuss how each of the service guarantees of the Quantitative Assured Forwarding

Service maps to a set of QoS constraints in the optimization problem.

Delay bounds. A class-i delay bounddi , as specified in Eqn. (3.18), translates into anAbsolute

Delay Constraint(ADC) in the optimization problem.
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Figure 4.1:Determining service rates required to meet delay bounds.The figure indicates the
service ratermin

i (s) required so that the maximum predicted delay satisfiesD̃max
i,s = di . Allocating at

leastrmin
i (s) ensures that the delay bounddi is met for classi.

The delay bounddi holds if, for any timet, the predicted delays of classi respect the bounddi .

In other words, classi is guaranteed the bounddi if, for all t,

D̃max
i,t ≤ di , (4.9)

whereD̃max
i,t is the maximum predicted delay, defined in Eqn. (3.15). We illustrate the relationship

betweendi and the minimum service ratermin
i required to meetdi in Figure 4.1. Figure 4.1 describes

the worst-case arrival pattern for the maximum predicted delay, where all traffic backlogged at

timesarrived in a single burst of traffic. In such a case, the maximum predicted delayD̃max
i,s is equal

to the predicted delay of the traffic at the tail of the queue, and is given by

D̃max
i,s = Di(s)+ T̃i,s ,

whereT̃i,s, the predicted horizon defined in Eqn. (3.10), characterizes the time at which the entire

backlog at timeswill be transmitted if the service rate allocation at times (r i(s) > 0) is maintained.
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Hence, we can express̃Ti,s with:

T̃i,s =
Bi(s)
r i(s)

,

and replacing in the expression forD̃max
i,s , we get

D̃max
i,s = Di(s)+

Bi(s)
r i(s)

.

To satisfy Eqn. (4.9), we obtain

Di(s)+
Bi(s)
r i(s)

≤ di ,

We denote byrmin
i (s) the minimum service rate needed at times to meet the delay bounddi , and get

rmin
i (s) =

Bi(s)
di−Di(s)

.

Then, to enforce the delay bounddi , r i(s) needs to satisfy:

r i(s)≥ rmin
i (s) . (4.10)

Using Eqn. (4.5) in Eqn. (4.10) gives, after reorganizing the terms,

Bi(s−)+ai(s)− l i(s)− r i(s)(di−Di(s))≤ 0 . (4.11)

Here, the only unknowns arer i(s) andl i(s). Thus, the Absolute Delay Constraints are:

hi
6(xs) = (di−Di(s))r i(s)− (Bi(s−)+ai(s)− l i(s)) , i = 1, . . . ,Q . (4.12)

Proportional delay differentiation. We denote the constraints that express proportional delay

differentiation between classes, as described in Eqn. (3.21), byRelative Delay Constraints(RDC).

For the expression of the Relative Delay Constraints, we use the average predicted delay,Di,s, as

defined in Eqn. (3.16), for characterizing the “delay of classi”.

To obtain a solution space, rather than a single solution for the service rate allocation, we allow
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for some slack in the expression of the relative delay constraints. The relative delay constraints at

times are given as

ki(1− ε)≤ Di+1,s

Di,s
≤ ki(1+ ε) , (4.13)

whereki > 1 is the target proportional differentiation factor andε (0≤ ε≤ 1) indicates a tolerance

level.

We obtain the following inequality constraints after reorganizing terms in Eqn. (4.13):

hi
7(xs) = Di+1,s−ki(1− ε)Di,s , i = 1, . . . ,Q−1 ,

hi
8(xs) = ki(1+ ε)Di,s−Di+1,s , i = 1, . . . ,Q−1 ,

(4.14)

whereDi,s andDi+1,s can be expressed as a function of the unknownsr i(s), r i+1(s), l i(s) andl i+1(s).

SinceDi,s is not a linear function ofxs, hi
7(xs) andhi

8(xs) are not linear.

Next we discuss constraints on the loss rates at the times of an arrival,pi(s). Recall that in the

definition of pi(s) given by Eqn. (3.17), all values exceptl i(s) are known at times.

Loss rate bounds.The loss rate bounds of the Quantitative Assured Forwarding service, as defined

in Eqn. (3.19), map toAbsolute Loss Constraints(ALC). Using the definition of the loss rate at

times, pi(s), given in Eqn. (3.17), the service guarantee Eqn. (3.19) reduces to

1− Rin
i (s−)+ai(s)− l i(s)

Ai(s)
≤ Li ,

which can be rewritten as

l i(s)≤ (Li−1)Ai(s)+Rin
i (s−)+ai(s) , (4.15)

wherel i(s) is the only unknown. Eqn. (4.15) defines the following inequality constraints:

hi
9(xs) = (Li−1)Ai(s)+Rin

i (s−)+ai(s)− l i(s) , i = 1, . . . ,Q . (4.16)

Proportional loss differentiation. Proportional loss differentiation between classes, as defined by
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Eqn. (3.22) results inRelative Loss Constraints(RLC). Similar to the RDCs, we provide a certain

slack when expressing the Relative Loss Constraints. The RLC for classesi +1 andi at times has

the form

k′i(1− ε′)≤ pi+1(s)
pi(s)

≤ k′i(1+ ε′) , (4.17)

wherek′i > 1 is the target differentiation factor, andε′i (0≤ ε′ ≤ 1) indicates a level of tolerance.

From Eqn. (3.17), at times, pi(s) can be expressed as a function ofl i(s). Therefore, the RLCs

can be expressed as a function ofxs. From Eqn.(4.17), we get the following set of inequality

constraints:

hi
10(xs) = pi+1,s−k′i(1− ε′)pi,s , i = 1, . . . ,Q−1 ,

hi
11(xs) = k′i(1+ ε′)pi,s− pi+1,s , i = 1, . . . ,Q−1 .

(4.18)

Throughput guarantees. Last, the throughput guarantees of Eqn. (3.20) are mapped toAbsolute

Rate Constraints(ARC), which are expressed as the following inequality constraints:

hi
12(xs) = r i(s)−µi , i = 1, . . . ,Q . (4.19)

4.2 Objective Function

Provided that the QoS and system constraints defined above can be satisfied, the objective function

will select a solution forxs. As briefly discussed in the beginning of this chapter, even though the

choice of the objective function is a policy decision, we select two specific objectives, which, we

believe, have broad validity:

• Objective 1: Avoid dropping traffic,

• Objective 2: Avoid changes to the current service rate allocation.

The first objective ensures that traffic is dropped only if there is no alternative to satisfy the QoS

and system constraints. The second objective tries to hold on to a feasible service rate allocation as

long as possible. We give the first objective priority over the second objective.
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The following formulation of an objective function expresses the above objectives in terms of a

cost function:

F(xs) =
Q

∑
i=1

(r i(s)− r i(s−))2 +C2
Q

∑
i=1

l i(s) , (4.20)

whereC is the link capacity. The first term expresses the changes to the service rate allocation and

the second term expresses the losses at times. Note that, at times, r i(s) is part of the optimization

variable, whiler i(s−) is a known value. In Eqn. (4.20) we use the quadratic form(r i(s)− r i(s−))2,

because

∑
i

(r i(s)− r i(s−)) = 0

for a work-conserving link with a backlog at times. The scaling factorC2 in front of the second

sum in Eqn. (4.20) ensures that traffic drops are the dominating term in the objective function.

This concludes the description of the optimization problem. At a given times, all of the QoS

and system constraints are expressed in terms ofr i(s) andl i(s), that is, as a function of the vector

xs. Summarizing Eqs. (4.2)–(4.20), the optimization problem at the timesof an arrival at the output

link under consideration has the form:

Minimize ∑Q
i=1(r i(s)− r i(s−))2 +C2 ∑Q

i=1 l i(s)

Subject to ∑Q
i=1 r i(s)−C = 0 ,

r i(s) ≥ 0 , i = 1, . . . ,Q ,

l i(s) ≥ 0 , i = 1, . . . ,Q ,

Bi(s)− l i(s) ≥ 0 , i = 1, . . . ,Q ,

B−∑Q
i=1 (Bi(s−)+ai(s)− l i(s)) ≥ 0 ,

(di−Di(s))r i(s)− (Bi(s−)+ai(s)− l i(s)) ≥ 0 , i = 1, . . . ,Q ,

Di+1,s−ki(1− ε)Di,s ≥ 0 , i = 1, . . . ,Q−1 ,

ki(1+ ε)Di,s−Di+1,s ≥ 0 , i = 1, . . . ,Q−1 ,

(Li−1)Ai(s)+Rin
i (s−)+ai(s)− l i(s) ≥ 0 , i = 1, . . . ,Q ,

pi+1(s)−k′i(1− ε′)pi(s) ≥ 0 , i = 1, . . . ,Q−1 ,

k′i(1+ ε′)pi(s)− pi+1(s) ≥ 0 , i = 1, . . . ,Q−1 ,

r i(s)−µi ≥ 0 , i = 1, . . . ,Q−1 .

(4.21)
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Figure 4.2:Outline of the heuristic algorithm. The heuristic algorithm decomposes the optimiza-
tion problem into several smaller, computationally less intensive, problems.

The system (4.21) is anon-linear optimization problem, because (1) the optimization function

is quadratic, and (2) we haveDi,s = O
(

1
r i(s)

)
, which causes the RDC to be non-linear inxs. A

non-linear optimization problem as defined by Eqn. (4.21) can be solved with available numerical

algorithms such as [131]. If Eqn. (4.21) yields an empty solution space, some constraints are

relaxed, according to the precedence order of Eqn. (4.8).

4.3 Heuristic Algorithm

Approximating the solution to a non-linear optimization problem as presented in this chapter can

be performed by well-known techniques such as fuzzy systems, or neural networks. However, these

techniques can be computationally expensive. To reduce the computational complexity, we devise

a heuristic algorithm, which decomposes the optimization problem into several smaller, computa-

tionally less intensive, problems. The heuristic algorithm presented here maintains a feasible rate
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allocation until a buffer overflow occurs or a delay violation is predicted. At that time, the heuristic

picks a new feasible rate allocation and/or drops traffic. Also, the tests for violations of ADCs and

RDCs are not performed for every packet arrival, but only periodically, or when there is a buffer

overflow.

As in the optimization-based algorithm, a set of constraints that includes absolute constraints

(ALCs or ADCs) may be infeasible at certain times. Then, constraints are relaxed in the order given

in Eqn. (4.8).

A high-level overview of the heuristic algorithm is presented in Figure 4.2. We decompose the

optimization problem into a number of smaller sub-problems. Each sub-problem characterizes a

case that requires to adjust the service rate allocation and/or to drop packets. The proposed heuristic

algorithm consists of a sequence of procedures that compute the rate allocation and packet drops

required to solve each sub-problem. We next present each of the sub-problems and the associated

computations.

Buffer Overflow. If an arrival at times causes a buffer overflow, one can either drop the arriving

packet or free enough buffer space to accommodate the arriving packets. Both cases are satisfied if

∑
i

l i(s) = ∑
i

ai(s) . (4.22)

The heuristic picks a solution for thel i(s) which satisfies Eqn. (4.22) and the RLCs in Eqn. (4.17),

where we setε′ = 0 to obtain a unique solution. If the solution violates an ALC, the RLCs are

relaxed until all ALCs are satisfied. Once thel i(s)’s are determined the algorithm continues with

a test for delay constraint violations, as shown in Figure 4.2. Recall that while the algorithm only

specifies the amount of traffic which should be dropped from a particular class, and does not select

the position in the queue from which to drop traffic, we assume a Drop-Tail dropping policy.

If there are no buffer overflows, the algorithm makes predictions for delay violations only once

for everyT packet arrivals. The selection ofT represents a tradeoff between the runtime complex-

ity of the algorithm and performance of the scheduling with respect to satisfying the constraints.

Simulation experiments, as described in Section 4.4, were performed with the valueT = 100 and
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exhibit good performance.

The tests use the current service rate allocation to predict future violations. For delay constraint

violations, the heuristic distinguishes three cases.

Case 1: No violation. In this case, the service rates are unchanged.

Case 2: RDC violation. If some RDC (but no ADC) is violated, the heuristic algorithm determines

new rate values. Here, the RDCs as defined in Eqn. (4.13) are transformed into equations by setting

ε = 0. Together with the work-conserving property, one obtains a system of equations, for which

the algorithm picks a solution. If the solution violates an ADC, the RDCs are relaxed until the

ADCs are satisfied.

Case 3: ADC violation. Resolving an ADC violation is not entirely trivial as it requires to

recalculate ther i(s)’s, and, if traffic needs to be dropped to meet the ADCs, thel i(s)’s. To simplify

the task, our heuristic ignores all relative constraints when an ADC violation occurs, and only tries

to satisfy absolute constraints.

By simply reordering the terms, we can rewrite the constraint given in Eqn. (4.11), and define a

variableρi as
1

r i(s)
Bi(s−)+ai(s)− l i(s)

di−Di(s)︸ ︷︷ ︸
ρi

≤ 1 . (4.23)

The heuristic algorithm will select ther i(s) andl i(s) such that Eqn. (4.23) is satisfied for alli.

Initially, rates and traffic drops are set tor i(s) = r i(s−) and l i(s) = 0. Since at least one ADC is

violated, there is at least one class withρi > 1, whereρi is defined in Eqn. (4.23). Now, we apply

a greedy method which tries to redistribute the rate allocations untilρi ≤ 1 for all classes. This is

done by reducingr i(s) for classes withρi < 1, and increasingr i(s) for classes withρi > 1. If it is

not feasible to achieveρi ≤ 1 for all classes by adjusting ther i(s)’s, the l i(s)’s are increased until

ρi ≤ 1 for all i. To minimize the number of dropped packets,l i(s) is never increased to a point

where an ALC is violated.

In terms of computational overhead, the heuristic algorithm requires to solve several linear

systems ofQ equations, whereQ is the number of service classes. The systems of equations used

in the heuristic algorithm are made explicit in [101], Appendix B. Solving each of these systems of
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Figure 4.3:Offered load. The graph describes the offered load at our simulated bottleneck link.

equations requires to compute the product of aQ×Q matrix with a vector of dimensionQ, which

has a computational complexity ofO(Q2).

4.4 Evaluation

We present an evaluation of the algorithms developed in this chapter using packet-level simulation

experiments. Our goals are (1) to determine if and how well the desired service differentiation is

achieved; (2) to determine how well the heuristic algorithm from Section 4.3 approximates the op-

timization; and (3) to compare our algorithm with existing proposals for proportional differentiated

services.

In the simulations, we evaluate the following four schemes.

• The optimization-based algorithm described in Sections 4.1 and 4.2,

• The heuristic algorithm discussed in Section 4.3. Unless there is a buffer overflow, tests for

delay violations are performed once for everyT = 100 packet arrivals.

• WTP/PLR(∞) [48]: We evaluate a combination of the WTP scheduler and the PLR(∞) back-

log controller. Both of the WTP and PLR algorithms from [48] are discussed in Chapter 2.

Since WTP/PLR(∞) provides a better service differentiation than WTP/PLR(M), we only in-
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clude results for WTP/PLR(∞). Note that neither WTP/PLR(∞) nor WTP/PLR(∞) supports

absolute guarantees to traffic classes.

• MDP [113]/Drop-Tail: The MDP scheduler presented in [113] is discussed in Chapter 2.

Since MDP does not provide mechanisms for loss differentiation, we assume a simple Drop-

Tail algorithm for discarding packets. As WTP/PLR(∞), MDP does not support absolute QoS

guarantees.

We present two simulation experiments using the simulator available in [31]. In the first exper-

iment, we compare the proportional differentiation provided by the optimization-based algorithm,

the heuristic algorithm, WTP/PLR(∞), and MDP/Drop-Tail without specifying absolute constraints,

at a single node. In the second experiment, we augment the set of constraints by absolute loss and

delay constraints on the highest priority class, and show that the algorithms based on the JoBS

scheme can effectively provide both proportional and absolute differentiation at a single node.

4.4.1 Simulation Experiment 1: Proportional Differentiation Only

The first experiment focuses on proportional service differentiation, and does not include absolute

constraints. We consider a single output link with capacityC= 1 Gbps and a buffer size of 6.25 MB.

We assumeQ = 4 classes. The length of each experiment is 20 seconds of simulated time, starting

with an empty system. In all experiments, the incoming traffic is composed of a superposition of

Pareto sources withα = 1.2 and average interarrival time of 300µs. The shape parameterα of the

Pareto distribution essentially characterizes the burstiness of the traffic arrivals. The smallerα, the

burstier the traffic. The number of sources active at a given time oscillates between 200 and 550,

following a sinusoidal pattern. All sources generate packets with a fixed size of 125 bytes.1 The

resulting offered load is plotted in Figure 4.3. Modulating the number of active Pareto sources by a

sinusoidal wave allows us to test our algorithm under very bursty conditions over short timescales,

while having the load vary significantly over longer timescales. At any time, each class contributes

25% of the aggregate load.

1Packet sizes on the Internet are in fact subject to a multimodal distribution [9], and thus, the simulation presented
here is only a simplified model.
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Figure 4.4:Experiment 1: Proportional delay differentiation. The graphs show the ratios of the
delays for successive classes (a)-(d) and the absolute delay values (e)-(h). The target value for the
ratios, indicated by a dashed line, isk = 4.



Chapter 4. Service Rate Allocation and Traffic Drops: An Optimization Problem 60

3

4

5

0
Simulation Time (s)

0 2 18 2010

1

4 6 8 12 14 16

R
at

io
 o

f l
os

s 
ra

te
s Class 2/Class 1

Class 3/Class 2
Class 4/Class 3

2

(a) Optimization-based algorithm

6 8 12 14 16

R
at

io
 o

f l
os

s 
ra

te
s Class 2/Class 1

Class 3/Class 2
Class 4/Class 3

1

2

3

4

5

0
Simulation Time (s)

0 2 18 20104

(b) Heuristic algorithm

2 18 20104 6 8 12 14 16

R
at

io
 o

f l
os

s 
ra

te
s Class 2/Class 1

Class 3/Class 2
Class 4/Class 3

1

2

3

4

5

0
Simulation Time (s)

0

(c) WTP/PLR(∞)
Simulation Time (s)

0 2 18 20104 6 8 12 14 16

R
at

io
 o

f l
os

s 
ra

te
s Class 2/Class 1

Class 3/Class 2
Class 4/Class 3

1

2

3

4

5

0

(d) MDP/Drop-Tail

Class 4

0.1

1

10

100

Simulation Time (s)
0 2 4 6 8 10 12 14 16 18 20

L
os

s 
R

at
e 

(%
)

Class 1

Class 2

Class 3

(e) Optimization-based algorithm

Class 3

0.1

1

10

100

Simulation Time (s)
0 2 4 6 8 10 12 14 16 18 20

L
os

s 
R

at
e 

(%
)

Class 1

Class 2
Class 4

(f) Heuristic algorithm

Class 3

0.1

1

10

100

Simulation Time (s)
0 2 4 6 8 10 12 14 16 18 20

L
os

s 
R

at
e 

(%
)

Class 4

Class 1

Class 2

(g) WTP/PLR(∞)

L
os

s 
R

at
e 

(%
)

Class 4
Class 3

Class 1

0.1

1

10

100

Simulation Time (s)
0 2 4 6 8 10 12 14 16 18 20

Class 2

(h) MDP/Drop-Tail

Figure 4.5: Experiment 1: Proportional loss differentiation. The graphs show the ratios of loss
rates for successive classes (a)-(d) and the loss rates (e)-(h). The target value for the ratios, indicated
by a dashed line, isk′ = 2.
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Proportional differentiation factors are set to four for the ratio of delays of two successive

classes, and to two for the ratio of loss rates of two successive classes, i. e., we setki = 4 andk′i = 2

for i ∈ {1,2,3}. The tolerance levels are set to(ε,ε′) = (0.001,0.05) in the optimization-based

algorithm, and toε = 0.01 in the heuristic algorithm. The results of the experiment are presented

in Figures 4.4 and 4.5, where we graph the delays and loss rates, respectively, of successive classes

for the optimization-based algorithm, the heuristic algorithm, WTP/PLR(∞), and MDP/Drop-Tail.

