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Abstract

In this dissertation, we present a novel service architecture for the Internet, which reconciles ap-
plication demand for strong service guarantees with the need for low computational overhead in
network routers. The main contribution of this dissertation is the definition and realization of a new
service, called Quantitative Assured Forwarding, which can offer absolute and relative differentia-
tion of loss, service rates, and packet delays to classes of traffic. We devise and analyze mechanisms
that implement the proposed service, and demonstrate the effectiveness of the approach through
analysis, simulation and measurement experiments in a testbed network.

To enable the new service, we introduce a set of new traffic control algorithms for network
routers. The main mechanism proposed in this dissertation uses a novel technique that performs
active buffer management (through dropping of traffic) and rate allocation (for scheduling) in a
single step. This is different from prior work which views dropping and scheduling as orthogonal
tasks. We propose several solutions for rate allocation and buffer management, through solutions
to an optimization problem, approximations of such a solution, and through a closed-loop control
theoretical approach. Measurement results from a testbed of PC-routers on an Ethernet network
indicate that our proposed service architecture is suitable for networks with high data rates.

We extend the service guarantees of Quantitative Assured Forwarding to TCP traffic by in-
tegrating our buffer management and rate allocation algorithms with the feedback capabilities of
TCP, and regulate the sending rate of TCP traffic sources at the microflow level. The presented
techniques show, for the first time, that it is feasible to give service guarantees to TCP traffic flows,

without per-flow reservations in the network.
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Chapter 1

Introduction

Since its creation in the early 1970s, the Internet has adopted a “best-effort” service, which relies
on the following three principles: (1) No traffic is denied admission to the network, (2) all traffic

is treated in the same manner, and (3) the only guarantee given by the network is that traffic will
be transmitted in the best possible manner given the available resources, that is, no artificial delays
will be generated, and no unnecessary losses will occur.

The best-effort service is adequate as long as the applications using the network are not sen-
sitive to variations in losses and delays (e.g., electronic mail), the load on the network is small,
and if pricing by network providers is not service-based. These conditions held in the early days
of the Internet, when the Internet merely consisted of network connections between a handful of
universities.

However, since the late 1980s, these conditions do not hold anymore, for two main reasons.
First, an increasing number of different applications, such as real-time video [80], peer-to-peer
networking (e.g.napster{7], Gnutella[8]), or the World-Wide Web [17], to hame a few, have been
using the Internet, as illustrated by several measurement studies, e.g., [58,123,130]. These different
applications have different needs in the service they must receive from the network. Second, the
Internet has switched from a government-supported research network to a commercial entity in
1994, thereby creating a need for service-based pricing schemes that can better recover cost and
maximize revenue than a best-effort network [132]. These two factors have created a demand for

different levels of service. In some ways, the Internet has been victim of its success, and finding a
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solution to the problem of providing different levels of services in the network has become critical
to ensure the long-term survival of the Internet.

Traffic control mechanisms to differentiate performance based on network-operator or applica-
tion requirements are referred to@sality-of-ServicdQoS). Some have argued that increasing the
capacity of the backbone network makes QoS obsolete [70]. Indeed, as reported by measurement
studies of backbone links [149], the core of the Internet is currently over-provisioned and supports
low latency and low loss service for almost all of its traffic [118]. On the other hand, increasing
the capacity of the Internet backbone has merely shifted the capacity bottleneck to the edge of the
backbone networks, and the service experienced by demanding applications remains inadequate.
As a result, mechanisms for service differentiation are urgently needed in the access networks that
connect end-users to the Internet backbone.

In fact, the explosion of link capacity in the network, instead of alleviating the need for service
guarantees, has put more stringent requirements on QoS architectures. Routers at the edges of the
Internet backbone now have to serve millions of concurrent flows at gigabit per second rates, which
induces scalability requirements. First, the state information kept in the routers for providing QoS
must be small. Second, the processing time for classifying and scheduling packets according to
their QoS guarantees must be small as well, even with the advent of faster hardware. In addition to
these two scalability requirements, the fact that the Internet is now mostly a commercial network
requires to utilize the existing network resources as efficiently as possible, for instance, maximizing
the utilization of the links.