Using a measure adopted from [48], the plotted delay and loss values are averages over moving

time windows of size 0.1s.

When the link load is above 90% of the link capacity, that is, in time intervals[0 s,6 s] and

[10 s,15 s], all methods provide the desired service differentiation. The oscillations around the

target values in the optimization-based algorithm and the heuristic algorithm are mostly due to the

tolerance valuesε andε′. The selection of the tolerance valuesε andε′ in our proposed algorithms

presents a tradeoff: smaller values forε andε′ reduce oscillations, but incur more adjustments for

the algorithms. When the system load is low, that is, in time intervals[6 s,10 s] and [16 s,20 s],

only the optimization-based algorithm and WTP/PLR(∞) manage to achieve some delay differen-

tiation, albeit far from the target values. MDP/Drop-Tail, plotted in Figure 4.4(d), provides some

differentiation, but the system seems unstable, particularly after a transient change in the load. At

an underloaded link, the absolute values of the delays are very small for all classes, regardless of

the scheduling algorithm used, as shown on Figures 4.4(e)-(h), and all classes receive an excel-

lent service. Figures 4.4(e)-(h) also show that the absolute values for the delays are comparable

in all schemes. In fact, proportional delay differentiation cannot be realized at low loads without

artificially delaying some packets, that is by making the scheduler non-work-conserving.

In Figures 4.5(a) and 4.5(c), we observe all algorithms show some transient oscillations with

respect to loss differentiation when the link changes from an overloaded to an underloaded state.

These transient spikes during a transition between an overloaded and an underloaded system are

caused by the low number of packets dropped when the link becomes underloaded, which makes

the ratios of loss rates become less meaningful.

Note that, since proportional differentiation does not guarantee an upper bound, an algorithm
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may provide excellent proportional loss differentiation, but have an overall high loss rate, which

can translate into poor service. Figures 4.5(e)-(g) show that in the simulations, the loss rates of

WTP/PLR(∞) and of our proposed algorithms are very similar. With WTP/PLR(∞) and both of our

proposed algorithms, the average of the per-class loss rates is equal to the loss rate obtained with

a Drop-Tail policy, plotted in Figure 4.5(h). This shows that, in this experiment, all schemes only

drop packets when a buffer overflow occurs.

4.4.2 Simulation Experiment 2: Proportional and Absolute Differentiation

In this second experiment, we evaluate how well our algorithms can satisfy a mix of absolute and

proportional guarantees on both delays and losses. Here, we only present results for the heuristic

algorithm WTP/PLR(∞) and MDP/Drop-Tail do not support absolute guarantees, and refer to [101]

for results obtained with the optimization-based algorithm. The experiment illustrates how traffic

is dropped to help meet absolute delay guarantees.

We consider the same simulation setup and the same proportional delay guarantees as in Ex-

periment 1, but add an Absolute Delay Constraint (ADC) for Class 1 such thatd1 = 1 ms, and we

replace the Relative Loss Constraint (RLC) between Classes 1 and 2 by an Absolute Loss Constraint

(ALC) for Class 1 such thatL1 = 1%. We call this scenario “with ADC, all RDCs”. With the given

proportional delay guarantees from Experiment 1, the other classes have “implicit” delay bounds,

which are approximately2 4 msfor Class 2, 16msfor Class 3, and 64msfor Class 4. Removing

the RDC between Class 1 and Class 2, we avoid the implicit delay bounds for Classes 2, 3, and 4,

and call the resulting constraint set “with ADC, one RDC removed”. We also include the results for

the heuristic algorithm from Experiment 1, with the ALC on Class 1 replacing the RLC between

Classes 1 and 2, and refer to this constraint set as “no ADC, all RDCs”. In Figures 4.6(a)–(c) we

plot the delays of all packets, and in Figures 4.6(d)–(f) we plot the loss rates of all classes, aver-

aged over time intervals of length 0.1s. We discuss the results for each of the three constraint sets

proposed.

2Due to the tolerance valueε, the exact values are not integers.
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Concerning the experiment “with ADC, all RDCs”, Figure 4.6(a) shows that the heuristic

maintains the proportional delay differentiation between classes, thus, enforcing the implicit de-

lay bounds for Classes 2, 3, and 4. With a large number of Absolute Delay Constraints, the system

of constraints easily becomes infeasible, as pointed out by the following two observations. First,

Figure 4.6(d) shows that the loss rates of Classes 2, 3 and 4 are similar. This result illustrates that

the heuristic relaxes Relative Loss Constraints to meet the Absolute Delay Constraints.

Second, Figure 4.6(a) shows that the absolute delay guaranteed1 is sometimes violated. How-

ever, such violations are rare (over 95% of Class-1 packets have a delay less than 900µs), and

Class-1 packet delays always remain reasonably close to the delay boundd1. For the experiment

“with ADC, one RDC removed”, Figure 4.6(b) shows that, without an RDC between Classes 1 and

2, the ratio of Class-2 delays and Class-1 delays can exceed a factor of 10 at high loads. With this

constraint set, the absolute delay guaranteed1 is never violated, and Figure 4.6(e) shows the RLCs

are consistently enforced during periods of packet drops.

Finally, for the experiment “no ADC, all RDCs”, Figure 4.6(c) shows that, without the ADC,

the delays for Class 1 are as high as 5ms. The delay values for Classes 2, 3, and 4 in Figures 4.6(b)

and (c) appear similar, especially since we use a log-scale. We emphasize that the values arenot

identical, and that the results are consistent.

4.5 Summary and Remarks

In this chapter, we showed that providing proportional and absolute service guarantees to classes

of traffic at an output link without reservations or a priori knowledge of the traffic arrivals can be

expressed in terms of an optimization problem.

The formulation of the optimization problem uses predictions on the service that will be re-

ceived in the future. The constraints of the optimization problem are the service guarantees and

properties of the output link under consideration. The objective function of the optimization prob-

lem is chosen to minimize traffic losses and changes in the rate allocation. We presented an algo-

rithm that uses the solution to the optimization problem to allocate the service rates and drop traffic
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Figure 4.6: Experiment 2: Delay and loss differentiation. The graphs show the delays of all
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rithm.
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so that QAF service guarantees are met.

When the optimization problem does not yield a solution, meaning that it is impossible to satisfy

all service guarantees simultaneously, some of the QoS guarantees are selectively ignored, based

on a precedence order specified a priori.

Due to the form of the constraints, the optimization problem is a non-linear optimization, which

can only be solved numerically. The computational cost of solving a non-linear optimization upon

each arrival to the link under consideration may be prohibitive to consider an implementation of

an optimization-based algorithm at high-speeds. To reduce the computational overhead of the ap-

proach, we described a heuristic algorithm that approximates the optimization-based algorithm.

We showed in a set of simulation experiments that both the optimization-based and heuristic

algorithms were effective at providing proportional and absolute per-class QoS guarantees for delay

and loss.



Chapter 5

A Closed-Loop Algorithm Based on Feedback Control

In this chapter, we present an algorithm based on a reactive service rate allocation and buffer man-

agement [34]. Recall from Chapter 3 that a reactive service rate allocation and buffer management

uses measurements of the service experienced and tries to attenuate the difference between the

service experienced and the service guarantees offered.

Compared to predictive algorithms such as discussed in the previous chapter, a reactive service

rate allocation and buffer management has the following interesting properties. Since mechanisms

are based on past measurements, the need for predicting the service that will be experienced in

the future is alleviated. In particular, an algorithm based on a reactive service rate allocation and

buffer management does not need to compute predicted delays, thereby reducing the total number

of operations performed by the algorithm.

In addition, a reactive service rate allocation and buffer management can be described as a

closed-loop problem, which enables us to use feedback control theory to analyze the properties of

the algorithm. For instance, we will use feedback control analysis to derive configuration bounds

that ensure the algorithm will realize the desired service differentiation.

To better reflect the design idea behind the algorithm presented in this chapter, we will refer

to the algorithm as a “closed-loop algorithm”. Similar to the optimization-based and heuristic

algorithms in Chapter 4, the closed-loop algorithm relies on the JoBS scheme to allocate service

ratesr i and traffic lossesl i upon each packet arrival, but instead of directly computing the service

66
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(adjust rates)
Controller Effect of rate adjustment on future delays

(Delay, Backlog)
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∆ri Di

Set Point
(Proportional Delay
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(Absolute Delay and

Throughput Guarantees)

Figure 5.1:Overview of the closed-loop algorithm. The figure is an overview of the feedback
loop for delay differentiation. A similar mechanism is used for loss differentiation.

rater i as in the algorithms of Chapter 4, the closed-loop algorithm computes a change∆r i in the

service rate allocation.

We illustrate in Figure 5.1 how the adjustment∆r i for classi is computed.∆r i is the output of a

controller, which takes a measurement and aset pointas inputs. The measurement characterizes the

value of the class-i backlog and delay of the traffic leaving the router. The set point is obtained from

the proportional delay guarantees. The controller is subject to saturation effects, which translate the

absolute delay and throughput guarantees, and limit the range of values∆r i can take. The effect of

the rate adjustments on future delays completes the description of the loop, and imposes conditions

on the controller to guarantee a stable feedback loop, that is, to ensure that proportional delay

guarantees are met.

Recall that, in our JoBS scheme, traffic is dropped, either from a new arrival or from the current

backlog, at times when no feasible service rate allocation for meeting all delay guarantees exist,

or when the transmission queue is full. A mechanism similar to that presented in Figure 5.1 for

service rate allocation governs how traffic is dropped. To satisfy proportional loss guarantees,

traffic is dropped from classes according to a drop priority order, defined as follows. For each class,

the difference between the loss rate needed for perfect proportional differentiation and the observed

loss rate defines an error. The larger the error of a class, the higher its drop priority. For each

classi, we stop dropping traffic when either (1) the loss guaranteeLi is reached, or (2) the buffer

overflow is resolved or a feasible rate allocation for absolute guarantees exists and there is no need
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for dropping traffic anymore.

The remainder of this chapter is organized as follows. In Section 5.1, we start by introducing the

formalism used in the description of the closed-loop algorithm. In Sections 5.2 and 5.3 we describe

in more details the feedback loops that are used in the design of the algorithm. In Section 5.4, we

present simulation results to quantify the performance of the algorithm.

5.1 Notations

In this section, we introduce the notations that we use in the description of our closed-loop algo-

rithm.

5.1.1 A Discrete Time Model

The formalism of the optimization problem and of the associated heuristic of Chapter 4 assumes

a continuous time model. That is, all quantities are expressed in function of the continuous time

variablet. The description of our closed-loop algorithm, on the other hand, relies on a discrete,

event-driven time model, where events are traffic arrivals.

We uset[n] to denote the time of then-th event in the current busy period, and∆t[n] to denote

the time elapsed between then-th and(n+1)-th events. We use a shorthand notation with square

brackets to specify that a quantity is evaluated at a given event. For instance, instead of writing

ai(t[n]) and l i(t[n]), we useai [n] and l i [n] to denote the class-i arrivals and the amount of class-

i traffic dropped at the time of then-th event, respectively. Likewise, we user i [n] to denote the

service rate allocated to class-i at the time of then-th event. As in Chapters 3 and 4, we assume

bursty arrivals with a fluid-flow service, that is, the output link is viewed as simultaneously serving

traffic from several classes.

Let t[0] define the beginning of the busy period. In the discrete time model, the arrival, input,
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and output curves for classi at then-th event,Ai [n], Rin
i [n] andRout

i [n] are defined by

Ai [n] =
n

∑
k=0

ai [k] ,

Rin
i [n] = Ai [n]−

n

∑
k=0

l i [k] ,

Rout
i [n] =

n−1

∑
k=0

r i [k]∆t[k] , (5.1)

respectively, by simply rewriting Eqs. (3.2)–(3.4).

Expressing Eqs. (3.5) and (3.6) in terms of events, we have

Bi [n] = Rin
i [n]−Rout

i [n] ,

and

Di [n] = t[n]− t
[
max{k < n | Rout

i [n]≤ Rin
i [k]}

]
. (5.2)

Eqn. (5.2) characterizes the delay of the class-i traffic that departs at then-th event. The loss rate at

then-th event,pi [n], is simply

pi [n] =
Ai [n]−Rin

i [n]
Ai [n]

. (5.3)

Last, the service guarantees of the Quantitative Assured Forwarding service are expressed as in

Eqs. (3.18)–(3.22).

5.1.2 Rate Allocation and Drop Decisions

We now sketch a closed-loop solution for realizing the service differentiation specified in

Eqs. (3.18)–(3.22) at the output link of a router with capacityC and buffer sizeB. The assumptions

on the router architecture outlined in Chapter 3, Section 3.1, still hold. We still assume per-class

buffering of incoming traffic, and that traffic from each class is transmitted in a FIFO manner. In the

proposed solution, the service ratesr i [n] and the amount of dropped trafficl i [n] are adjusted at each

eventn so that the constraints defined by Eqs. (3.18)–(3.22) are met. As before, if not all constraints
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in Eqs. (3.18)–(3.22) can be met at then-th event, some service guarantees need to be temporarily

relaxed. We assume that the order in which guarantees are relaxed is given by Eqn. (4.8).

Recall from Eqn. (4.10) that a minimum service rate allocated to classi is required to meet an

absolute delay bound on classi, di . If classi has, in addition, an absolute throughput boundµi , the

expression for the minimum rate needed by classi at then-th event, becomes1

rmin
i [n] = max

{
Bi [n]

di−Di [n]
,µi ·χBi [n]>0

}
. (5.4)

The service rate that can be allocated to classi is bounded by the output link capacity minus the

minimum service rates needed by the other classes, that is, byrmax
i with

rmax
i [n] = C−∑

j 6=i

rmin
j [n] .

Therefore, the service rate can take any valuer i [n] with

rmin
i [n]≤ r i [n]≤ rmax

i [n] ,

subject to the constraint∑i r i [n] ≤C. Given this range of feasible values,r i [n] can be selected to

satisfy proportional delay differentiation.

We view the computation ofr i [n] in terms of the recursion

r i [n] = r i [n−1]+∆r i [n] , (5.5)

where∆r i [n] is selected such that the constraints of proportional delay differentiation are satisfied

at eventn. From Eqs. (5.1) and (5.2), the delayDi [n] at then-th event is a function ofr i [k] with

k < n. By monitoringDi [n] we can thus determine the deviation from the desired proportional dif-

ferentiation resulting from past service rate allocations, and infer the adjustment∆r i [n] = f (Di [n])

needed to attenuate this deviation.

If no feasible service rate allocation for meeting all delay guarantees exists at then-th event, or

1For any expression “expr”, we defineχexpr = 1 if “ expr” is true andχexpr = 0 otherwise.
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if there is a buffer overflow at then-th event, traffic must be dropped, either from a new arrival or

from the current backlog. Loss differentiation determines which class(es) suffer(s) traffic drops at

then-th event.

We obtain a recursion to express loss differentiation. We rewrite Eqn. (5.3) as the difference

equation

pi [n] =
Ai [n]−Rin

i [n]
Ai [n]

=
Ai [n−1]+ai [n]− (Rin

i [n−1]+ai [n]− l i [n])
Ai [n]

=
Ai [n−1]−Rin

i [n−1]+ l i [n]
Ai [n]

= pi [n−1]
Ai [n−1]

Ai [n]
+

l i [n]
Ai [n]

. (5.6)

From Eqn. (5.6), we can determine how the loss rate of classi evolves if traffic is dropped from

classi at then-th event. Thus, we can determine the set of classes that can suffer drops without

violating absolute loss bounds. In this set, we choose the class whose loss rate differs by the largest

amount from the objective of Eqn. (3.22).

Having expressed the service rate and the loss rate in terms of a recursion, we can character-

ize the service rate allocation and dropping algorithm as feedback control problems. In the next

sections, we will describe two feedback problems: one for delay and absolute rate differentiation

(“delay feedback loop”), and one for loss differentiation (“loss feedback loop”).

5.2 The Delay Feedback Loop

In this section, we present feedback loops which enforce the desired delay and rate differentiation

given by Eqs. (3.18), (3.20), and (3.21). We have one feedback loop for each class with proportional

delay differentiation. In the feedback loop for classi, we linearize the control loop around an

operating point, and derive a stability condition on the linearized control loop, similar to a technique

used in [77,107,108,120]. While the stability condition derived does not ensure that the non-linear



Chapter 5. A Closed-Loop Algorithm Based on Feedback Control 72

control loop converges, the stability condition gives useful guidelines for selecting the configuration

parameter of the controller.

An alternative to using a linear approximation of the non-linear system under consideration is

to directly apply non-linear control techniques to derive the stability conditions. Non-linear control

techniques, e.g., adaptive control [136], resort to algorithms such as gradient estimators. It is not

immediate how a gradient estimator could be implemented to be executed upon each packet arrival

in a network router. Furthermore, adaptive control theory is used to dynamically estimate unknown

parameters that remain constant over time [136]. All quantities in the feedback loops we are study-

ing vary over time, which implies that some approximations have to be made to use adaptive control

theory. These approximations, e.g., assuming that the backlog remains constant over a very short

time interval, are similar to the approximations we will use to linearize the feedback loops, so that

there is no immediate advantage of using adaptive control in the design of our algorithm.

5.2.1 Objective

Let us assume for now that allQ classes are offered proportional delay guarantees and no absolute

delay guarantees. Later, this assumption will be relaxed. The set of constraints given by Eqn. (3.21)

leads to the following system of equations:

D2[n] = k1 ·D1[n] ,

...

DQ[n] =
(

∏Q−1
j=1 k j

)
D1[n] .

(5.7)

Let mi = ∏i−1
j=1k j for i > 1, andm1 = 1. We define a “weighted delay” of classi at then-th event,

denoted byD∗i [n], as

D∗i [n] =

(
Q

∏
k=1, k6=i

mk

)
Di [n] . (5.8)

The weighted delayD∗i [n] is the delay of classi at then-th event, multiplied by a scaling factor

expressing the proportional delay differentiation desired. By multiplying each line of Eqn. (5.7)

with ∏ j 6=i mj , we see that the desired proportional delay differentiation is achieved for all classes
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if

∀i, j ,∀n : D∗i [n] = D∗j [n] . (5.9)

Eqn. (5.9) is equivalent to

∀i ,∀n : D∗i [n] = D
∗[n] ,

where

D
∗[n] :=

1
Q ∑

i

D∗i [n] . (5.10)

We setD
∗[n] to be the set point common to all delay feedback loops. The feedback loop for classi

reduces the difference|D∗−D∗i [n]| of classi from the common set pointD
∗[n].

Remark: If proportional delay differentiation is requested for some, but not for all classes, con-

straints as in Eqn. (5.7) can be defined for each group of classes with contiguous indices. Then, the

feedback loops are constructed independently for each group.

5.2.2 Service Rate Adjustment

Next, we determine how to adjust the service rate to achieve the desired proportional delay differ-

entiation. Letei [n], referred to as “error”, denote the deviation of the weighted delay of classi from

the set point, i.e.,

ei [n] = D
∗[n]−D∗i [n] . (5.11)

Note that the sum of the errors is always zero, that is, for alln,

∑
i

ei [n] = QD
∗[n]−∑

i

D∗i [n] = 0 .

If proportional delay differentiation is achieved, we haveei [n] = 0 for all classes. We use the error

ei [n] to compute the service rate adjustment∆r i [n] needed for classi to satisfy the proportional delay

differentiation constraints. From Eqn. (5.11), we note that ifei [n] < 0 thenD∗i [n] > D
∗[n], which

means that classi delays are too high with respect to the desired proportional delay differentiation.

Therefore,r i [n] must be increased. Conversely,ei [n] > 0 indicates that classi delays are too low,
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andr i [n] must be decreased. Hence, the rate adjustment∆r i [n] is a decreasing function of the error

ei [n], written as∆r i [n] = f (ei [n]), where f (.) is a monotonically decreasing function. We choose

∆r i [n] = K[n] ·ei [n] , (5.12)

whereK[n] < 0, which, in feedback control terminology, is the controller. An advantage of the

controller in Eqn. (5.12) is that it requires a single multiplication. Another advantage is that, at any

n, we have

∑
i

∆r i [n] = K[n]∑
i

ei [n] = 0 . (5.13)

From Eqn. (5.13), the controller produces a work-conserving system, as long as the initial condition

∑i r i [0] = C is satisfied.

We next derive two conditions onK[n]. The first condition makes the feedback loops stable, in

the sense that they attenuate the errorsei [n] over time. The second condition onK[n] ensures that

the rate adjustments∆r i [n] do not create a violation of the absolute delay and rate constraints.

5.2.3 Deriving a Stability Condition on the Delay Feedback Loop

The first condition we derive is a stability condition onK[n], which ensures that the delay feedback

loops attenuate the errorsei [n] over time. We linearize the delay feedback loops to obtain the

stability condition, using a set of assumptions. Then, we express the relationship between the

service rate adjustments∆r i and the delaysDi . We use this relationship to derive the stability

condition.

Assumptions.We consider a virtual time axis, where the event numbers,n, are equidistant sampling

times. The analysis of the control loop is performed on the virtual time axis, so that the stability

condition on the control loop applies on the virtual time axis. The stability condition applies to real

time only if the skew between virtual time and real time can be neglected, that is, if we assume that,

over very short time intervals such as a busy period, class-i packets arrive at an almost constant

rate. We note that, over a busy period, the aggregate arrival rate remains roughly equal to the link

capacity, because, if the aggregate arrival rate remains below the link capacity for too long, the
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queue becomes empty and the busy period ends. If the aggregate arrival rate remains above the

link capacity for a while, the queue overflows, and the rate of traffic admitted (i.e., not dropped)

to the queue becomes equal to the amount of traffic leaving the queue, that is, to the link capacity.

So, assuming that class-i packets arrive at an almost constant rate is equivalent to assuming that the

traffic mix between classes does not change much in the router over a busy period.

In addition to the assumption that the traffic mix does not change much over a busy period, we

assume that over a busy period, the class-i backlog, delay, and service rate remain in the vicinity

of an operating point characterized by a triplet
(
Bi ,Di , r i

)
. So, we consider that the class-i backlog,

delay and service rate are only subject to small variations over the duration of a busy period. The

intuition behind this assumption is that (1) the variations on the backlog are bounded by the buffer

size, which we expect to be relatively small, and (2) the changes in the service rate allocation should

be relatively limited when the traffic mix does not change much. This also indicates that the delays

do not vary much, because the delays are a function of the service rates and the backlogs.

In practice, we cannot be certain of the validity of the assumptions we just made, and cannot

make any claim as to the stability of the delay feedback loops resulting from the analysis presented

here. However, the numerical data in Section 5.4 suggests that the loops converge adequately well.

With the assumptions above, we next describe the effect of the rate adjustment∆r i [n] on the

delayDi [n].

Effect of the rate adjustment on future delays. To express the relationship between rate and

delays, we start by definingτi [n] as:

Di [n] = t[n]− t[n− τi [n]] .

In other words,τi [n] denotes the delay of class-i traffic departing at then-th event, expressed as a

number of events. We formalize here the small variation assumption on the delays.

Assumption (A1). The delay of class-i traffic does not vary significantly between eventsn and

(n+1), i.e.,

Di [n+1]≈ Di [n].
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Figure 5.2:Definition of the average rate,r i . This figure shows the relationship betweenDi [n], τi

andr i [n].

This implies

τi [n]≈ τi [n+1] .

We will, from now on, refer toτi [n] andτi [n+1] asτi .

Let us definer i [n] as the average rate experienced by the class-i traffic departing at then-th

event over the time this class-i traffic was backlogged. Using Assumption (A1), we have

r i [n] =
Bi [n− τi ]

Di [n]
, (5.14)

which we illustrate in Figure 5.2. Figure 5.2 shows that traffic leaving the router att[n] with a delay

Di [n] has been subject to a changing service rate allocation between its arrival timet[n−τi ] andτ[n],

indicated by changes in the slope of the output curveRout
i . The line between the values of the output

curve at timest[n−τi ] andτ[n] represents the average service rater i [n]. We express the relationship

between∆r i [n] on r i [n] to model the effects of a rate adjustment∆r i [n] on the delay. This is where

we use the assumption that the backlog is only subject to small variations.

Assumption (A2). The backlog of class-i traffic does not vary significantly between events(n−τi)

and(n+1− τi), that is,

Bi [n+1− τi ]≈ Bi [n− τi ].
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With Assumptions (A1) and (A2), we obtain the following relationship betweenr i andr i on the

virtual time axis where events are equally spaced:

r i [n+1] =
(τi−1)r i [n]+ r i [n]

τi
. (5.15)

We just characterized the relationship between the service rate at eventn and the average rate that

will be experienced by class-i traffic departing at event(n+1). Let us now define

∆r i [n+1] = r i [n+1]− r i [n] . (5.16)

Combining Eqs. (5.15) and (5.16), we get

∆r i [n+1] =
(τi−1)∆r i [n]+∆r i [n]

τi
. (5.17)

Eqn. (5.17) describes the relationship between a change in the service rate and a change in the

average rate.

We now derive the relationship between∆r i [n] and a change in the delay of classi, denoted as

∆Di [n], and defined by

∆Di [n+1] = Di [n+1]−Di [n] .

Since we have from Eqn. (5.14) that

Di [n] =
Bi [n− τi ]

r i [n]
,

and

Di [n+1] =
Bi [n+1− τi ]

r i [n+1]
,

we get

∆Di [n+1] =
Bi [n+1− τi ]

r i [n+1]
− Bi [n− τi ]

r i [n]
. (5.18)

We use the small variation assumption on the service rate to linearize Eqn. (5.18):
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Figure 5.3:The class-i delay feedback loop.This model usesz-transforms of the relationships
derived in Section 5.2.2.

Assumption (A3). The variations in the average rate are small compared to the average rate. This

is expressed as

∆r i [n+1]� r i [n] .

Using Assumptions (A1), (A2), and (A3), a first order expansion of Eqn. (5.18) gives

∆Di [n+1] =−Bi [n− τi ]
r i

2[n]
∆r i [n+1]+ωi [n] , (5.19)

whereωi [n] is the error in the evaluation of∆Di [n+1] resulting from Assumptions (A1), (A2) and

(A3). Then, the relationship between delay variations and the delay is given by

Di [n+1] =
n+1

∑
k=0

∆Di(k) , (5.20)

Di [n+1] is used to computeD∗i [n+1], using Eqn. (5.8). From Eqs. (5.10) and (5.11),D∗i [n+1]

defines the new errorei [n+ 1] at the(n+ 1)-th event, that is, the next time a rate adjustment is

performed. This remark completes the description of a linearized model of the delay feedback

loop. We can now turn to the derivation of a stability condition for our linearized model.

Modeling the loop usingz-transforms. The derivation of the stability condition on the linearized

model relies on a modeling of the loop usingz-transforms of Eqs. (5.8)–(5.20). We denote the

z-transform of a functionf [n] by Z[ f [n]], defined as

Z[ f [n]] =
+∞

∑
n=0

f [n]z−n .
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Eqs. (5.8), (5.11), (5.12), (5.19) are unchanged when usingz-transforms. Eqn. (5.17) yields

Z[∆r i [n+1]] = (τi−1) · Z[∆r i [n]]
τi

+
Z[∆r i [n]]

τi
,

which gives, using the property that for any continuous functionf , Z[ f [n]] = 1
zZ[ f [n+1]], that

Z[∆r i [n+1]] = (τi−1) · Z[∆r i [n+1]]
zτi

+
Z[∆r i [n]]

τi
.

By reordering the terms we obtain

Z[∆r i [n+1]]
(

1− τi−1
zτi

)
=

Z[∆r i [n]]
τi

,

which is equivalent to

Z[∆r i [n+1]] =
z

zτi− τi +1
Z[∆r i [n]] .

Similarly, usingz-transforms, Eqn (5.20) becomes

Z[Di [n+1]] =
z

z−1
Z[∆Di [n+1]] .

Also, the relationship between the weighted delay at the(n+1)-th andn-th iterations is given by

Z[D∗i [n]] =
1
z
Z[D∗i [n+1]] .

Thez-transforms discussed above are summarized in Figure 5.3, where we give a representation of

the class-i delay feedback loop usingz-transforms.

We notice that in the class-i delay feedback loop of Figure 5.3, some quantities (e.g.,τi , Bi , r i)

are time-dependent. This does not cause stability problems if the product of all individual blocks

in Figure 5.3 (called the “loop gain”), is non-increasing over time. Since the coefficientK[n] is

time-dependent, we have to selectK[n] so that the loop gain is non-increasing over time.

Denoting the loop gain byG(z), a necessary and sufficient condition for the loop to be stable is
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that the roots of the characteristic equation

1+G(z) = 0 ,

have a module less than one [71]. Taking the products of all blocks in Figure 5.3, we get

G(z) =−1
z

z
z−1

(
∏ j 6=i mj

)
Bi [n− τi ]K[n]

r i
2[n]

z
zτi− τi +1

.

The negative sign comes from the fact thatD∗i [n] is subtracted fromD
∗[n] to obtainei [n]. We use

the small variation assumption on the service rate to further simplify the expression forG(z). We

use the following approximation:

∆r i [n+1]≈ ∆r i [n] ,

which enables us to approximate the gain of the second block,z
zτi+1−τi

by 1. with this approxima-

tion, we get a new loop gainG′(z) as follows

G′(z) =−1
z

z
z−1

(
∏ j 6=i mj

)
Bi [n− τi ]K[n]

r i
2[n]

,

The characteristic equation of the approximate system is

1− 1
z−1

(
∏ j 6=i mj

)
Bi [n− τi ]K[n]

r i
2[n]

= 0 ,

which has exactly one root,

ẑ= 1+

(
∏ j 6=i mj

)
Bi [n− τi ]K[n]

r i
2[n]

.

With the root̂z, we obtain the following stability condition

∣∣∣∣∣1+

(
∏ j 6=i mj

)
Bi [n− τi ]K[n]

r i
2[n]

∣∣∣∣∣≤ 1 ,
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or, equivalently,

1+

(
∏ j 6=i mj

)
Bi [n− τi ]K[n]

r i
2[n]

≥ −1 (5.21)

1+

(
∏ j 6=i mj

)
Bi [n− τi ]K[n]

r i
2[n]

≤ 1 . (5.22)

All quantities in Eqn. (5.22), with the exception ofK[n], are positive. Hence, the condition described

by Eqn. (5.22) simply reduces toK[n]≤ 0. The condition in Eqn. (5.21) becomes, after reordering

the terms,

K[n]≥−2· r i
2[n](

∏ j 6=i mj
)

Bi [n− τi ]
. (5.23)

Since, from Eqn. (5.14), we have

r i
2[n]

Bi [n− τi ]
=

Bi [n−τi ]2

Di [n]2

Bi [n− τi ]

=
Bi [n− τi ]

Di [n]2
,

Eqn (5.23) can be rewritten as

K[n]≥−2· Bi [n− τi ](
∏ j 6=i mj

)
D2

i [n]
. (5.24)

The condition given by Eqn. (5.24) requires to keep a history of the backlogs. The need to main-

tain a backlog history can be alleviated, by replacing Assumption (A2) by the slightly stronger

assumption:

Assumption (A2’). The backlog of class-i traffic does not vary significantly between events(n−τi)

andn, that is,

Bi [n− τi ]≈ Bi [n].

Assumption (A2’) allows us to get a simplified expression for the stability condition for the class-i

delay feedback loop:

−2· Bi [n]
∏ j 6=i mj ·D2

i [n]
≤ K[n]≤ 0 .
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SinceK[n] must be common to all classes for Eqn. (5.13) to hold, we finally get

−2·min
i

{
Bi [n]

∏ j 6=i mj ·D2
i [n]

}
≤ K[n]≤ 0 . (5.25)

The condition in Eqn. (5.25) ensures that the linearized delay feedback loops will not engage in

divergent oscillations. We cannot be certain that the assumptions made to linearize the delay feed-

back loops hold in practice, and cannot claim that Eqn. (5.25) ensures stability of the (non-linear)

delay feedback loops, but can use Eqn. (5.25) as a design guideline forK[n].

5.2.4 Including the Absolute Delay and Rate Constraints

We have obtained a stability condition onK[n], which is necessary to enforce proportional differ-

entiation. So far, we have not considered the absolute delay and rate constraints in the construction

of the delay feedback loops. These absolute delay and rate constraints are viewed as a “saturation

constraint” on the rate adjustment, and yield a second bound onK[n]. To satisfy the constraints

r i [n]≥ rmin
i [n], we may need to clip∆r i [n] when the new rate is below the minimum. This, however,

may violate the work-conserving property resulting from Eqn. (5.13). To respect the saturation

constraint,K[n] has to satisfy

r i [n−1]+K[n]ei [n]≥ rmin
i [n] ,

and apply thatK[n] to all control loops. The above implies that we must have

K[n]≥max
i

(
rmin
i [n]− r i [n−1]

ei [n]

)
. (5.26)

We note that if

max
i

(
rmin
i [n]− r i [n−1]

ei [n]

)
> 0 ,

we cannot haveK[n] < 0. In other words, we cannot satisfy absolute delay and throughput bounds

and proportional delay differentiation at the same time. In such a case, we relax either Eqn. (5.25)

or (5.26) according to the precedence order on the service differentiation given in Eqn. (4.8).
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5.3 The Loss Feedback Loop

We now describe the feedback loop which controls the traffic dropped from classi to satisfy pro-

portional loss differentiation within the limits imposed by the absolute loss bounds. As before, we

assume that all classes are offered proportional loss differentiation. The assumption can be relaxed

as described in the remark at the end of Section 5.2.1.

Traffic must be dropped at then-th event either if there is a buffer overflow or if absolute

delay bounds cannot be satisfied given the current backlog. With a buffer sizeB, to prevent buffer

overflows at then-th event, the following condition must hold:

Q

∑
k=1

(
Bk[n−1]+ak[n]− lk[n]

)
−∆t[n−1]C≤ B . (5.27)

To provide absolute delay and throughput bounds, the following condition must be satisfied

Q

∑
k=1

max

{
Bk[n−1]− rk[n−1]∆t[n−1]+ak[n]− lk[n]

dk−Dk[n]
,µk ·χBk[n]>0

}
≤C . (5.28)

To choose the amount of traffic to drop from each class so that Eqs. (5.27) and (5.28) hold, we

define the weighted loss rate to be

p∗i [n] =

(
Q

∏
j=1, j 6=i

m′j

)
pi [n] ,

wherem′i = ∏i−1
j=1k′j for i > 1 andm′1 = 1. With this definition, Eqn. (3.22) is equivalent to

∀(i, j) ,∀n : p∗i [n] = p∗j [n] .

This condition is equivalent to

∀i ,∀n : p∗i [n] = p̄∗[n] .
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wherep̄∗[n] is the set point for the loss feedback loop, given by

p̄∗[n] =
1
Q ∑

i

p∗i [n] .

We use the set point to describe an error

e′i [n] = p̄∗[n]− p∗i [n] .

To reach the set point, the error is decreased by increasingp∗i [n] for classes that havee′i [n] > 0

as follows. Let〈i1, i2, . . . , iR〉 be an ordering of the class indices from all backlogged classes, that

is, Bik[n] > 0 for 1≤ k≤ R, such thate′is[n] ≥ e′ir [n] if is < ir . Traffic is dropped in the order of

〈i1, i2, . . . , iR〉.

Absolute loss rate bounds impose an upper bound,l∗i [n], on the traffic that can be dropped at

eventn from classi. The value ofl∗i [n] is determined from Eqs. (3.19) and (5.6) as

l∗i [n] = Ai [n]Li− pi [n−1]Ai [n−1] .

If the conditions in Eqs. (5.27) and (5.28) are violated, traffic is dropped from classi1 until the

conditions are satisfied, or until the maximum amount of trafficl∗i1[n] has been dropped. Then traffic

is dropped from classi2, and so forth. Suppose that the conditions in Eqs. (5.27) and (5.28) are

satisfied for the first time ifl∗j [n] traffic is dropped from classesj = i1, i2, . . . , i k̂−1, andx̂[n]≤ l∗
k̂
[n]

traffic is dropped from classi k̂, then we obtain:

l i [n] =


l∗i [n] if i = i1, i2, . . . , i k̂−1 ,

x̂[n] if i = i k̂ ,

0 otherwise.

(5.29)

If lk[n] = l∗k [n] for all k = i1, i2, . . . , iR, we allow absolute delay and rate conditions to be violated. In

other words, condition (5.28) is relaxed.

The loss feedback loop never increases the maximum errore′i [n], if e′i [n] > 0, and more than
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Figure 5.4:Experiment 1: Delay differentiation. The graphs show the proportional delay dif-
ferentiation obtained by each class at the simulated 1 Gbps bottleneck link. (b) is a duplicate of
Figure 4.4(a).

one class is backlogged. Thus, the errors remain bounded and the algorithm presented will not

engage in divergent oscillations around the target valuep∗[n]. Additionally, the loss feedback loop

and the delay feedback loops are independent of each other, since we always drop traffic from the

tail of each per-class buffer, losses do not have any effect on the delays of traffic admitted into the

transmission queue.

5.4 Evaluation

As in Chapter 4, we perform an evaluation by simulation of our closed-loop algorithm. We com-

pare the performance of the closed-loop algorithm with the optimization-based algorithm from the

previous chapter, using the same single-bottleneck simulation experiment as in Section 4.4. This

single-bottleneck simulation experiment also allows us to assess the stability of the feedback loops

used in the closed-loop algorithm by subjecting the bottleneck link to a highly variable offered load.

Then, we present a multi-node network simulation experiment with a mix of TCP and UDP traffic,

and examine how per-hop, per-class guarantees translate into end-to-end guarantees.

5.4.1 Simulation Experiment 1: Single Node Topology

We first use the single node simulation experiment we described in Section 4.4 to compare the

performance of our closed-loop algorithm to that of the optimization-based algorithm discussed in
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Figure 5.5:Experiment 1: Loss differentiation. The graphs show the proportional loss differ-
entiation obtained by each class at the simulated 1 Gbps bottleneck link. (b) is a duplicate of
Figure 4.5(a).

the previous chapter. So, we use the same service guarantees, network topology, and traffic pattern

as in Experiment 1 of Chapter 4.

We plot the ratios of delays and loss rates in Figures 5.4 and 5.5. In the graphs, each datapoint

corresponds to a moving average with a sliding window of size 0.1s. The results obtained for the

ratios of delays in Figure 5.4(a) show that proportional delay differentiation is achieved with good

accuracy when the link is overloaded. Furthermore, the plots show that the cloded-loop algorithm

reacts immediately when the offered load goes from underload to overload, and reacts swiftly (be-

tween 0 and 0.2sdepending on the class concerned) when the link goes from overload to underload.

This indicates that the delay feedback loops used in the closed-loop algorithm are stable. Propor-

tional delay differentiation does not match the target proportional factorski = 4 when the link is

underloaded, due to the fact that our algorithms are work-conserving, and therefore cannot artifi-

cially generate delays when the load is small. As illustrated in Figure 5.4(b), which is a duplicate of

Figure 4.4(a), we observe the exact same behavior with the reference optimization-based algorithm

from Chapter 4.

Results for ratios of loss rates in Figure 5.5(a) indicate that proportional loss differentiation is

achieved when the output link buffer overflows and traffic is dropped. The transient spikes ob-

served when the link goes from overload to underload are, as discussed in Chapter 4, due to short

busy periods leading to a very small number of packet drops, which in turn, makes ratios of loss
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Figure 5.6:Experiment 2: Network topology. The labels of the links denote the links capacities
in Mbps.

rates become less meaningful. Comparing Figures 5.5(a) and Figure 5.5(b), which is a duplicate

of Figure 4.5(a), indicates that the loss differentiation obtained with the closed-loop algorithm is

almost identical to the loss differentiation realized by the optimization-based algorithm.