A number of QoS architectures have been proposed to address the above requirements. QoS
architectures can be distinguished according to two criteria. The first criterion is whether guarantees
are expressed for individual traffic flowgdr-flow guaranteg@sor for groups of flows with the same
service requirementpér-class guaranteg¢sPer-flow guarantees generally require to perform per-
flow resource reservations in routers. That is, each flow has to reserve resources at all routers
from source to destination before starting to send data. When data is transmitted, each incoming
packet has to be inspected at each router to determine to which flow the packet belongs. Then,

the packet is mapped to the per-flow reservations in the router. These two operations constitute
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what is called per-flow classification. In a per-flow architecture, the classification overhead grows
linearly with the number of flows present in the network. Per-class guarantees usually do not rely
on reservations. Here, flows are grouped in classes of traffic. Each packet entering the network is
marked with the class of traffic to which it belongs. Routers in the network classify and transmit
packets according to the service guarantees offered to classes of traffic. Since there are only a few
classes of traffic in the network, the overhead incurred with per-class guarantees is smaller than
that of per-flow guarantees. As a disadvantage, per-class service guarantees do not immediately
translate into per-flow guarantees.

The second criterion to distinguish service architectures is whether guarantees are expressed
with reference to guarantees given to other flows or clags&tiye guarantegs or if guarantees
are expressed as absolute bouradslute guaranteg@sAs an example, absolute guarantees are of
the form “Class-2 Delay 5 ms), or “Flow-2 Throughput> 3 Mbps”. Such absolute bounds define
strong service guarantees. Relative service guarantees are weaker than absolute guarantees, and can
be further discriminated betwegmualitative guaranteeandproportional guaranteesQualitative
guarantees impose an ordering between classes of traffic without quantifying the differentiation, as
in

Class-2 Delay< Class-1 Delay

Proportional guarantees quantify the differentiation between classes of traffic by ensuring the ratios
of the QoS metrics of two classes is roughly constant, and held equal to a proportional differen-
tiation factor. For two priority classes, proportional service differentiation could specify that the

delays of packets from the higher-priority class be half of the delays from the lower-priority class,

e.g.,
Class-2 Delay
Class-1 Delay

9

but without specifying an upper bound on the delays. Likewise, loss differentiation is defined in

terms of ratios of loss rates, such as

Class-2 Loss Ratg
Class-1 Loss Rate
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The fundamental contribution of this dissertation is to explore the limits on the strength of
service differentiation that can be obtained by per-class QoS. To that effect, we consider the design
and implementation of a per-hop service architecture that provides absolute and proportional service
guarantees to classes of traffic, while avoiding resource reservations [33].

The remainder of this chapter motivates our research and is structured as follows. In Section 1.1,
we describe proposals for service architectures in packet networks that have tried, over the past
decade, to provide a solution to the service differentiation problem. These proposals seem to imply
the existence of a trade-off between strength of service differentiation and complexity of the service
architecture. In Section 1.2, we present our thesis statement and describe the contributions of
this dissertation. In Section 1.3, we give an overview of the service architecture we propose as
a solution to the service differentiation problem, by introducing the different components of our

service architecture. We outline the structure of the dissertation in Section 1.4.

1.1 History of Internet QoS

The need for service differentiation and QoS for the Internet became a topic of interest in the
late 1980s and early 1990s, with the advent of networked multimedia applications (e.g., [84, 85,
86, 150]). The first solution for service differentiation in packet-switched networks was the Tenet
protocol suite (see for instance [63, 64, 156]), developed by the Tenet group at UC Berkeley. At
approximately the same time, Clark, Shenker and Zhang proposed a service architecture designed
to provide QoS to real-time applications, and introduced the mechanisms associated with their

proposed service model in [38].