From this simulation experiment, we conclude that:

• The feedback loops used in the closed-loop algorithm appear to be robust to variations in the

offered load.

• The results of the closed-loop algorithm closely match those of the optimization-based algo-

rithm from Chapter 4.

5.4.2 Simulation Experiment 2: Multiple Node Simulation with TCP and UDP Traf-

fic

Next, we present a multi-node network simulation, and evaluate if our approach provides the desired

service, in the context of a mix of TCP and UDP traffic, with multiple hops and propagation delays.

We assess theend-to-endservice seen by traffic in the presence of per-hop guarantees. To that effect,
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Flow Class Type
Protocol Traffic On Off α

TCP-1 1 TCP Greedy N/A N/A N/A
TCP-2 2 TCP Greedy N/A N/A N/A
TCP-3 3 TCP Greedy N/A N/A N/A
UDP-4 4 UDP Pareto On-off 10ms 10ms 1.9

A-1 1 TCP Exponential On-off 1000 pkts 200ms N/A
A-2, A-3 2 TCP Exponential On-off 1000 pkts 200ms N/A

A-4, A-5, A-6 3 TCP Exponential On-off 1000 pkts 200ms N/A
A-7, A-8, A-9, A-10 4 UDP Pareto On-off 120ms 200ms 1.9

Table 5.1:Experiment 2: Traffic mix. The traffic mix for flows B-1,. . ., B-10 and C-1,. . ., C10 is
identical to the traffic mix described here for flows A-1,. . .,A-10. α is the shape parameter used in
the Pareto distribution.

Class Service Guarantees
di Li ki k′i

1 2 ms 0.1 % – –
2 – – 4 4
3 – – 4 4
4 – – N/A N/A

Table 5.2:Experiment 2: Service guarantees.The guarantees are identical at each router.

we implemented our closed-loop algorithm in thens-2network simulator [5]. This implementation

is now included in the standardns-2distribution, as ofns-2.26.

We simulate a network with a topology as shown in Figure 5.6. We have four routers connected

by three 45 Mbps links, and sources and sinks connected to the routers by independent 100 Mbps

links. Each 45 Mbps link has a propagation delay of 3ms, and each 100 Mbps link has a propagation

delay of 1ms. There are four classes of traffic. The composition of the traffic mix is given in

Table 5.1 and the service guarantees are given in Table 5.2. Traffic consists of a mix of TCP

and UDP flows. TCP sources run theTCP Renocongestion control algorithms. TCP flows are

either greedy, to model long file transfers, or on-off flows with exponentially distributed on and off

periods, to model short, successive file transfers (e.g., HTTP requests). UDP flows are on-off flows

using a Pareto distribution for the on and off periods. Due to the presence of on-off TCP flows,

we do not need to have UDP traffic as bursty as in the experiment of the previous section, where
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α = 1.2, and we set here the shape parameterα to α = 1.9.

Cross-traffic flows (denoted by A-1,. . ., C-10) start transmitting at timet = 0 s. The flows

TCP-1, TCP-2, TCP-3 and UDP-4 start transmitting at timet = 10 s. All flows consists of packets

with a fixed size of 500 bytes, and the experiment lasts 70 seconds of simulated time. The resulting

load at the bottlenecks is roughly constant and equal to the capacity of the bottleneck links.

From Tables 5.1 and 5.2, Classes 1, 2 and 3 only consist of TCP traffic, and Class 4 only consists

of UDP traffic. Initially Class 1 contributes 10% of the aggregate cross-traffic, Class 2 contributes

20%, Class 3 contributes 30% and Class-4 contributes 40 %. We made the choice of having almost

as much UDP traffic as TCP traffic so that we could examine the effects of mixing the two types

(UDP and TCP) of traffic more easily.

Per-hop per-class QoS.We graph the per-class queueing delays and per-class loss rates at each of

the first three routers in Figure 5.7, starting at timet = 0 s. Given that the aggregate arrival rate

at Router 4 is always less than the total output capacity of Router 4, there is never any backlog

at Router 4, and thus, the queueing delays and loss rates are constantly equal to zero. With the

exception of Figure 5.7(c), (g) and (k), where the individual packet delays are plotted, each point

on Figure 5.7 represents an average over a sliding window of size 0.5s. Figure 5.7 shows that

the proposed algorithm manages to enforce all proposed service guarantees at each router, with

only a couple of transient violations of the absolute delay bound on Class 1 at Router 1, and that the

algorithm seems to respond appropriately to transient changes such as the introduction of additional

traffic at timet = 10s.

End-to-end per-flow QoS.Finally, we present end-to-end measurements for the flows TCP-1,

TCP-2, TCP-3 and UDP-4. Each of these four flows traverses four routers, each router provid-

ing an absolute delay guarantee of 2mson Class 1. Adding to these per-node delay guarantees the

propagation delays between each node, one can infer that the end-to-end delays of TCP-1 packets

have to be less than 4×2+3×3+2×1 = 19 ms. Similarly, the end-to-end loss rate encountered

by TCP-1 should be less than 1− (1−L1)4≈ 0.004, that is, 0.4%.

In Figure 5.8(a), we present the individual end-to-end packet delays encountered by each flow.

The figure shows that Flow 1’s end-to-end delays are indeed always below 19ms, represented by
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Figure 5.7:Experiment 2: Multiple node simulation with TCP and UDP traffic. The graphs
show the delays and loss rates encountered at each router by Class 1 traffic, and the ratios of delays
and the ratios of loss rates for Classes 2, 3 and 4 at each router. The absolute constraints and the
target ratios are indicated by straight dashed lines.
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Figure 5.8:Experiment 2: End-to-end packet delays.The graphs represent the individual, end-
to-end, packet delays encountered by flows TCP 1, TCP-2, TCP-3, UDP-4 (a), the ratios of delays
over a sliding window of size 0.5s for TCP-2, TCP-3, and UDP-4 (b), the loss rates (c), ratio of
loss rates (d), and the throughput obtained by TCP-1, as well as the aggregate throughput obtained
by all four flows (e). The end-to-end delay guarantee on TCP-1, indicated by a dashed line in (a), is
a delay bound of 19ms, the end-to-end loss guarantee on TCP-1, indicated by a dashed line in (c),
is 0.4%.
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the dashed line, and we see again that the algorithm we propose uses a conservative estimate of

the delays for enforcing delay bounds, since most Flow 1 packets encounter a total delay close to

15 ms.2 Figure 5.8(b) also suggests that the proportional delay differentiation holds with respect to

the end-to-end delays between Classes 3 and 4, even if the relative delay constraints are enforced

only on a per-node basis. This result can be explained by the fact that the propagation delays

are negligible compared to the large queueing delays encountered by TCP-3 and UDP-4. The

propagation delay cannot be neglected compared to the queueing delays in the case of the flow

TCP-2, which explains why the proportional differentiation between TCP-2 and TCP-3 is close to

a factor of 3.3 instead of the desired factor of 4.

We plot the end-to-end packet loss rates in Figure 5.8(c). The end-to-end loss rate bound of

0.4% on flow TCP-1, represented by a dashed line, is respected.3 However, as shown in Fig-

ure 5.8(d), proportional guarantees on loss rates between classes do not translate into proportional

guarantees between end-to-end flows: loss rates ratios between flows TCP-2, TCP-3, and UDP-4

are consistently above the desired ratiosk′2 = k′3 = 2, even though the per-hop, per-class loss guar-

antees are consistently respected. This result confirms that per-class guarantees do not necessarily

translate into per-flow guarantees. Here, a discrepancy between per-flow differentiation and per-

class guarantees is exhibited because the different flows present in the network do not have the

same probability of suffering packet drops, since some of them are greedy flows, while others are

on-off flows. The result indicates that additional mechanisms identifying greedy flows are needed to

provide a better match between per-class guarantees and per-flow differentiation. Describing mech-

anisms to identify greedy flows and using these mechanisms to improve per-flow differentiation

will be the object of Chapter 7.

Last, in Figure 5.8(e), we graph the throughput received by flow TCP-1, as well as the aggregate

throughput received by flows TCP-1, TCP-2, TCP-3 and UDP-4. In this experiment, there is no

throughput guarantee on any class, but we observe that the flow TCP-1 consistently gets an end-

2The queueing delays at Router 4 are always zero due to the topology we use. If we ignore the guarantees offered at
Router 4 in the computation of the end-to-end delay guarantee, the end-to-end delay guarantee becomes 16ms, and is
respected as well.

3Due to the topology we chose, the loss rate at Router 4 is always zero. If we ignore the guarantees offered at Router 4
in the computation of the end-to-end loss guarantee, we obtain an end-to-end loss bound of 1− (1−L1)3 ≈ 0.003, that
is, 0.3%, which is also respected.
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to-end throughput greater than 1 Mbps, and close to 3 Mbps in general. This result shows that

the absolute guarantees on the loss and delay of Class 1 are not realized at the expense of a low

throughput. For readability purposes, we do not show the throughput plots for the three other flows,

but mention that they present values close to that of TCP-1.

As a conclusion to this second experiment, we showed that our algorithm was able to provide

the desired per-class, per-node service guarantees in a multiple node simulation, with a mix of TCP

and UDP traffic. We also showed how these per-class, per-node service guarantees could translate

into end-to-end, per-flow performance.

5.5 Summary and Remarks

We proposed a closed-loop algorithm for realizing the Quantitative Assured Forwarding service at

a router. The delays and losses experienced by classes are monitored, which allows the algorithm

to infer a deviation compared to the expected service differentiation. The algorithm then adjusts

service rate allocation and the drop rates to attenuate the difference between the service experienced

and the service guarantees.

We used linear control techniques in the design of the algorithm. In particular, we proposed to

use a proportional control to achieve proportional delay differentiation. Absolute differentiation is

expressed in terms of saturation constraints that limit the range of the controller. We linearized the

control loop around an operating point, and derived a stability condition on the linearized control

loop. While the stability condition derived does not ensure that the non-linear control loop con-

verges, the stability condition gives useful guidelines for selecting the configuration parameter of

the controller.

Simulation results indicate that the proposed closed-loop algorithm is an effective approxima-

tion of the optimization-based algorithm, and that the feedback control is stable. Additionally, we

described the effect of per-hop service differentiation on end-to-end service guarantees.
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Implementation

In this chapter, we present the design of a configurable router that provides the service guarantees

of Quantitative Assured Forwarding in IP networks such as the Internet [32]. We call such an IP

router a “QoSbox”. Using a QoSbox at a bottleneck link, the network operator only needs to specify

the service guarantees that are desired at the bottleneck link, by means of a configuration file, and

turn on the QoSbox to obtain the desired QoS. The central mechanism used in the QoSbox is the

closed-loop algorithm for buffer management and service rate allocation discussed in Chapter 5.

We discuss our implementation of the QoSbox in PC-routers running an operating system from

the BSD family, i.e., FreeBSD [1], NetBSD [4] or OpenBSD [6]. The implementation we describe

is now part of the base distributions of the KAME [3] and ALTQ-3.1 [30] packages. Inclusion in

the base BSD distributions as part of ALTQ is currently under consideration.

We use the implementation of the QoSbox in PC-routers to demonstrate that Quantitative As-

sured Forwarding can be realized in packet networks with links of speeds in the order of a few

hundred megabits per second. We also outline how the closed-loop algorithm can be further modi-

fied to be implemented in switch architectures at higher line speeds, at the expense of some reduced

accuracy in the service differentiation.

This chapter is organized as follows. In Section 6.1, we present an overview of the implementa-

tion. In Section 6.2, we discuss the implementation details. In Section 6.3, we present a numerical

evaluation using a testbed of PC-routers. The evaluation illustrates how service differentiation is

94
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realized, and assesses the overhead of the associated mechanisms. In Section 6.4, we briefly review

the related work on publicly available implementations of service architectures for PC-routers.

6.1 Implementation Overview

In this section, we present an overview of the implementation. Recall from the discussion in Chap-

ter 3, that Quantitative Assured Forwarding imposes that there be no communication between dif-

ferent routers, admission control or policing of traffic. Hence, realizing the QAF service in an IP

network only requires to implement our algorithms for service differentiation in the data path of IP

processing at QoSboxes.

The QoSbox is an output queueing architecture. On the other hand, the PC-routers that we use

for our implementation rely on a shared memory architecture, with input and output queues, and are

therefore CIOQ routers. From the discussion in [111], input queues in a PC-router are empty when

the CPU of the PC-router is not overloaded. So, barring CPU overloads, PC-routers are equivalent

to output queueing architectures. From now on, we assume that traffic control is only performed at

the output queues and solely focus on the operations performed at the output queues. We will show

that the overhead associated to our proposed mechanisms is limited enough so that we should not

face CPU overload conditions in typical access networks where our implementation in PC-routers

can be deployed, and that, as a result, the output queueing assumption is justified.

In the remainder of this section, we discuss how service guarantees are configured in a QoSbox.

Then, we present an overview of the mechanisms in place in the transmission queues at the output

link(s) governed by a QoSbox.

6.1.1 Configuration of the Service Guarantees

Network interfaces in a QoSbox are configured with a configuration file. The structure and syntax of

the configuration file is based on the syntax of an ALTQ-3.1 configuration file [52]. Figure 6.1 is an

example of a QoSbox configuration file. The configuration file defines the properties of the output

interface(s), the guarantees each class of traffic receives and the filters used by the classifier to map
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(1) interface fxp0 bandwidth 100M qlimit 200 jobs
(2) class jobs fxp0 high_class NULL priority 0\

adc 2000 rdc -1 alc 0.01 rlc -1 arc 10M
(3) class jobs fxp0 med2_class NULL priority 1\

adc -1 rdc 2 alc -1 rlc 2 arc -1
(4) class jobs fxp0 med1_class NULL priority 2\

adc -1 rdc 2 alc -1 rlc 2 arc -1
(5) class jobs fxp0 low_class NULL priority 3 default\

adc -1 rdc -1 alc -1 rlc -1 arc -1
(6) filter fxp0 high_class 0 0 0 0 0 tos 1
(7) filter fxp0 med2_class 0 0 0 0 0 tos 2
(8) filter fxp0 med1_class 0 0 0 0 0 tos 3
(9) filter fxp0 low_class 0 0 0 0 0 tos 4

Figure 6.1:Example of a QoSbox configuration file.The configuration file defines (1) the prop-
erties of the output interface, (2) the guarantees each class of traffic receives and (3) the filters
used by the classifier to map packets to given classes of traffic. Line numbers are not part of the
configuration file, but are used here for readability purposes.

packets to given classes of traffic. In the example of Figure 6.1, the interface concerned,fxp0, has

a bandwidth of 100 Mbps and a buffer size set to 200 packets. The fieldjobs indicates that traffic

control at this interface relies on the JoBS scheme discussed in Chapter 3, and, in particular, on the

closed-loop algorithm presented in Chapter 5.

The next set of configuration commands, in lines (2)–(5), contains the service guarantees offered

to each class. In the example of Figure 6.1, the classhigh class is given a delay guarantee,

indicated by the keywordadc,1 of 2000 microseconds, no proportional delay differentiation, as

specified by the fieldrdc -1, a loss bound of 1%, configured by the commandalc 0.01, no

proportional loss differentiation (rlc -1) and a guaranteed throughput of 10 Mbps (arc 10M).

The priority field simply indicates a class index, but does not denote a priority order. Classes

med1 class, med2 class, med3 class are not offered delay, loss, or throughput bounds, but are

subject to proportional delay and loss differentiation.

The rdc andrlc keywords specify the proportional differentiation desired between the class

to which they are applied, and the class denoted by the following class index. In the example of

1Even though the QoSbox uses an implementation of the closed-loop algorithm, the keywords are based on the names
of the QoS constraints in the optimization-based algorithm.
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Figure 6.1, since the classmed2 class with class index 1 is given anrdc factor of 2, packets which

belong to the class with the class index 2, i.e.,med1 class, should get queueing delays twice as

long as those experienced bymed2 class packets. Note that the parameters taken byrdc or rlc

can be any positive value, including values less than one.

The commands in lines (6)–(9) describe the mapping from packet headers to service classes. In

this example, the only classification criterion is the Type-of-Service (TOS) field of the IP header,

recently renamed DiffServ Codepoint (DSCP, [114]). In the present example, a value of 0x03 in the

DSCP field of an incoming packet indicates that the packet belongs to the classmed1 class. The

configuration file presented above assumes the use of IP version 4 (IPv4, [122]), but the implemen-

tation of the QoSbox presented in this chapter also supports IP version 6 (IPv6, [44]). In the case

of IPv6, the DSCP corresponds to the IPv6 Traffic Class octet.

The example of Figure 6.1 assumes that marking of the DSCP field is performed upstream,

for instance by the applications at the end hosts. To avoid maintaining per-flow information in

QoSboxes, we advocate that marking should not be performed by QoSboxes. We note however that

ALTQ provides per-flow marking primitives, using IP Filter [125],2 and that a network operator

could configure QoSboxes to mark packets based on source/destination pairs.

6.1.2 Mechanisms

All output queues in the QoSbox have the same architecture, which is outlined in Figure 6.2. Each

class of traffic is associated with a FIFO per-class buffer. When a packet is passed to a network

interface a classifier looks up which class the packet belongs to, and places the packet in the appro-

priate per-class FIFO buffer. The classifier does not identify the flow to which the incoming packet

belongs. The per-class buffers have a finite size selected by the network operator as follows. The

maximum amount of traffic that can be held in each per-class buffer can be fixed to a constant (sep-

arate buffers), or, alternatively, the maximum total amount of traffic backlogged can be bounded

(shared buffer).

2Future versions of ALTQ are likely to instead use thepf packet filter [74].
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Figure 6.2:Architecture of an output queue in the QoSbox. The three main components are
the packet classifier, in charge of storing incoming packets in the proper FIFO per-class buffer, the
rate allocation and dropping algorithm, and the scheduler, which forwards packets according to the
service rates allocated.

After the incoming packet has been placed in a per-class buffer, the closed-loop algorithm

adjusts the service rates allocated to each class of traffic and possibly drops packets in order to

enforce the desired service guarantees. The computation of the service rates and packet drops is

based on the current backlog, arrivals, loss rate on the one hand, and on queueing delays reported

by the scheduler on the other hand. If needed, packets are dropped from the tail of each per-class

buffer.

The service rates calculated by the rate allocation algorithm must be translated into packet

forwarding decisions, which is the task of the packet scheduler. Schedulers translating service rates

into packet forwarding decisions, such as Packetized-GPS [119] or Virtual Clock [157], have been

proposed in the early 1990s. These schedulers have provable worst-case delay bounds, but require

dynamic sorting of the packets backlogged in the system, and have a worst-case complexity of

O(N) whereN is the number of packets backlogged in the system. We propose a heuristic, inspired

by the Deficit-Round Robin algorithm [135], that avoids packet sorting. The heuristic has anO(Q)

complexity, whereQ is the number of classes in the system.

A variable recording the amount of traffic that has been sent in each class since the beginning

of the current busy period,Xmiti , is maintained by the scheduler. The output curve,Rout
i , is updated
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every time a packet enters the output queue, with

Rout
i ← Rout

i + r i ·∆t , (6.1)

where∆t corresponds to the amount of time that has elapsed since the last update ofRout
i . In other

words, the output curveRout
i corresponds to the amount of traffic that would have been transmitted

since the beginning of the current busy period if packet scheduling perfectly matched the service

rate allocation, as is the case in the fluid-flow model we used in the previous chapters. Every

time the output link is available for transmission of a packet, the scheduler computes, for each

class, the differenceRout
i −Xmiti . Denoting byk the index of the class for which this difference is

maximum, meaning that classk is the “most behind” its allocated service rate, the scheduler chooses

to transmit the packet at the head of the class-k buffer, and records the queueing delay experienced

by the transmitted packet, by taking the difference between the current time and the time this packet

was enqueued.

6.2 Implementation Details

Next, we describe the details of our implementation. We first focus on the specifics of the imple-

mentation we carried out for BSD kernels using the Alternate Queuing framework (ALTQ, [30]).

We provide a short review of ALTQ, and then turn to a discussion of the operations performed by

our implementation. In our PC-router implementation, all operations are sequential. Even without

exploiting potential parallelism in the algorithm, we will show in Section 6.3 that our implementa-

tion can operate at line speeds in the order of 100-500 Mbps in a 1 GHz PC if the number of classes

is small.

6.2.1 ALTQ

Our implementation of the QoSbox for PC-routers builds on ALTQ. ALTQ is an extension to the

FreeBSD, OpenBSD and NetBSD operating system kernels. In addition to various bug fixes to
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Figure 6.3: Functions and structures associated with the output queue in BSD and ALTQ-
enabled BSD.Each queueing discipline implemented in ALTQ consists of a kernel module, repre-
sented by the dotted box.

networking device drivers, ALTQ provides a modular framework for replacing the default FIFO

queueing discipline of network interfaces by custom-designed queueing disciplines.

In BSD kernels, an output networking interface is governed by theif output andif start

functions, which enqueue and dequeue packets from the transmission queue, respectively. The

transmission queue is represented by theifqueue structure and is shown on the left in Figure 6.3.

An incoming packet is passed toip output which, after looking up the route, filling the IP header,

and possibly fragmenting the packet passes it toif output; if output enqueues the packet in the

ifqueue structure. When the output link is available for transmission, a packet is dequeued from

theifqueue structure by theif start function.

As shown on the right in Figure 6.3, ALTQ replaces the operations performed byif output

andif start by user-defined transmission queue structures and functions included in dynami-

cally loadable kernel modules. Each kernel module implements a specific queueing discipline. A

custom packet queue structure (struct ifaltq) is used as a replacement to theifqueue struc-

ture to implement the transmission queue. Transmission queue management is realized by en-

queue and dequeue functions specific to each queueing discipline, as denoted bydisc enqueue
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anddisc dequeue in the figure. For instance, the enqueue and dequeue functions of our the QoS-

box are calledjobs enqueue andjobs dequeue, respectively. Queueing disciplines that have been

developed for ALTQ include Class-Based Queueing (CBQ, [69]), Hierarchical Fair Service Curve

(HFSC, [144]), Random Early Detection (RED, [68]) and Blue [60].

Additionally, ALTQ provides a classifier that is used to map incoming packets to classes of

traffic. In the QoSbox, classification only consists of selecting in which buffer to store the packet

by looking up a class index contained in the DSCP, as marked upstream, and adding a priority field

tag to the packet buffer. In a BSD implementation, packets are stored in memory buffers called

mbuf’s. Thembuf structure can be modified to record information, such as the priority field tag we

need to insert, in addition to the packet header and payload

We refer to [30] for more details on the implementation of ALTQ.

6.2.2 Packet Processing

All mechanisms specific to the QoSbox are realized byjobs dequeue andjobs dequeue. We next

describe both functions in detail.

Thejobs dequeue function implements the packet scheduler described in the last paragraph

of Section 6.1.2. Thejobs dequeue function has knows the value of the variablesRout
i andXmiti

for each class, finds the class for which the differenceRout
i −Xmiti is maximized, and dequeues

the packet located at the head of the corresponding per-class buffer. These operations consist of an

integer subtraction and an integer comparison per class, and the actual packet dequeueing. There

is a total of 2Q arithmetic operations and 2Q+ 1 memory accesses, one for reading each of the

variablesRout
i andXmiti , and one for accessing the packet to be dequeued.

The processing overhead in the QoSbox is caused by the operations occurring during the en-

queueing of an incoming packet, that is, the operations performed by the rate allocation and packet

dropping algorithm. This algorithm is implemented by thejobs enqueue function in ALTQ and

relies on several arithmetic operations (e.g., computation ofK). In a network simulator, these oper-

ations can be performed using double precision floating-point numbers. In the case of a kernel-level

implementation, floating-point operations should be avoided, because the hardware floating-point
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(1) functionjobs enqueue(pkt)
(2) if (output link is idle())
(3) reset all variables();
(4) transmit(pkt);
(5) else
(6) insert tail(pkt);
(7) if (not backloggedanymore()or now backlogged())
(8) reset rates();
(9) while (buffer overflow())

(10) i = selectdropped class();
(11) drop(i);
(12) accounting(pkt);
(13) compute min rates();
(14) while (∑min rates> C andcan drop())
(15) i = selectdropped class();
(16) drop(i);
(17) compute min rates();
(18) adjust rates();
(19) return (dropped);

Figure 6.4:Rate allocation and packet dropping in the QoSbox.This sequence of operations is
performed immediately after a packet arriving at the output queue has been classified. Line numbers
are printed for readability purposes.

unit (FPU) is generally not supported in the kernel, and floating-point operations using the FPU

emulation library are extremely slow.

The computations injobs enqueue only use fixed-point arithmetic. In our implementation, all

quantities are expressed using 64-bit unsigned integers, which requires to adopt some specific units.

Delays are expressed in clock ticks, service rates are expressed in bytes per clock tick scaled by a

factor of 232, and loss rates are expressed as fractions of 232. These units can achieve a satisfactory

degree of precision.

Pseudo-code for thejobs enqueue function, which returns a boolean indicating whether pack-

ets have been dropped, is presented in Figure 6.4. The first set of operations, in lines (2)–(4), are

executed when a new busy period starts. A memory access to check the status of the output link is

followed by a reset, for each class, of all four variables corresponding to the arrival curve, the input

curve, the output curve and the transmissionsXmiti . The current time is recorded as the start of a

busy period, and all variables of the class corresponding to the incoming packet are subsequently set
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to the size of the incoming packet. This requires 4(Q+1)+1 assignments and arithmetic operations

before transmitting the packet.

If the output link is not idle, the incoming packet is added to a per-class buffer, based on the

value of its priority field tag. Theinsert tail operation stores the arrival time of the packet

in a timestamp, which is inserted at the tail of a timestamp list.3 To record the arrival time,

jobs enqueue needs to access the CPU clock. A simple solution would be to use themicrotime()

function provided in BSD, which has a microsecond granularity. Usingmicrotime() increases

portability of the implementation, because all BSD systems implement themicrotime() func-

tion since 4.4-BSD. However,microtime() may not have a fine enough granularity, and requires

a periodic adjustment to account for possible clock skews. Also, usingmicrotime() generates

significant overhead.4 A more efficient solution is to directly read the timestamp counter (TSC)

register available in the Pentium series processors [81], and compatible architectures, such as AMD

processors. This register is an unsigned 64-bit precision integer, and gives the number of cycles

elapsed since the machine has been turned on. The resolution of the TSC register is much finer than

that provided bymicrotime(). A similar counter (processor cycle counter, PCC) can be found

on DEC Alpha architectures, but only provides a 32-bit precision [40]. We read the TSC or PCC

registers if they are available, and if not, roll back tomicrotime() to ensure portability of our

implementation. Despite potential variations in the duration of each clock cycle in recent proces-

sors, due for instance to power management, reading a cycle counter provides time measurements

accurate enough for our implementation.

Once the packet has been added to its per-class buffer, the test in lines (7) and (8) in Figure 6.4

checks if the set of classes with a backlog in the per-class buffers has changed. If there is a change,

service rates of all classes are reset: classes with no backlog get a service rate of zero, while

backlogged classes equally share the capacity of the output link. In our implementation, there areQ

tests to check which classes are backlogged, and, if a change in the backlogged classes is detected,

thereset rates call consists ofQ assignments.

3One could also use an extra tag added to thembuf holding the packet to mark its arrival time.
4As of 4.4-BSD, ananotime() function is also available.nanotime() provides nanosecond granularity, but suffers

the same overhead and clock skew adjustment problems asmicrotime().
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Next, in lines (9)–(11),jobs enqueue drops packets in case a buffer overflow occurs. The

while loop in lines (10) and (11) is executed in the worst-case for each backlogged packet. How-

ever, since this while loop is executed upon each packet arrival, the number of iterations is in fact

bounded by the number of packets that have arrived since the last packet arrival. In a PC-router, it is

extremely rare, if not impossible, in practice, to have simultaneous packet arrivals. In other switch

architectures, the number of iterations is bounded by the internal speed-up of the switch, which is

generally less than the number of line cards in the switch, and remains a relatively small number.

The overhead of the functionselect dropped class in line (10) depends on the type of

loss guarantees offered to the incoming packet(s). If only absolute loss guarantees are offered,

select dropped class checks that dropping the incoming packet(s) does not violate loss guar-

antees. This requires looking up the incoming packet size, and computing the value for the loss

rate if the incoming packet is dropped, which can be done with one addition and one integer di-

vision. If no class can be dropped without violating a loss bound, the addition and division are

performed for each class, for a total of 2Q operations. Then,select dropped class has to find

the class for which the violation is minimal. This requires anotherQ subtractions and compar-

isons. So, the worst-case corresponds to a total of 3Q arithmetic operations andQ comparisons.

The select dropped class function implements the ordering〈i1, i2, . . . , iR〉 on classes indices

provided by the loss feedback loop for proportional loss differentiation, as discussed in Chapter 5.

Determining this ordering requires 4Q+ 1 arithmetic operations andQ comparisons. If both pro-

portional loss differentiation and a loss rate bound are offered to all classes, the worst-case overhead

amounts to a total of(4Q+1+Q)+3Q+Q = 9Q+1 operations.

After buffer overflows are resolved,jobs enqueue executes, in line (12), the accounting op-

erations that take place upon each packet arrival. In addition to increasing the arrival curve and

possibly the input curve if no packet is dropped, the function also updates the output curveRout
i

using Eqn. (6.1). This requires one memory access, and two arithmetic operations.

The computation in line (13) determines the service ratesrmin
i needed for meeting the delay

bounds and minimum throughput guarantees. For each classi, the computation ofrmin
i , given

by Eqn. (5.4), involves looking up the timestamp of the head-of-the-line packet in the per-class
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buffer and reading the TSC register, to obtainDi , performing a subtraction (di−Di) and an integer

division ( Bi
di−Di

). These operations are augmented by a comparison in case a throughput guarantee

is also present. In case a delay bound violation has occurred (i.e., for a classi, di −Di ≤ 0 and

Bi > 0), the minimum rate is set toC, the capacity of the output link. Here, the entire class-i

backlog is transmitted as soon as possible in an effort to resolve the situation in a timely manner.

Non-backlogged classes are assigned a minimum service rate of zero.

The while loop in lines (14)–(17) drops packets until a feasible rate allocation exists or

all loss rate bounds are reached. The relaxation order of Eqn. (4.8) imposes that loss rate

bounds have higher precedence than delay bounds, which is enforced by thecan drop() test

in line (14). Note that all operations in thewhile loop in lines (14)–(17), including the func-

tionsselect dropped class andcompute min rates, can be executed once for each backlogged

packet in the worst case. To reduce the total number of operations, we propose to replace lines (14)–

(17) by a call to a function calledgreedy alloc. The functiongreedy alloc implements the

greedy service rate allocation used by the heuristic algorithm proposed in Chapter 4 in the case

of an ADC violation. The reduced complexity offered by the functiongreedy alloc comes at

at the expense of a potential relaxation of proportional loss guarantees when packets have to be

dropped to meet delay bounds. Thegreedy alloc usesQ arithmetic operations to redistribute the

service rates. Most of the overhead ingreedy alloc comes from the number of operations re-

quired when dropping packets. Each time a packet is dropped, a memory access is performed, and

four arithmetic operations are used to update the variablesRin
i , Rout

i andXmiti . In the worst case, all

backlogged packets are dropped.

The last step, described in line (18), adjusts the service rates subject to proportional delay dif-

ferentiation. The functionadjust rates implements the controller of the delay feedback loop, and

computes the parameterK, common to all classes. To computeK, adjust rates needs to compute

the ei ’s, the D∗i ’s, andD
∗
. In the worst case, computingK requiresQ(Q− 1) multiplications to

compute∏ j 6=i mj for all i.5 With the values for∏ j 6=i mj , one needs anotherQ multiplications to

computeD∗i for all i. Then, one needsQ−1 additions and one integer division to computeD
∗
, and

5This computation is only required when there is a change in the classes backlogged.
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Q subtractions to computeei for all i. The condition forK given in Eqn. (5.25) then requiresQ

multiplications andQ integer divisions, followed byQ comparisons. Implementing the condition

for K in Eqn. (5.26) requiresQ subtractions,Q integer divisions, andQ comparisons. There is an

additional comparison to check if both conditions (5.25) and (5.26) can be met at the same time.

All in all, the computation ofK requiresQ2 +5Q arithmetic operations in the worst case.

6.2.3 Overhead Reduction

We have described our implementation in PC-routers running a BSD kernel. We next describe how

the overhead of our implementation can be reduced for higher performance switches.

The overhead of our implementation is primarily caused by three operations in the

jobs enqueue function: the adjustment of the service rates for proportional differentiation, per-

formed by the call to the functionadjust rates, the computation of the minimum service rates

required for meeting delay bounds, implemented by the call tocompute min rates, and the re-

allocation of service rates and packet drops for meeting delay bounds, realized by the call to

greedy alloc.

An option to reduce the computational overhead is to reduce the frequency at which

adjust rates, compute min rates, andgreedy alloc are called. This comes at the expense

of degraded performance with respect to QoS guarantees. The degradation in performance may

remain acceptable for high sampling frequencies. For instance, recall from the evaluation in Chap-

ter 4, that updating the service rate allocation everyT arrivals, withT in the order of 10–100,

managed to achieve almost the same results as adjusting the service rates upon each packet arrival.

When the calls toadjust rates, compute min rates, andgreedy alloc are performed only

everyT arrivals, we can splitjobs enqueue into operations that have to be performed on a per-

packet basis, that is, lines (1)–(12) in Figure 6.4, from sampled operations, that is, lines (13)–(18).

Because no per-packet operation follows a sampled operation, sampled operations can be delegated

to a co-processor. As a practical example, in an architecture such as the Intel IXP 1200 network

processor [2], sampled operations such asadjust rates could be performed on the StrongARM

processor, whereas per-packet operations should be performed by the micro-engines.
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In addition to sampling some operations, simplifications to the arithmetic operations involved

can be carried out at the expense of flexibility. For instance, one may want to restrict the propor-

tional differentiation factors to powers of two, so that all the multiplications used for proportional

differentiation can be replaced by bit-shifting operations. One may also consider fixed sampling

intervals for computing loss rates, instead of the current busy period, to avoid integer divisions in

the loss rate computations. Last, we use byte counters in our implementation in PC-routers, but one

may instead elect to use packet counters, which require increment/decrement operations instead of

additions/subtractions for accounting.

6.3 Evaluation

We present measurement experiments of our QoSbox implementation in ALTQ in a testbed of PC

routers. The PCs are Dell PowerEdge 1550 with 1 GHz Intel Pentium-III processors and 256 MB

of RAM. The system software is FreeBSD 4.3 and ALTQ 3.0. Each system is equipped with five

100 Mbps-Ethernet interfaces.

In our experiments, we determine if the QoSbox provides the desired service differentiation

on a per-node basis, through two experiments with different traffic mixes. We also evaluate the

overhead associated to thejobs enqueue andjobs dequeue operations of the QoSbox.

The objective is to show that the implementation of the QoSbox in BSD-based PC-routers is a

solution that can be readily deployed for service differentiation in medium-speed access networks

with capacities in the order of a few hundreds megabits per seconds, and to confirm that the opera-

tions responsible for most of the overhead are those that can be performed as background tasks in

higher performance architectures.

6.3.1 Testbed Experiment 1: Near-Constant Load

We use a local network topology using point-to-point Ethernet links as shown in Figure 6.5. All

links are full-duplex and have a capacity ofC= 100 Mbps. Three PCs are set up as routers, indicated

in Figure 6.5 as Router 1, 2 and 3. Other PCs are acting as sources and sinks of traffic. The topology
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Bottleneck Bottleneck

Source
1

Source
2

Router
1

Router
2 Sink 1Router

3

Sink 3Sink 2

Source
3

Figure 6.5:Experiments 1 and 2: Network topology.All links have a capacity of 100 Mbps. We
measure the service provided by Router 1 and 2 at the indicated bottleneck links.

Class Service Guarantees
di Li µi ki k′i

1 8 ms 1 % – – –
2 – – 35 Mbps 2 2
3 – – – 2 2
4 – – – N/A N/A

Table 6.1:Service guarantees.The guarantees are identical at each router.
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Class No. of Type
flows Protocol Traffic

1 6 UDP On-off
2 6 TCP Greedy
3 6 TCP Greedy
4 6 TCP Greedy

Table 6.2:Experiment 1: Traffic mix. The traffic mix is identical for each source-sink pair. The
on-off UDP sources send bursts of 20 packets during an on-period, and have a 150msoff-period.
All TCP sources are greedy, i.e., they always have data to transmit, and run theNewRenocongestion
control algorithm.
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Figure 6.6:Experiment 1: Offered load. The graphs show the offered load at Routers 1 and 2.

has two bottlenecks: the link between Routers 1 and 2, and the link between Routers 2 and 3. The

buffer size at the output link of each router is set toB = 200 packets.

We consider four traffic classes with service guarantees as summarized in Table 6.1. The traffic

mix, the number of flows per class, and the characterization of the flows for each source is as shown

in Table 6.2. Class 1 traffic consists of on-off UDP flows, and the other classes consist of greedy

TCP flows. All sources start transmitting packets with a fixed size of 1024 bytes at timet = 0 until

the end of the experiments att = 60 seconds.

Sources 1, 2 and 3 send traffic to Sinks 1, 2 and 3, respectively. The traffic mix, the number of

flows per class, and the characterization of the flows, is identical for each source, and as shown in

Table 6.2. Each source transmits six flows from each of the classes. Class 1 traffic consists of on-off

UDP flows, and the other classes consist of greedy TCP flows. All sources start transmitting packets

with a fixed size of 1024 bytes at timet = 0 until the end of the experiments att = 60 seconds.
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Traffic is generated using thenetperfv2.1pl3 tool [90]. The network load overloads the bottleneck

links of Figure 6.5. Congestion control at the TCP sources maintains the total load at a level of

about 99% of the link capacity at Router 1 and Router 2, as shown in Figure 6.6.

In Figures 6.7 and 6.8, we present our measurements of the service received at the bottleneck

links of Routers 1 and 2, respectively. All datapoints correspond to moving averages over sliding

windows of size 0.5s, except in Figures 6.7(b) and 6.8(b), which presents the delays of each class-1

packet.

Figures 6.7(a) and 6.8(a) depict the ratios of the delays of classes 4 and 3, and the delays of

classes 3 and 2. The plots show that the target value ofk = 2 (from Table 6.1) is achieved.

In Figures 6.7(b) and 6.8(b) we show the delay of class-1 packets at Router 1 and Router 2. The

delay bound ofd1 = 8 msis satisfied, with few (< 1.5%) violations. The violations occur due to the

precedence order we chose for our absolute guarantees in Eqn. (4.8), that is, in case of an infeasible

set of service guarantees, absolute delay guarantees are relaxed in favor of absolute loss guarantees.

No class-1 packet ever experiences a delay higher than 10msat either Router 1 or 2. Figures 6.7(c)

and 6.8(c) indicate that delay values of other classes are in the range 10-50ms.