1.1.1 Integrated Services

Building on the initial work by the Tenet group and the work by Clark, Shenker and Zhang, the IETF
proposed the Integrated Servicést$ery architecture [23] as a QoS architecture for IP networks.
IntServ, developed in the early and mid-1990s, provides the ability to give individual flows absolute

QoS guarantees on end-to-end packet delays (delay bounds) [133], and packet losses (no loss) [153],
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as long as the traffic of each flow conforms to a pre-specified set of parameters, e.g., peak sending
rate, or maximum burst size [134]. This type of per-flow, absolute service guarantees is particularly
appropriate for applications that cannot tolerate or adapt to a lower level of performance than they
require.

The IntServ architecture requires per-flow classification in routers. Additionally, IntServ im-
plementations require packet scheduling primitives, e.g., [16, 119], which run a dynamic priority
sorting algorithm. The scheduling overhead can become significant when the routers have to pro-
cess a large number of packets within a short period of time. Also, the IntServ architecture relies
on a signaling protocol (e.g., RSVP, [24]) for reserving network resources, and on admission con-
trol for determining which flows can be admitted with the assurance that no service violation will
occur. Both of these mechanisms require that each router keep per-flow state information. Fur-
thermore, it has been shown that using admission control mechanisms such as peak-rate allocation
could result in under-utilizing the network resources [152]. Last, because resource reservations
must be updated at routers every time a new flow with service guarantees enters the network, the
communication overhead associated with the signaling mechanisms cannot be neglected.

The open issues outlined above have prevented the IntServ architecture from being widely de-

ployed so far, despite the strength of the proposed service guarantees.

1.1.2 Differentiated Services

Taking a step back from the IntServ approach, the interest in Internet QoS shifted in the late 1990s
to architectures that make a distinction between operations performed in the network core, and
operations performed at the edges of the network. The basic idea is that the amount of traffic in
the network core does not permit complex QoS mechanisms, and that most of the QoS mechanisms
should be executed at the network edge, where the volume of traffic is smaller.

These recent efforts resulted in the Differentiated Servibi$Sery) architecture [18], which
bundles flows with similar QoS requirements in classes of traffic. The mapping from individual
flows to classes of traffic is determined at the edges of the network, by marking packet headers. In

the network core, scheduling primitives only work with a few classes of traffic, and can thus remain
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relatively simple. DiffServ currently offers two different types of service in addition to Best-Effort:
an Assured Forwarding (AF, [75]) service and an Expedited Forwarding (EF, [43]) service.

Assured Forwarding provides isolation between different classes of traffic. In each traffic class,
packets are marked to belong to one of three drop precedence levels. AF offers qualitative loss
differentiation between the drop precedence levels of each class, by dropping packets in times of
congestion with a probability function of their drop precedence. Assured Forwarding does not
require per-flow classification or signaling, but the qualitative guarantees offered provide weaker
service assurance than absolute guarantees.

Expedited Forwarding offers absolute service guarantees on delay variations to flows. In
essence, providing the EF service to a flow is equivalent to providing a virtual leased-line to
this flow, and involves per-flow peak-rate allocation. Because per-flow peak-rate allocation under-
utilizes the network resources, Expedited Forwarding can be offered only to a limited amount of
traffic. For instance, [142] shows that, to achieve delay bounds in the order gh240a given
link, the total amount of EF traffic should not exceed more than 10% of the total capacity of the

link.

1.1.3 Design Space of Service Architectures

The IntServ and DiffServ architectures indicate a trade-off between simplicity of the implementa-
tion and strength of service guarantees, which we illustrate in Figure 1.1. In Figure 1.1, we plot the
complexity of a few service architectures against the strength of service guarantees they offer. On
the one hand, IntServ and Expedited Forwarding provide strong, absolute service guarantees, but re-
guire per-flow mechanisms. On the other hand, per-class architectures such as Assured Forwarding
only support qualitative QoS guarantees.