In Figures 6.7(c) and (d), and Figures 6.8(c) and (d), we show the measurements of the loss

rates. Figures 6.7(c) and 6.8(c) depict the ratios of loss rates for classes 4 and 3, and for classes 3

and 2. The desired ratios ofk′2 = k′3 = 2 are maintained most of the time. As Figures 6.7(d) and

6.8(d) indicate, the bound on the loss rates for class 1 ofL1 = 1 % is always kept. We also see that

the loss rate of class 1 may be higher than the loss rate of other classes, because class 1 is not tied to

other classes by proportional guarantees. Our implementation always drops first from class 1, until

the loss boundL1 as been reached, before dropping to satisfy proportional loss guarantees. Note

that much less traffic is dropped at Router 2, because Router 2 receives traffic from Source 3 and

Router 1, instead of receiving traffic from two sources. Half of the traffic arriving at Router 2 has

already been policed by Router 1, resulting in a lower loss rate.

Finally, in Figures 6.7(f) and 6.8(f) we include the throughput measurements of all classes. We

observe that the rate guarantee for class 2 ofµ2 = 35 Mbps is maintained. The total throughput of

all classes, labeled in Figures 6.7(e) and 6.8(e) as ‘Total’, is close to the link capacity of 100 Mbps
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Figure 6.7:Experiment 1: Router 1. The graphs show the service obtained by each class at the
output link of Router 1.
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Figure 6.8:Experiment 1: Router 2. The graphs show the service obtained by each class at the
output link of Router 2.
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Class No. of Type
flows Protocol Traffic

1 6 UDP On-off
2 6 TCP Greedy/On-off
3 6 TCP Greedy/On-off
4 6 TCP Greedy/On-off

Table 6.3:Experiment 2: Traffic mix. The traffic mix is identical for each source-sink pair. The
on-off UDP sources send bursts of 20 packets during an on-period, and have a 150msoff-period.
TCP sources are greedy during time intervals[0s,10s], [20s,30s], and [40s,50s], and transmit
chunks of 8 KB with a pause of 175msbetween each transmission during time intervals[10,20s],
[30,40s], and[50s,60s]. TCP sources run theNewRenocongestion control algorithm.

at each router.

6.3.2 Testbed Experiment 2: Highly Variable Load

The second experiment uses the network topology of Figure 6.5 and the parameters of Table 6.1.

The difference between Experiments 1 and 2 consists in the traffic generation of TCP flows. Instead

of using greedy TCP sources over the whole experiment, we configured the TCP sources to be

greedy during time intervals[0s,10s], [20s,30s] and [40s,50s]. In the remaining time intervals

(10s,20s), (30s,40s), and(50s,60s), the TCP sources send chunks of 8KB of data and pause for

175msbetween the transmission of each chunk. We summarize the traffic mix for Experiment 2 in

Table 6.3. This modification to the behavior of the TCP sources results in a more variable offered

load at Routers 1 and 2, which we present in Figure 6.9.

As in Experiment 1, we measure the delay, the loss rate, and the throughput of each traffic class

at the bottleneck link and present our results on Figures 6.10 and 6.11. Except for Figures 6.10(b)

and 6.11(b), which plot all class-1 packet delays, all datapoints correspond to moving averages over

a sliding window of 0.5s.

In Figures 6.10(a) and 6.11(a), we present the ratios of the delays of classes 4 and 3, and the de-

lays of classes 3 and 2. We observe that when the load is high, in time intervals[0s,10s], [20s,30s],

and [40s,50s], the target value ofk2 = k3 = 2 is achieved. When the load is low, we observe

oscillations in the ratios of delays, but, at both routers, all classes get low delays, as shown in Fig-
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Figure 6.9:Experiment 2: Offered load. The graphs show the offered load at Routers 1 and 2.
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Figure 6.10:Experiment 2: Router 1. The graphs show the service obtained by each class at the
output link of Router 1.
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Figure 6.11:Experiment 2: Router 2. The graphs show the service obtained by each class at the
output link of Router 2.
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ures 6.10(b), 6.10(c), 6.11(b), and 6.11(c), and one can argue that there is no need for differentiation

since all classes receive a high-grade service. We also see that, at timest = 0, t = 20 andt = 40,

when the load increases abruptly over a short period of time, the delay differentiation is realized

almost immediately. This confirms that our implementation quickly reacts to rapid increases in the

offered load. As seen before in Experiment 1, Figures 6.10(b) and 6.11(b) show that the absolute

delay guarantee of class 1,d1 = 8 msis generally enforced. The delay bounds are violated when it

is not possible to satisfy simultaneously absolute loss and delay guarantees. In Experiment 2, the

delay bound violations occur for less than 0.15% of all class-1 transmitted traffic.

Figs. 6.10(d) and (e) and 6.11(d) and (e) present plots of the ratios of loss rates averaged over

a sliding window of size 0.5s, and show that proportional loss differentiation is realized, with the

desired factork′2 = k′3 = 2, whenever there are packet losses. Figs. 6.10(d) and 6.11(d) show the

loss rate experienced by class-1 traffic, and we see that, even at times of packet drops, the loss rate

of class 1 remains below the loss guarantee of 1%. Loss rates of other classes are below 1%, which

indicates that traffic is dropped mostly to satisfy the delay bound on Class 1.

We include the throughput measurements for all classes in Figures 6.10(f) and 6.11(f). The

throughput guarantee for class 2 (µ2 = 35 Mbps) is maintained whenever class 2 is sending at more

than 35 Mbps. As in Experiment 1, the QoSbox can use the full output link capacity of 100 Mbps

when needed. We infer that the time needed to run thejobs enqueue andjobs dequeue functions

is less than the average transmission time of a packet.

6.3.3 Overhead

Experiments 1 and 2 showed that our implementation of the QoSbox in PC-routers with a 1 GHz

processor can fully utilize the capacity of a 100 Mbps link. We next present an analysis of the

overhead of our implementation, where we attempt to predict the data rates that can be supported

by the PC-router implementation of the QoSbox, and where we measure the sensitivity of our

implementation to the number of service constraints and to the number of classes. We will show

measurements of number of cycles consumed by thejobs enqueue andjobs dequeue functions

for four different sets of service guarantees, tested for four traffic classes.
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Set jobs enqueue jobs dequeue Pred.
fpred

X s X s (Mbps)
1 11323 3140 1057 316 291
2 10723 2305 1092 340 305
3 3039 1512 1138 348 864
4 2573 668 1078 343 988

FIFO 25 66 221 147 –

Table 6.4:Overhead and predicted maximum throughput. This table presents, for four different
sets of service guarantees, the average number of cycles (X) consumed by thejobs enqueue and
jobs dequeue operations, the standard deviation (s), and the predicted throughputfpred (in Mbps)
that can be achieved. In the 1 GHz PCs we use, one cycle roughly corresponds to one nanosecond.

Set 1: Same guarantees as in Table 6.1.

Set 2: Set 1 with absolute guarantees from Set 1 removed.

Set 3: Set 2 with proportional guarantees from Set 1 removed.

Set 4: No service guarantees.

In the measurements we determine the number of cycles consumed for thejobs enqueue and

jobs dequeue functions, and we indicate the contribution of each function call injobs enqueue

to the total overhead. The TSC register of the Pentium processor is read at the beginning and at the

end of each of the monitored functions, for each execution of the function.

We compiled our implementation with a code optimizer, in our case, we use thegcc v2.95.3

compiler [138] with the “-O2” flag set. The results of our measurements, collected under FreeBSD

4.5 and ALTQ 3.1, are presented in Table 6.4, where we include the machine cycles consumed

by jobs enqueue and jobs dequeue, and the cycles spent in each of the functions called by

jobs enqueue. The measurements are averages of over 500,000 datagram transmissions on a

heavily loaded link, using the same topology as in Figure 6.5. The measurements in Table 6.4

were collected at Router 1. Measurements collected at Router 2 showed deviations of no more

than±5% compared to Router 1. The row containing “FIFO” denotes the overhead of the FIFO

queueing discipline in ALTQ, and is used to measure the overhead created by ALTQ itself.
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Set accounting select compute greedy alloc adjust rates
dropped class min rates

X s X s X s X s X s
1 777 393 46 585 582 419 3128 667 6471 1512
2 1052 350 44 616 219 135 – – 6696 1087
3 774 401 1138 1005 568 434 3172 1044 – –
4 948 382 793 190 202 121 – – – –

Table 6.5: Overhead distribution. This table presents, for the four considered sets of ser-
vice guarantees, the average number of cycles (X) consumed by each of the functions called by
jobs enqueue, and the standard deviation (s). In the 1 GHz PCs we use, one cycle roughly corre-
sponds to one nanosecond.

Since thejobs enqueue andjobs dequeue functions are invoked once for each IP datagram,

we can predict the maximum throughput of a PC-router to be

fpred =
F

nenqueue+ndequeue
·P , (6.2)

whereF denotes the CPU clock frequency in Hz,nenqueuedenotes the number of cycles consumed by

thejobs enqueue function,ndequeuedenotes the number of cycles consumed by thejobs dequeue

function, andP is the average size of a datagram. The equation given above assumes that clock cy-

cles have a fixed duration, neglects bus contention and operations that occur in an interrupt context

(e.g., arrival of a packet at the input link), and does not take into account the cost of packet classifi-

cation. Thus, Eqn. (6.2) is an optimistic estimate. In the case of our implementation in 1 GHz PCs,

we haveF = 109. Data from a recent report [9] indicates that the packet size distribution on the

Internet is multimodal, and that the average size of a packet on the Internet isP≈ 451 bytes. Using

these values forP andF in the above equation shows that, in the four sets of constraints considered,

we estimate that our implementation can be run at data rates of at least 291 Mbps.6

Table 6.5 indicates that a dominant portion of the overhead is linked to the presence of pro-

portional delay guarantees (Sets 1 and 2). In particular, Table 6.5 confirms most of the overhead

is incurred by functions that can be sampled, notably, the implementation ingreedy alloc of the

6Previous measurements in [34] exhibited slightly more significant overhead under the same type of arrivals, but were
collected using an older version of our software, and an older version of the FreeBSD operating system.
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Number of jobs enqueue jobs dequeue
classesQ

2 3094 1000
4 11323 1057
6 15090 1091
8 20656 1224

Table 6.6:Overhead in function of the number of classes. This table shows that the overhead,
expressed as an average number of cycles, appears to be linear in the number of classes.

greedy algorithm for the redistribution of the service rates in presence of absolute delay bounds,

and the rate adjustment for proportional delay differentiation, inadjust rates. The row corre-

sponding to Set 4 gives some insight as to the cost of the operations that have to be performed on

a per-packet basis: considering thatcompute min rates can be sampled, the overhead, albeit not

negligible, appears to be reasonable.

Last, varying the number of classes in Set 1, we gathered the overhead of thejobs enqueue

andjobs dequeue functions in Table 6.6. Table 6.6 indicates that, as discussed in Section 6.2, the

overhead of thejobs enqueue function appears linear in the number of classes. The small dis-

crepancy observed forQ = 2 is linked to the absence of proportional guarantees in that experiment.

Measurements for thejobs dequeue function tend also to exhibit linearity, but with a much higher

constant cost independent of the number of classes.

6.4 Related Work

Tools that facilitate the implementation and configuration of queueing disciplines in PC-routers

have been devised since the days of UNIX System V, with STREAMS [126]. More recent packages,

such as ALTQ [30], Netgraph [53], thex-kernel [79], Click [93] and Dummynet [127] allow for

implementing sophisticated queueing disciplines in Linux or BSD.

Hence, the implementation of QoS architectures using PC-routers is not new. For instance, the

ALTQ package itself supports natively the Class-Based Queueing (CBQ, [69]) and the Hierarchi-

cal Fair Service Curves (HFSC, [144]) schedulers. However, without external admission control,
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the ALTQ implementations of these QoS schedulers are in practice essentially used to control the

bandwidth individual users can receive.

With respect to building fully functional QoS networks, one can cite the attempts at creating

DiffServ networks using PC-routers. Implementations of DiffServ components in the Linux 2.1

kernel are for instance discussed in [19]. The authors of [19] integrate traffic policing and schedul-

ing/dropping in the same router, which generates significant overhead, and, as a result, traffic can

only be forwarded at approximately 20 Mbps. A similar effort to implement DiffServ components

in the Linux kernels has been recently pursued by [11], and as an application of Click [93]. Last,

an implementation of the Proportional Differentiated Services architecture is described in [72].

6.5 Summary and Remarks

We discussed how to implement our service architecture in an IP router, called a QoSbox. We

showed through analysis and measurements that our implementation of the QoSbox in BSD-based

PC-routers can be used in networks with link speeds in the order of a couple of hundred megabits

per second. We also identified a few techniques that can be applied to implement our proposed

mechanisms at higher line speeds.

We evaluated the performance of our implementation using a testbed of PC-routers on a

100 Mbps Ethernet network, and showed that our implementation was able to provide the desired

service differentiation, thereby corroborating the simulation results presented in the previous chap-

ters.

A version of the QoSbox for BSD kernels is available to the public, along with the source code

and documentation athttp://qosbox.cs.virginia.edu. The software has been available under

the BSD license since late October 2001, and is now distributed as part of ALTQ-3.1, and of the

KAME snap-kits. Inclusion in the base BSD distributions as part of ALTQ is under consideration.

http://qosbox.cs.virginia.edu
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Extending JoBS to TCP Traffic

The JoBS scheme and the algorithms we presented so far in this dissertation do not make any dis-

tinction between TCP and non-TCP (e.g., UDP) traffic. Our algorithms drop traffic when no feasible

service rate allocation exists for meeting all service guarantees, and do not take into account the sen-

sitivity of TCP traffic to losses. TCP, which accounts for more than 90% of the total traffic on the

Internet [9, 36], is a feedback-driven protocol that uses losses as an indicator for congestion avoid-

ance and control [10,82,83]. Hence, TCP packet losses lead to significant performance degradation

of the throughput of TCP sources. In addition, due to the relatively complex relationship between

packet losses and TCP throughput [116] and the lack of discriminating mechanisms between flows

belonging to the same service class, quantitative loss differentiation on traffic aggregates can result

in unpredictable throughput differentiation between individual TCP flows [154].

Furthermore, JoBS is a hop-by-hop scheme, while TCP is an end-to-end protocol. A service

architecture which offers absolute bounds on delays, losses and throughput, such as the Quantitative

Assured Forwarding service we propose, requires to control the amount of traffic that enters the

network to ensure that all guarantees can be met at all times. For instance, in the numerical examples

of Chapter 6, we observed that the offered delay bounds were sometimes violated. These violations

are caused by an impossibility to satisfy all service guarantees at the same time at a given link, due

to the instantaneous traffic arrivals at the link. To avoid packet losses and service violations, one

must consider mechanisms to reduce the traffic input to the network.

121
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In an effort to reduce losses in TCP/IP networks, Explicit Congestion Notification (ECN, [124])

has been proposed as an additional congestion signal for TCP flows. ECN allows to mark packets

with a Congestion Experienced (CE) codepoint. When a packet marked with the CE codepoint

is received by its destination, the data is acknowledged with a packet containing the CE-ECHO

codepoint. When the CE-ECHO marked acknowledgment reaches the sender, the sender reduces

its throughput, as if a loss had happened in the network.

The emergence of ECN has stimulated research on appropriate marking algorithms at routers

that indicate congestion to TCP sources to avoid packet losses resulting from buffer overflows

[13,60,61,62,68,76,77,105,117]. The key idea behind these algorithms, which have been presented

in Chapter 2 in the context of active queue management, is to mark packets proactively, that is,

before congestion occurs, to limit the amount of lost traffic in the network. For instance, instead of

dropping packets, RED can mark packets when the smoothed average of the buffer occupancy,Qest

is between the two thresholdsminTH andmaxTH. Packets are only dropped ifQest > maxTH. Other

algorithms discussed in Chapter 2, e.g., Blue [60], REM [13], or PI [77] can also use ECN marking

instead of packet drops when proactive action is taken. Recall that, to mark/drop packets, the PI

algorithm [77] uses a feedback-based model for TCP arrival rates [110] to let the buffer occupancy

converge to a target value. The TCP model used in PI requires a priori knowledge of the number of

flows traversing the router, and of the maximum round-trip time experienced by these flows.

While all of the proactive marking algorithms discussed above can, to some extent, reduce the

amount of losses in the network, we try to address a broader question in this chapter. Since ECN

provides congestion signals that can be conveyed before any traffic is dropped, we are exploring

how ECN can be integrated with scheduling and buffer management into JoBS to extend service

differentiation to TCP traffic.

We first explore if it is feasible to devise a marking algorithm which can ensure that the traffic

load at a router remains at a level that entirely avoids losses due to buffer overflows at routers,

without wasting available network bandwidth. The basic idea is to anticipate the behavior of TCP

sources at the routers, by tracking the window size and the round-trip time of flows at the router,

and to use ECN marking to have the senders adjust the window size of the flows. More precisely,
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when a router predicts future losses, the router sends congestion signals to the sources via ECN

with the goal of reducing the sources’ sending rates before a loss occurs. To that effect, we first

present a reference marking algorithm that tracks and controls all TCP flows at a router to prevent

impending buffer overflows. This reference marking algorithm is useful to assess the viability of

our design, but violates our design constraint of avoiding to maintain per-flow information. We note

that measurement studies indicate that only a small number of TCP flows, which we call “heavy-

hitters”, contribute to the majority of TCP traffic [9,57,59]. We conjecture that tracking and marking

only these heavy-hitters is sufficient for avoiding packet drops. Based on the idea of filtering flows,

we present a set of heuristic approximations for the marking algorithm, which do not require to

maintain per-flow state information. Then, we examine if ECN can be used to concurrently pursue

both objectives of avoiding losses and regulating traffic to meet per-class service guarantees.

This chapter is organized as follows. In Section 7.1, we present the reference marking algo-

rithm for avoiding buffer overflows. In Section 7.2, we describe the heuristic approximations. In

Section 7.3, we show how the proposed marking algorithm can be used for traffic regulation in the

context of class-based service differentiation. We compare the performance of the reference mark-

ing algorithm and of the heuristic approximations to other algorithms proposed in the literature in

Section 7.4, and draw brief conclusions in Section 7.5.

7.1 A Reference Marking Algorithm for Avoiding Losses

In this section, we describe a reference algorithm for marking TCP traffic at network routers. The

objective of the algorithm is to determine when to mark TCP traffic and which flows to mark in order

to completely avoid packet losses due to router buffer overflows, while maximizing the utilization

of the network capacity.

Throughout this section, we assume that all traffic uses TCP. While in practice one can expect a

mix of flows using different protocols (e.g., TCP, UDP, SCTP [140]), we can make this assumption

without loss of generality, since one can always reserve fixed resources at each router for TCP traffic

such as a dedicated buffer and a fixed portion of the output link capacity. Furthermore, we assume
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Figure 7.1:Overview of the marking algorithm. At time t of a packet arrival, the router pre-
dicts future arrivals, by inferring how the TCP source will send traffic. When an impending buffer
overflow is predicted, at timet ′ here, a packet is marked to reduce future arrivals.

that ECN is available in the network. This assumption should hold in future networks, as ECN

is being rapidly deployed on the Internet: recent operating systems such as FreeBSD 4.x and 5.x

(with KAME) or Linux 2.4 already support ECN. For the description of the marking algorithm in

the remainder of this section, we assume that enough resources are available to perform the needed

computations.

We next describe the marking algorithm at a single router, for a single greedy TCP flow. For

the time being, we assume that there is no other traffic in the network, and that the only cause of

packet losses at the router is a buffer overflow. The router estimates the congestion window size

and the round-trip time of the TCP flow. With these estimates, future traffic arrivals are predicted,

and impending buffer overflows are inferred, as illustrated in Figure 7.1. In the case of Figure 7.1,

at time t, a buffer overflow is predicted for timet ′. If a packet loss is predicted, the algorithm

reduces the congestion window size of the TCP source by marking packets with ECN. By reducing

the congestion window size, the sending rate of the TCP source is reduced, and impending packet

losses can be avoided. Note that the proposed algorithm does not require any changes to TCP, and

only relies on ECN to reduce the traffic load.
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The remainder of this section describes the calculations at the router to predict future packet

losses. We explain how to use the predictions to mark traffic and avoid packet losses using the

simplified model of a single TCP flow. We then generalize the proposed technique to multiple TCP

flows with different sources and destinations crossing paths at a same router.

7.1.1 Predicting Traffic Arrivals to Prevent Losses

Let us assume for now that packet losses can only be caused by a buffer overflow at the considered

router, and letB denote the size of the router’s buffer. Using the notions of input and output curves

that we defined in Chapter 3, at any timet, the backlog at the router is equal toRin(t)−Rout(t).1

Hence, we have the following constraint:

∀t : Rin(t)−Rout(t)≤ B . (7.1)

Assume that the output link capacity of the router has a constant rateC, and that the router uses a

work-conserving scheduler. Thus, for anyt andτ > 0 such that traffic is always backlogged over

[t, t + τ],

Rout(t + τ) = Rout(t)+C · τ . (7.2)

Since Eqn. (7.2) characterizesRout whenever there is a backlog, the algorithm only needs to infer

Rin(t +τ) for τ > 0, to ensure Eqn. (7.1) holds att +τ, thereby avoiding impending buffer overflows.

To clearly distinguish between known, measured values and future, predicted values of the arrivals

and of the departures, we will use the notations introduced in Chapter 3, that is,R̃in
t (t + τ) is the

value predicted at timet for the input curve at timet + τ. While the prediction of the output curve,

R̃out, is identical to that introduced in Eqn. (3.8), the prediction of the input curve will use the

properties of TCP congestion control to provide a more accurate prediction than the prediction

proposed in Eqn. (3.7).

To predict future arrivals̃Rin
t (t + τ) for τ > 0, we need to examine how traffic is sent at the

1Since we consider a single TCP flow here, there is a single class of traffic, and we do not need to use subscripts to
denote a class index.
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source, so that we can infer how much traffic is received by the router. For this discussion, we

consider “segments” and “packets” as synonymous. Furthermore, we ignore the slow-start phase of

TCP, since the flow is unlikely to send enough traffic to create a buffer overflow during slow-start,

and only focus on the congestion avoidance phase. Every time an acknowledgment is received at

the source, the source sends a number of packets equal to the maximum of the receiver’s advertised

window size,adv(t), and the source’s congestion window size,cwnd(t),2 minus the number of

packets sent and not yet acknowledged.cwnd(t) is increased by 1
cwnd(t) every time an acknowledg-

ment is received, unless the acknowledgment is marked with the CE-ECHO codepoint or a packet

drop is inferred by reception of a triple-duplicate acknowledgment, in which casecwnd(t) is de-

creased tocwnd(t)
2 . Last, if the retransmission timer of the TCP source expires,cwnd(t) is reset to

one and the flow is back to slow-start.

Sincecwnd(t) is conditioned by receiving acknowledgments at the source, the round-trip time

(RTT), that is, the time difference between the instant a packet is sent and when its acknowledgment

is received at the source, is central to the evolution ofcwnd(t). The RTT depends on time, due to

variable queueing delays, and/or changing routes. We denote byRTT(t) the value of the RTT at

time t, and define a series of “rounds” as follows. The first round starts when the first packet is

sent by the source, and ends when the acknowledgment to the first packet sent in the first round is

received. The(k+1)-th round starts immediately after thek-th round ends. Denoting bysk the start

time of thek-th round at the source, thesi are linked by the recursive equation

si+1 = si +RTT(si) .

Now, within the i-th round, i.e., between timessi and si+1, a TCP source sends at mostW(si)

packets withW(si) = max{adv(si),cwnd(si)}. Furthermore, it can be shown (see [116], or the

example in [139], Chap. 21) that, in absence of retransmission timer timeouts, and if the TCP

source is not in slow-start mode,W(si+1), the number of packets sent in the(i + 1)-th round is

2At the end hosts,cwnd(t) is internally expressed in bytes, which does not affect our present discussion.
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bounded by
1
2

W(si)≤W(si+1)≤W(si)+1 . (7.3)

The lower bound is given by the consideration that at most one ECN congestion signal is taken into

account per round [124], while the upper bound is reached only if all packets sent in thei-th round

are successfully acknowledged by the destination. Note that Eqn. (7.3) is general enough to capture

the behavior of Delayed-ACKs implementations, which issue on average only one acknowledgment

for each two data packets.

SinceW(t) andRTT(t) are not known by a router, Eqn. (7.3) tells us that a router that wants to

estimate future traffic arrivals must be able to estimate, at any timet, RTT(t), W(t), andsi for the

current round. We denote bŷW(t), R̂TT(t), andŝ(t) the estimates at the considered router ofW(t),

RTT(t), and ofsi , respectively.

These estimates are computed as follows. The first time a packet is received at the router, the

current time,T1, is recorded. When the second packet arrives at the router, at timeT2, the value of

R̂TT(T2) is initialized toT2−T1,3 andŴ(t) is initialized to 1. At timeT2, ŝ(t) is initialized toT2.

After time T2, the key idea to update the RTT estimates is to discriminate the rounds. Mea-

surement studies [56,121] show that the RTT is generally significantly larger than the time needed

to receive all packets from a given round.4 Thus, monitoring the packets’ interarrival times at the

router can determine alone if a new round has started. More specifically, if, for a constantκ > 1

chosen by the network operator,Ti−1 andTi satisfy

Ti−Ti−1 >
R̂TT(Ti−1)

κ
, (7.4)

the router considers thatTi marks the start of a new round. Empirical results, such as our evaluation

in Section 7.4, indicate that usingκ ≈ 10 generally manages to accurately distinguish between

different rounds.

If Eqn. (7.4) does not hold,Ti−1 andTi are part of the same round, and̂RTT(Ti) is set equal to

3This method is equivalent to the SYN-ACK algorithm of [89].
4The same assumption is used in [116] for modeling the sending rate of a TCP source, and has been confirmed in

experimental measurements.
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R̂TT(Ti−1), Ŵ(Ti) is set toŴ(Ti−1)+1, andŝ(Ti) is set equal tôs(Ti−1). Conversely, if Eqn. (7.4)

holds, the router updates the estimates as follows:

ŝ(Ti) = Ti ,

Ŵ(Ti) = 1 ,

R̂TT(Ti) = α · R̂TT(ŝ(Ti−1))+(1−α) · (ŝ(Ti)− ŝ(Ti−1)) ,

where 0≤ α ≤ 1 is a constant. The method to estimatêRTT(t) described above is similar to the

round-trip time estimator at the TCP sources [82], which usesα = 0.9, and has shown to provide

reasonably accurate results. We point out that except in rare cases of persistent link failure, where

packets end up being re-routed, the RTT does not vary significantly over time, and thus, the algo-

rithm should be rather insensitive to the selection ofα.

With the estimates of the RTT and the window size, the router can predict future window sizes.

Specifically, for any timet and any timeτ > 0, denoting byW̃t(t + τ) the prediction of the window

size at timet + τ, the router computes̃Wt(t + τ) as

W̃t(t + τ) =



Ŵ(t) if t + τ < ŝ(t)+ R̂TT(t),

Ŵ(t)+1 if t + τ≥ ŝ(t)+ R̂TT(t)

and no packet has been

marked (or dropped)

in [ŝ(t), t],

1
2Ŵ(t) if t + τ≥ ŝ(t)+ R̂TT(t)

and at least one packet

has been marked (or

dropped) in[ŝ(t), t].

(7.5)

The router can discover if a packet has been marked (or dropped upstream) in[ŝ(t), t] by checking

the ECN bits and the TCP sequence numbers. From Eqn. (7.5), the router predicts that the window

size does not change until the end of the current round, and that its value at the beginning of the next
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round depends on whether or not a packet has been dropped or marked during the current round.

Eqn. (7.5) captures that, at the earliest, ECN signals have an effect only at the beginning of thenext

round.

We shall note that this prediction is correct only when all packets in a round have been received

by the router. This may seem a restriction, but since the RTT of a flow is generally larger than the

time needed to receive all packets in a given round for this flow [56, 116, 121], the prediction is

generally accurate. With̃Wt(t +τ) given by Eqn. (7.5), a router can predict the input curve with the

following expression:

R̃in
t (t + τ) = Rin(t)+MSS· γt(τ) ·W̃t(t + τ) , (7.6)

whereMSSis the maximum segment size of the TCP flow, and

γt(τ) =

 1 if t + τ≥ ŝ(t)+ R̂TT(t),

0 otherwise.

That is, a router can assume that all traffic sent in the next round arrives in a batch right at the start

of the next round, which is a conservative assumption. In practice, such bursts of traffic are rarely

observed.

Next, we discuss how arrivals are marked. To determine if an arrival at timet must be marked,

a router checks that the flow has not already been marked (or has experienced some losses) during

the current round. This test is necessary since at most one ECN-marked packet per round has an

impact on the arrivals. If the flow has not experienced any losses or packet marking during[ŝ(t), t],

the router verifies if the following condition holds:

R̃in
t (t + τ)− R̃out

t (t + τ)≤ B ,

that is, replacing the prediction of the output curve by its expression,

R̃in
t (t + τ)−Rout(t)−C · τ≤ B . (7.7)
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This condition tests if a buffer overflow is going to occur at the beginning of the next round. Since

ECN feedback does not have any impact until the beginning of the next round, the condition in

Eqn. (7.7) is checked forτ = ŝ(t)+ R̂TT(t)− t. If the condition of Eqn. (7.7) is violated, then the

router marks the packet at the head of the transmission queue with the CE codepoint. Marking

the packet at the head of the queue minimizes the delay needed for the ECN feedback to reach the

source.

We conclude with a discussion on the robustness of the above estimators. If the constantκ in

Eqn. (7.4) is too small (e.g.,κ = 1.01), or ifW(t) is extremely large and data transmission appears

continuous, the test described in Eqn. (7.4) may not be able to discriminate between rounds. In

the worst-case, the router may never infer the start of a new round, andŴ grows unbounded. To

address this problem, we use a safeguard, based on Eqn. (7.3) as follows. If, at timeTi , we have

Ŵ(Ti) > Ŵ(ŝ(Ti)−)+1 ,

the router infers thatTi marks the start of a new round,even if Eqn. (7.4) does not hold. Now, if κ is

too large (e.g.,κ > 1000), the router incorrectly infers that each packet arrival marks the start of a

new round, and thus,̂W andR̂TT underestimateW andRTT. In the worst-case, when̂W→ 0 and

R̂TT→ 0, no prediction is performed, thus no traffic is marked, and the algorithm degenerates to

Drop-Tail. Our experiments show that the algorithm is quite robust to changes of the parameters.

In fact, the experimental results gathered in Section 7.4 withκ = 10, α = 0.9 are almost identical

to those obtained with any value 10≤ κ < 100, and 0.7 < α < 1.

7.1.2 Generalization to Multiple TCP Flows

We next consider a more general situation withN greedy TCP flows. We usêRTT
j
(t),Ŵ j(t), MSSj ,

andŝj(t) to denote the estimated round-trip time, congestion window size, maximum segment size

and start time of the current round for TCP flowj, respectively. Let us assume, for the moment, that

the router is able to monitor allN TCP flows and can keep track of all thêRTT
j
(t), Ŵ j(t), MSSj

andŝj(t).
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Now, by defining for each flowj, at any timet,

τ j = ŝj(t)+ R̂TT
j
(t)− t , (7.8)

i.e., τ j is the (estimated) remaining time before the start of the next round for TCP flowj, and

by iterating the prediction technique of Section 7.1.1 for all flows, the router first computes the

predicted congestion window in the next round,W̃ j
t (t + τ j) for each flowj, using Eqn. (7.5). Then,

for anyτ > 0, the predicted arrivals are

R̃in
t (t + τ) = Rin(t)+∑

j

MSSj · γ j
t (τ) ·W̃

j
t (t + τ) , (7.9)

where

γ j
t (τ) =

 1 if τ≥ τ j ,

0 otherwise.

If the condition given in Eqn. (7.7) is violated for any of theτ j ’s of Eqn. (7.8), the algorithm

proactively marks the oldest backlogged packet from flowk with

k = argmax{ j | W̃ j
t (t + τ j) = Ŵ j(t)+1} , (7.10)

that is, the algorithm marks the flow with the largest congestion window that has not yet been

marked (or experienced a packet drop) in its current round. As soon as the oldest backlogged flow-

k packet is marked,̃Wk
t (t +τk) is set toŴk(t)/2, and the condition of Eqn. (7.7) is reevaluated. The

marking process is repeated until Eqn. (7.7) does not hold for any of theτ j ’s, or all flows have one

packet marked in the current round.

7.2 Emulating the Reference Algorithm without Per-Flow State

The algorithm presented in Section 7.1 maintains the per-flow state information, thereby violat-

ing our design constraints. We now present a set of heuristic approximations for the reference
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algorithm. The approximations use flow filtering to reduce the number of tracked TCP flows, and

employ linear interpolation to reduce the computational complexity of the predictions.

7.2.1 Flow Filtering

As observed in measurement studies [9, 57, 59], only a small percentage of flows (“heavy-hitters”)

accounts for a large percentage of traffic. These heavy-hitters transmit at a high data rate due to (1)

a large congestion window, and (2) a relatively small round-trip time. From the description of the

reference algorithm in Section 7.1, these are generally the only flows that need to be marked by the

reference algorithm. Thus, by limiting the tracking operations to the heavy-hitters we expect that

the reference algorithm can be closely approximated.

To identify the heavy-hitters, we use the serial multistage filter proposed in [54]. The objective

of the multistage filter is to identify, at any timet, the flows that have sent more thanθ bytes

during the time interval(bt/σc · σ, t), whereθ is a given threshold, andσ > 0 is a fixed time

constant denoting the sampling interval used for measurement. The serial multistage filter proposed

in [54] works as follows. Every time a packet arrives at the router, a hash function is applied to

the source and destination IP addresses and port numbers. Flows are then grouped into buckets

depending on the value returned by the hash function. Then, flows in the fullest buckets are hashed

by a second, independent, hash function and grouped into second-level buckets. The same type of

hashing operation is repeated a third time. Flows belonging to the fullest buckets after the third hash

are recorded into memory. The authors of [54] showed that the serial multistage filter minimizes

false positives (i.e., only a few flows with a small sending rate are labeled as heavy-hitters) and

avoids false negatives (i.e., all flows with a large sending rate are tracked).

We implement flow filtering as follows. We use two linked lists in the router’s memory,L1 for

current sampling, andL2 for flows previously recorded. Initially, bothL1 andL2 are empty. In

the first sampling interval, flows are added toL1 only if they pass the multistage filter, whileL2

remains empty. At timet = σ, L1 is copied intoL2 before being reset.5 The process is iterated

5This operation can be implemented efficiently by swapping the two pointers onL1 andL2, and resetting the pointer
on L1.
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everyσ seconds. At any timet, the router updates the estimateŝRTT, Ŵ, andŝ for all flows in L1

andL2.

Only the flows inL2 are used for the predictions, and the prediction of Eqn. (7.9) always un-

derestimates the input curve. To adjust the estimate of the input curve, at any timet, we introduce

a correction factor,ζ(t), whose value is updated att = kσ, wherek is a positive integer, with

ζ(t) =
Rin(t)−Rin((k−1) ·σ)

∑ j∈L2
(Rin, j(t)−Rin, j((k−1) ·σ))

,

whereRin, j(t) denotes here the amount of flow-j traffic received by the router by timet. That is, at

any timet, ζ(t) denotes the ratio of the total amount of traffic received by the router in the previous

sampling interval over the amount of traffic that was identified in the previous sampling interval.

Note that we always have

ζ(t)≥ 1 .

The caseζ(t) = 1 is an extreme case where all flows pass the filter during the previous sampling

interval. As an example, fort = 5.5 s, andσ = 1 s, if ζ(t) = 1.1, we know that 90.9 % of all traffic

received by the router in the time interval(4 s,5 s) has been identified. At any timet, the prediction

of the input curve for the traffic aggregate,R̃in
t is set equal to the sum of the prediction of the input

curves of the flows inL2, multiplied by the correction factorζ(t), that is

R̃in
t (t + τ) = ζ(t) · ∑

j∈L2

R̃in, j
t (t + τ) .

Remark:We note that the selection of the parametersσ andθ presents a trade-off between com-

putational overhead and accuracy of the algorithm. With a larger sampling intervalσ, the updates

to main memory,L2, are performed less frequently, at the expense of using possibly obsolete data.

With a larger value forθ, the number of recorded flows,X , remains small, but the accuracy of the

predictions may be poor. Thus, we infer that bothθ andσ should be tuned according to the com-

putational power available. In particular, routers at high-speed access points, and a large number of

flows, should be configured with relatively large values forθ andσ.
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Figure 7.2:Linear interpolation. In the heuristic, only the valuẽRin
t (t + maxi{τi}) is computed,

and is used to determine the excess traffic that will arrive at the router.

7.2.2 Linear Interpolation

Flow filtering limits the amount of state information recorded at the router, but does not improve

the computational overhead of the construction of the predicted input curve. We next describe a

technique that reduces the complexity of the prediction of Eqn. (7.9).

First, instead of using individual values of the congestion windows of all recorded flows in the

construction of the predicted input curve, we consider that all recorded flows have a congestion

window size (in bytes) equal to the mean congestion window size (in bytes),Ω̄, given by

Ω̄(t) =
1
X ∑

j∈L2

MSSj ·Ŵ j(t) .

This approximation is justified by the fact that we use flow filtering and ignore flows with small

congestion windows.

Second, we use linear interpolation to reduce the complexity of the construction of the predicted

input curve and illustrate our method in Figure 7.2. Rather than constructing the whole predicted

input curve, only the valuẽRin
t (t + maxj{τ j}) is computed. Intermediary values̃Rin

t (t + τ) for
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0 < τ < maxj{τ j} are approximated using a linear interpolation, based on the value obtained for

R̃in
t (t + maxj{τ j}). The reason for selecting maxj{τ j} as the basis for the linear interpolation,

instead of, for instance, minj{τ j}, is that the prediction can take into account all recorded flows.

Next, Eqn. (7.7) tells us that

`(t) = R̃in
t (t +max

j
{τ j})−Rout(t)−C ·max

j
{τ j}−B

is the amount by which the traffic must be reduced to prevent buffer overflows. From`(t) and

Ω̄(t), the algorithm can infer the number of flows that have to be marked, and only update the

predicted input curve once, which reduces the worst-case complexity of the prediction operations

to O(1). If `(t) > 0, the marking process performs at mostO(Y) operations whereY is the number

of backlogged packets. The worst-case occurs when all packets backlogged have to be marked at

the same time. In practice, we only expect at most a couple of flows to be marked upon each packet

arrival, since predictions are performed over short time intervals.

7.3 Traffic Regulation with ECN Marking in Class-Based Service Ar-

chitectures

In this section, we build on the algorithm we described in Sections 7.1 and the approximations of

7.2 to describe how ECN marking can be used to extend JoBS to TCP traffic.

Recall Eqn. (5.4) is a sufficient condition for all Class-i traffic to meet its delay and throughput

guarantees at any timet when Classi is backlogged. To be able to satisfy Eqn. (5.4) for each class,

at any timet, we need to have

∑
i

max

{
Rin

i (t)−Rout
i (t)

di−Di(t)
,µi ·χBi(t)>0

}
≤C . (7.11)

If the condition of Eqn. (7.11) is violated, one can reduceRin
i (t) by dropping traffic, as we did in

the previous chapters. Since our objective here is to avoid any traffic drops, we use the predictions

described earlier to ensure that theRin
i (t)’s always satisfy Eqn. (7.11).
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Assuming the throughput guarantees are appropriately chosen, that is,

∑
i

µi < C ,

we propose the following approach. At timet, in addition to the predictions on the input curve of

all flows j in Classi, R̃in, j
i,t (t +τ), which is given by Eqn. (7.6), and the class-i predicted input curve,

given by

R̃in
i,t(t + τ) = ∑

j

R̃in, j
i,t (t + τ) ,

we also predict the Class-i output curve,̃Rout
i,t (τ) by

R̃out
i,t (t + τ) = Rout

i (t)+ τ · r i(t) ,

whereτ > 0. Note that the prediction of the output curve is the same as originally proposed in

Eqn. (3.8).