Recently, researchers have explored the design space described in Figure 1.1, in search of an
ideal service with strong service differentiation and low complexity. For instanc@rtportional
Differentiated Servicearchitecture of [47] offers a stronger class-based service architecture than
Assured Forwarding, by providing proportional service guarantees to delays and losses. A very

significant advance in devising a service with relatively low overhead and absolute guarantees is
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Figure 1.1:The trade-off between strength of service guarantees and complexity of the imple-
mentation. IntServ and Expedited Forwarding provide very strong service guarantees at the cost
of per-flow complexity, while Assured Forwarding only provides limited service assurance, but has
low complexity. Ideally, a service should be able to provide strong service differentiation with low
complexity. Note that the picture is qualitative.

the Scalable-Core (SCORE, [143]) architecture proposed by Stoica and Zhang, and architectures
derived from it [26, 39,91, 113]. SCORE tries to keep the strength of the IntServ guarantees with-
out resorting to per-flow operations, using a technique called Dynamic Packet State (DPS). DPS
puts the state information needed to provide IntServ-like service guarantees in IP packets headers,
thereby alleviating the need for maintaining per-flow state information in routers. The algorithm
central to the SCORE architecture, called Core Stateless Fair Queueing (CSFQ, [141]) uses DPS
to provide end-to-end delay guarantees to flows without requiring per-flow state information at net-
work routers. The basic idea for meeting end-to-end delay requirements is to keep track of the
delays experienced by packets along the path from the source to the destination, by storing the val-
ues of the experienced delays in the packet headers. The stored information is used for adjusting
the priority of packets so that end-to-end requirements are met. The SCORE architecture does not
require any per-flow information be maintained in the network core, but relies on packet classifica-

tion at network boundaries, for instance, interconnects between two ISP’s. Mechanisms to alleviate
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per-flow classification at inter-network boundaries in SCORE have been recently proposed in [145].

Per-flow classification remains necessary at the network edge.

1.2 Thesis Statement and Contributions

Our thesis research advances the understanding of the limits on the strength of service differentia-
tion that can be provided by class-based architectures for the Internet, without resource reservations.

Our thesis statement is as follows:

The scope of class-based service guarantees can be significantly enhanced by using
appropriate buffer management, scheduling, and the feedback capabilities of the net-

work.

The goal of this dissertation is to present a new point in the design space described in Figure 1.1, by
devising the strongest possible class-based service without reservations. To achieve this goal, we
have revisited the tenets of Internet QoS.

Router mechanisms to support service differentiation include scheduling and buffer manage-
ment. Scheduling determines the order of transmission of packets leaving the router, while buffer
management controls which packets enter the router. Until very recently, scheduling and buffer
management were handled separately, even though both mechanisms address the issue of managing
a transmission queue at a given router. The only difference between the two mechanisms lies in the
fact that scheduling manages the head of the transmission queue, deciding which packet will leave
the queue next, while buffer management manages the end of the transmission queue, deciding if
new packets can be admitted to the queue.

The first contribution of this dissertation is to show that considering buffer management and
scheduling in a single step allows for significantly enhancing the service guarantees that class-based
architectures can provide, without resorting to resource reservation. We present a scheme based on
an adaptive service rate allocation, conditioned by the instantaneous backlog of traffic classes, the
service guarantees, and the availability of the resources. Packet scheduling immediately follows

from the rate allocation.
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The second contribution of this dissertation is to show that a practical algorithm based on feed-
back control theory to allocate service rates and drop traffic can enforce the desired service guaran-
tees.

The third contribution of this dissertation is to demonstrate that the proposed service architec-
ture can be realized at relatively high speeds. To that effect, we describe our reference implemen-
tation in PC-routers of the algorithms we propose, and present measurement experiments obtained
from a testbed network.