If the rate allocationr i remains unchanged betweent andt + τ, this prediction ofR̃out
i,t (t + τ)

is exact. Since we only use the prediction for small values ofτ (in the order of a round-trip time)

we can assume that the prediction is reasonably accurate, even ifr i changes betweent andt + τ.

Furthermore, let us assume that the delay of Classi remains roughly constant during[t, t + τ]. With

these predictions defined, we can predict the minimum service ratesr̃min
i,t (t +τ) needed at timet +τ,

so that all service guarantees on throughputs and delays are met:

r̃min
i,t (t + τ) = max

{
µi ,

R̃in
i,t(t + τ)− R̃out

i,t (t + τ)
di−Di(t)

}
.

To ensure that the set of service rates required for meeting service guarantees is always feasible, we

must enforce

∑
i

r̃min
i,t (t + τ j

i )≤C , (7.12)

for all τ j
i ’s defined by Eqn. (7.8) for each classi. If Eqn. (7.12) does not hold, the incoming

traffic needs to be reduced. To that effect, we propose to first identify the set of classes where
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r̃min
i,t (t + τ) > µi , which are the classes where decreasing the traffic arrivals has an effect on the

minimum service rate required. Since∑i µi < C, we know that there is at least one class in that set.

Once the classes whose traffic need to be throttled have been identified, the marking process is

carried out in the same manner as in the case of an impending buffer overflow, by merely replacing

the condition given in Eqn. (7.7) by the condition given in Eqn. (7.12).

7.4 Evaluation

In this section, we evaluate our proposed marking algorithm via simulation, using thens-2network

simulator. The evaluation has three objectives. First, we compare the performance of the refer-

ence algorithm and of the algorithm with the heuristic approximations. Second, we compare the

performance of our proposed algorithm to state-of-the-art active queue management algorithms.

Third, we illustrate how JoBS performance is improved with the marking algorithm presented in

this chapter. We present two simulation experiments. The first experiment evaluates the efficiency

of the proposed approach with respect to buffer management, while the second experiment eval-

uates the performance of a combination of the heuristic approximations of the marking algorithm

and the closed-loop algorithm for rate allocation and buffer management of Chapter 5 to provide

service guarantees.

7.4.1 Experiment 1: Active Queue Management

In the first simulation experiment, we consider a bottleneck link with capacityC = 10 Mbps, and

buffer size ofB= 150,000 bytes. All traffic at this single bottleneck link is TCP (NewReno), and is

generated by 60 greedy FTP flows, and 180 on-off flows, aiming at emulating HTTP connections.

The sources of the on-off flows send on average 300 packets during an “on” period, and pause

on average for one second between two “on” periods. The actual number of packets sent and the

wait time between two transmissions are exponentially distributed. All packets have a size of 500

bytes. In the absence of queueing and transmission delays in the network, the RTTs of all flows

are independent identically distributed random variables uniformly distributed between 24msand
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180ms, and to avoid synchronization effects, sources start transmitting at different times, uniformly

distributed between 0s and 5s. The experiment lasts for 70 seconds of simulated time, and ECN

is available in the entire network. The load is roughly constant and equal to the link capacity. We

compare the performance of six different algorithms at the router governing the bottleneck link:

• Drop-Tail. We use Drop-Tail to have an estimate of the loss rates encountered without active

queue management. With Drop-Tail, incoming packets are discarded only when the buffer is

full.

• RED [68]. We use RED with thegentle variant [67], with a minimum threshold

minTH = 37,500 bytes, and a maximum thresholdmaxTH = 75,000 bytes. The parameter

maxP is set to 0.1, and the weight used in the computation of the average queue size is set to

wq = 0.002. WhileminTH andmaxTH are chosen so that traffic is dropped with a probability

of one only if the buffer is full, other parameters are the default RED parameters inns-2, and

are therefore expected to cover a large range of operating conditions. RED is set to use ECN

marking instead of packet dropping whenever possible.

• PI [77] with approximate parameter tuning. To account for the uncertainty on estimates

of the RTTs and of the number of flows at router configuration time, we configure here the

PI algorithm with crude estimates of the RTTs and of the number of flows. That is, we

use a lower bound on the number of flows ofN = 50, and a maximum RTTR+ = 300 ms,

with a sampling frequency of 160 Hz, yielding parameter values ofa = 0.2395e− 4 and

b = 0.2388e−4. The target queue length is set toQre f=100,000 bytes.

• PI with exact parameter tuning. We configure the PI algorithm with the exact RTTs and

number of flows we use in our simulation. That is, we use a lower bound ofN = 60 on

the number of flows, and a tight upper bound on the round-trip timesR+ = 180 ms, with

a sampling frequency of 160 Hz, and geta = 1.643e− 4 andb = 1.628e− 4. The target

queue lengthQre f is set to 100,000 bytes. Note that such an exact parameter imposes a priori

knowledge of the number of flows and of the round-trip times of the flows that will traverse

the router at router configuration time, which may be difficult to obtain in practice.
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• Reference algorithm. This is the reference marking algorithm described in Section 7.1.

Results are obtained forκ = 10,α = 0.9. We achieved similar results with parameter settings

in the range 10≤ κ < 100 and 0.7 < α < 1, which tends to show that our proposed marking

algorithm is relatively insensitive to the selection of these parameters.

• Heuristic approximations. This is the marking algorithm using the heuristic approximations

described in Section 7.2. The multistage filter consists of 3 stages of 8 buckets. The admission

threshold is set toθ =200,000 bits andσ = 1 s.

For each algorithm, we monitor the loss rates over a sliding window of size 0.25s, and present our

results in Figure 7.3. We start monitoring at timet = 10 s to ignore transient effects linked to the

initial empty state of the network. Figure 7.3(a) tells us that, without active queue management,

one can expect loss rates in the order of 12 %. Figure 7.3(b) and (c) show that RED with the default

parameters, which turn out to be unsuitable for the traffic mix at hand, and a crudely configured

PI algorithm, drop almost as much traffic as Drop-Tail. Conversely, a perfectly tuned PI algorithm

manages to avoid most packet drops. The reference algorithm completely avoids packet losses, and

the heuristic rarely drops any packets, delivering results close to those of the reference algorithm.

Next, we monitor the aggregate throughput and goodput observed at the receivers, averaged over

a moving window of size 0.25sand present our results in Figure 7.4. The throughput characterizes

the total amount of traffic received by the transport layer at the destination, while the goodput

characterizes the amount of traffic that is passed by the transport layer to the application layer. The

main observation is that all schemes manage to achieve an aggregate throughput roughly equal to

the capacity of the bottleneck link. Furthermore, we note that, by avoiding packet losses, an exactly

tuned PI, and both the reference algorithm and the heuristic approximations manage to achieve a

goodput close to the throughput.

Last, we monitor the queue size, averaged over a moving window of size 0.25s, and we present

our results in Figure 7.5. Not surprisingly, the Drop-Tail queue is almost always full, which explains

the relatively high loss rates. RED manages to stabilize the queue length aroundmaxTH = 75,000

bytes. (This observation coupled with the result presented in Figure 7.3 indicates that RED drops
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(f) Heuristic approximations

Figure 7.3:Loss rates. The figures compare the loss rates obtained with all six algorithms. Note
that the reference algorithm does not discard any traffic.
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(f) Heuristic approximations

Figure 7.4:Measured throughput and goodput at the receivers.The figures compare the aggre-
gate throughput and goodput seen at the receivers with all six algorithms. All schemes are efficient
at maximizing the utilization of the bottleneck link (10 Mbps). A perfectly tuned PI, and both the
reference algorithm and its heuristic approximations have a goodput (amount of traffic passed to the
application layer at the destinations) almost equal to the throughput (total amount of traffic received
at the destinations) by avoiding packet drops.
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Figure 7.5:Queue lengths.The figures compare the queue lengths at the router for all six algo-
rithms.
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Number of Number of QoS Guarantees
Class on-off greedy Delay Loss Throughput

flows flows Rate
1 5 3 ≤ 10ms ≤ 1 % ≥ 5 Mbps
2 10 3 ≈ 1

4D3 ≈ 1
2 p3 –

3 15 3 ≈ 1
4D4 ≈ 1

2 p4 –
4 20 3 – – –

Table 7.1:Traffic mix and service guarantees.The second column indicates the number of on-off
flows, the third column the number of greedy flows, and in the third and fourth rows, as in previous
chapters,pi denotes the loss rate of Classi over a busy period, andDi denotes the delay of Classi.

some packets proactively even when ECN is available.) With an approximate tuning of the con-

figuration parameters, PI does not manage to track the desired queue lengthQre f = 100,000 bytes,

and instead, the queue is almost always full. Conversely, a properly tuned PI algorithm manages

to achieve the targetQre f , albeit with some oscillations around the target value. While stabilizing

the queue length is not the primary objective of our algorithm, the reference algorithm manages to

keep the queue length almost constant around 120,000 bytes. The heuristic approximations keep

the queue length in the vicinity of 50,000 bytes, with oscillations of a magnitude comparable to

those of a well-configured PI controller. These oscillations are mostly due to the choice of a one

second sampling interval, and are reduced for higher sampling frequencies, at the expense of a

higher computational overhead.

7.4.2 Experiment 2: Providing Service Guarantees

Next, we assess the effectiveness of our algorithms at regulating traffic in the context of our pro-

posed service architecture. To that effect, we run a second experiment, with a bottleneck link with

capacityC = 45 Mbps, and a buffer size ofB = 250,000 bytes. All traffic at the bottleneck link

is TCP (NewReno), and consists of 12 greedy TCP flows, and 50 on-off TCP flows, following the

same on-off pattern as in the first experiment. The RTTs of all greedy TCP flows are equal to

44ms, and the RTTs of the on-off flows, in the absence of propagation and transmission delays, are

uniformly distributed between 44msand 80ms. All sources start transmitting at timet = 0 for 70

seconds of simulated time, and ECN is available.
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Figure 7.6:Class-1 packet delays.Note that the violations are much smaller in magnitude with
the marking algorithm.

We consider four classes of traffic, with the service guarantees and traffic mix described in Ta-

ble 7.1. In addition to the on-off flows, each class contains three greedy TCP flows. We compare the

performance of two algorithms in this experiment. The first algorithm is the closed loop algorithm

for buffer management and rate allocation described in Chapter 5, without any ECN marking. The

second algorithm combines the closed-loop algorithm of Chapter 5 with the marking algorithm de-

scribed in Section 7.3 and the heuristic approximations described in Section 7.2, using a multistage

filter of 3 stages of 8 buckets,σ = 0.1 s, θ = 200,000 bits.

We plot the delays encountered by each Class-1 packet at the bottleneck link in Figure 7.6.

Figure 7.6(a) shows that, given the traffic mix considered, about 11 % of all Class-1 packets exceed

the delay bound of 10ms, with queueing delays going as high as 100ms. This is due to the order

chosen for relaxing service guarantees, which gives precedence to the loss guarantee and relaxes

the delay bound. Clearly, in this experimental setup, traffic regulation is urgently needed, because

the buffer size at the transmission queue (250 KB) is small compared to the output link capacity

(45 Mbps), and stringent loss rate bounds (1%) and delay bounds (10ms) are offered to a same class

of traffic, often resulting in an infeasible set of service guarantees. Conversely, Figure 7.6(b) shows

that when the marking algorithm we described in this chapter is used, violations rarely happen

(< 2 %), and the delay does not exceed 20ms.

Next, in Figure 7.7, we plot the loss rates averaged over the length of the current busy period.
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Figure 7.7:Loss rates.The marking algorithm prevents any traffic from being dropped.
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Figure 7.8:Per-class throughputs. Without the marking algorithm, we observe oscillations and
sporadic violations of the Class-1 throughput guarantee. The marking algorithm stabilizes these
oscillations and ensures the throughput guarantees are respected.

Figure 7.7(a) show that all loss guarantees are respected, notably the 1 % bound on Class-1 losses.

However, as we have seen in Figure 7.6(a), the loss rate bound is respected at the expense of the

delay bound. Figure 7.7(b) shows that, with the addition of the algorithm of Section 7.3, no packets

are lost, and therefore, the objective of completely avoiding packet drops to meet service guarantees

is met.

Finally, in Figure 7.8 we present the throughput obtained by each class at the bottleneck link.

Figure 7.8(a) shows without the marking algorithm, severe oscillations of the throughput can be

observed. These oscillations are due to TCP sources reacting to packet losses. The throughput

bound on Class-1 is sometimes violated, due to the fact that there is not enough Class-1 traffic
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present in the router. Figure 7.8(b) shows that our marking algorithm stabilizes these oscillations

in throughput, and that the throughput guarantee on Class 1 is always respected. We also note that

the aggregate throughput is equal to the capacity of the bottleneck link whether or not the marking

algorithm is used. This means that the stabilization in the throughputs provided by the marking

algorithm algorithm does not come at the expense of under-utilization.

7.5 Summary and Remarks

We investigated whether marking algorithms for ECN can be used for regulating traffic in the con-

text of class-based service architectures, while avoiding packet losses due to buffer overflows. To

that effect, we first described a reference marking algorithm for IP routers, which attempts to elimi-

nate packet losses in TCP flows. The proposed algorithm infers how traffic is sent by TCP sources,

by tracking the window size and RTT of large flows, and accordingly makes the marking decisions.

We then showed how the proposed algorithm can be used for traffic regulation in the context of

QoS architectures, in lieu of traffic policing or admission control. Experimental results illustrated

the potential of the approach.

We note that the techniques used in the algorithms can be further improved by more accurate

and robust estimators of the RTT values, e.g., [89], and of the congestion window sizes. Another

area for improvement resides in the type of filter used in the heuristic approximations. While

the serial multistage filter [54] we use for our algorithm appears to exhibit good performance, a

follow-up work described in [55] indicates that parallel multistage filters typically perform better

than serial multistage filters, and are more amenable to mathematical analysis of their properties,

such as probabilities of false negatives. Using a parallel multistage filter could therefore open the

door for an analytical evaluation of our proposed algorithms, and help quantify the trade-offs in

parameter selection.

Furthermore, our current approach assumes TCP Reno or NewReno; extending it to other fla-

vors of TCP such as SACK [109], or Vegas [25] could be of interest.
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Conclusions and Future Work

8.1 Conclusions

For the past decade, a significant amount of research in data networks and telecommunications

has been devoted to providing different levels of service to applications on the Internet. In this

dissertation, we presented a novel service architecture for the Internet, which reconciles application

demand for strong service guarantees with the need for low computational overhead in network

routers.

The main contribution of this dissertation is the definition and realization of a new service,

called Quantitative Assured Forwarding, which offers absolute and relative differentiation of loss,

service rates, and packet delays to classes of traffic. The Quantitative Assured Forwarding can

be viewed as a generalization of all previous class-based service models. We devised and ana-

lyzed mechanisms that implement the proposed service, and demonstrated the effectiveness of the

approach through analysis, simulation and measurement experiments in a testbed network.

8.1.1 Scheduling and Buffer Management

A key scheme to realize the proposed service architecture is to combine service rate allocation and

buffer management in a single step. This scheme is called JoBS, short for Joint Buffer Management

and Scheduling. Based on JoBS, we first presented a reference algorithm that dynamically solves

147
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a non-linear optimization to allocate service rates and drop traffic, and we proposed a heuristic

algorithm to approximate the solution to the non-linear optimization.

We then devised a closed-loop algorithm relying on feedback control theory, that provides a

very close match to the non-linear optimization while relying on relatively simple operations.

We described the design of IP routers, called QoSboxes, that realize the QAF service. We

presented the details of our implementation in PC-routers of the closed-loop algorithm, which is

distributed as part of the recent ALTQ-3.1 package and of the KAME snapkits, and is also available

from http://qosbox.cs.virginia.edu. The outcomes of this research include the following:

• By combining service rate allocation and buffer management in a single algorithm, one can

provide a service architecture that subsumes all other per-hop, per-class service architectures

in terms of service guarantees, without resorting to admission control or traffic policing. We

showed by simulation that our approach matched the performance of algorithms specifically

designed for proportional differentiation, while being able to enforce absolute guarantees at

the same time.

• The non-linear optimization problem that characterizes the service rate allocation and traf-

fic drops can be closely approximated by a closed-loop algorithm based on linear feedback

control theory. We can derive stability conditions on the linearized feedback loops. The ap-

proximations made for linearizing the feedback loops appear to be valid in practice, since the

feedback loops exhibit stability, as we demonstrated through a number of simulations and

testbed experiments.

• The closed-loop algorithm can be implemented at link speeds in the order of a few hundreds

of megabits per second in 1-GHz PC-routers running variants of the 4.4-BSD operating sys-

tem. We described the approximations necessary for an implementation at higher speeds.

8.1.2 Extending JoBS to TCP

We proposed extensions to the JoBS scheme to reconcile the per-hop, per-class guarantees of the

QAF service, with the properties of TCP, which is an end-to-end transport protocol sensitive to

http://qosbox.cs.virginia.edu
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losses. In particular, we considered the design of a packet marking algorithm that attempts to

avoid losses by using the feedback capabilities of TCP traffic, and of the recently proposed Explicit

Congestion Notification.

Also, even though combining scheduling and buffer management manages to enhance per-class

service differentiation, controlling the amount of traffic to enter the network remains a necessity to

prevent cases where sudden bursts of traffic render a system of service guarantees infeasible. We

showed our marking algorithm was a potential alternative to admission control and traffic policing.

Our research on extending a QoS architecture to take into account TCP traffic indicated that:

• It is possible to design ECN marking algorithms that completely eliminate losses in TCP/IP

networks. Simulation experiments illustrated that a reference algorithm using per-flow infor-

mation was able to completely avoid packet drops, thereby maximizing the goodput of the

TCP flows.

• Because of the asymmetry of Internet traffic, where 90% of the traffic is carried by 10% of

the flows, one can use flow filtering and avoid maintaining per-flow state information for all

flows, while providing a reasonable approximation of the reference algorithm.

• In addition to avoiding packet losses, using ECN marking is a possible alternative to admis-

sion control for traffic regulation in the context of class-based service differentiation.

8.2 Future Work

We conclude here by outlining areas which can be of potential interest for future research.

A thorough inspection of the interaction of traffic engineering techniques with our proposed

service model could be of interest. Specifically, path replication techniques, such as one-to-one

protection, are increasingly used in the context of load-balancing (see [151], for instance) and

core provisioning, and can be efficiently implemented using emerging technologies such as MPLS

[128]. One can investigate how service guarantees, and particularly throughput guarantees, should

be selected when path replication and load-balancing are used in a network.
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Another question that can be worth pursuing regards the class selection in our proposed service

architecture. Note that class selection is highly dependent on the type of guarantees offered, and

as such, some assumptions regarding the specific type of service guarantees provided would need

to be made. Partial answers to the class selection problem are already available in the literature.

For instance, Dovrolis and Ramanathan show in [49] that, for a network providing proportional

delay differentiation, having the end applications dynamically select their class of service enables

to obtain end-to-end delay bounds.

Letting the end applications select the class of traffic they want to use requires to enforce collab-

oration between the different applications to avoid cases where each application marks all packets

with the best class of service available. The other option, which is to let the network select the class

of traffic assigned to different flows, requires cooperation between the different domains, so that

different network domains agree on some common semantics for the services offered.

We note that the class selection problem, which requires collaboration between different enti-

ties, is only an instance of a much larger problem, which is to extend QoS architectures such as

proposed in this dissertation to provide economic incentives. As noted in a recent NSF workshop

report, “one of the impediments to the deployment of new services on the Internet is the lack of

market incentives to improve network services and applications and to use them efficiently.” Try-

ing to provide market incentives is likely to foster some additional technological challenges. For

instance, in an economic context, the end applications need to be able to verify with certainty the

quality of the service they receive. Devising good service verification mechanisms is still an open

problem, which may be worth pursuing.
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