Mechanisms for providing QoS guarantees have to work in concert with end-to-end mecha-
nisms, such as TCP feedback mechanisms for congestion avoidance and control [10, 82]. However,
to the best of our knowledge, with the exception of RIO [37], which builds on the RED algo-
rithm [68] in an effort to reduce packet drops, none of the algorithms used in the proposed service
architectures takes into account of the feedback capabilities of TCP traffic. Traffic regulation is
always realized by admission control mechanisms or traffic policers, which are separate from the
scheduling and dropping mechanisms.

The fourth contribution of this dissertation is to demonstrate that one can extend a service archi-
tecture to take into account the particularities of TCP traffic. In particular, we show that exploiting
TCP feedback mechanisms to regulate the traffic arrivals by dropping or marking traffic “smartly”

is a viable alternative to admission control, signaling or policing for service differentiation.

1.3 Overview of the Proposed Service Architecture

We illustrate how our proposed service architecture is deployed in a network in Figure 1.2. In Fig-
ure 1.2, traffic is sent from a source host to a destination host. The source host is connected to
the backbone via a router, which supports local, per-class service guarantees. Likewise, a router
connects the destination host to the backbone. The backbone consists of a number of routers. In the
example of Figure 1.2, only the two routers connecting the hosts to the backbone provide service
differentiation. Based on the service guarantees and the available resources, both routers dynami-

cally allocate service rates to traffic classes. Packet scheduling at both routers directly follows from
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Figure 1.2:lllustration of the deployment of the proposed service in a network.Routers are

in charge of transmitting and dropping packets according to the available resources and the QoS
desired. Routers set the regulation signals (ECN), which are used by the end-hosts to regulate their
traffic.

the service rate allocation. The volume of traffic in the network is controlled by discarding traffic

at both routers, and by sending feedback from the destinations to the traffic sources to reduce the
volume of traffic. There is no communication (i.e., signaling) between the different routers, the rate
allocation is independent at each router, and the service guarantees provided are also independent
at each router. The service architecture can be incrementally deployed, in the sense that each router
that supports the proposed service improves the QoS observed in the entire network. The example
of Figure 1.2 assumes that QoS is only needed at access links. However, we emphasize that the

service can also be implemented in routers in the network core. We next discuss in more details the

service guarantees, packet scheduling and dropping, and traffic regulation.

1.3.1 Service Guarantees

The service we propose consists of per-hop, per-class guarantees, on delay, losses, and throughput
of traffic. These guarantees do not immediately translate into end-to-end service guarantees. How-
ever, a per-hop, per-class service architecture can be used to build end-to-end service guarantees,
for instance if the end applications are in charge of dynamically selecting which class of traffic they
require [49].

Our goal is to provide a set of service guarantees that can encompass all of AF, Proportional
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Differentiated Services, and other class-based services without reservations. More generally, we
want to be able to enforcany mix of absolute and proportional guarantees at each participating
router. The service guarantees are independent at each participating router. We refer to this service
as “Quantitative Assured Forwarding” service (QAF, [34]). Absolute guarantees apply to loss rates,
delays, or throughput, and define a lower bound on the service received by each class. Proportional
guarantees apply to loss rates and queueing delays, and can be used to differentiate average-case
performance. As an example of the service guarantees of Quantitative Assured Forwarding for three

classes of traffic, one could specify service guarantees of the form

e Class-1 Delayx< 2 ms

Class-2 Delay= 4-Class-1 Delay,

Class-2 Loss Ratg 1%,

Class-3 Loss Rater 2-Class-2 Loss Rate, and

Class-3 Service Rate 1 Mbps

at a given router, and other values at another router. The QAF service does not require resource
reservations or signaling, and can be realized without communication between different routers. As
a per-hop service, Quantitative Assured Forwarding, used in conjunction with routing mechanisms
that can perform route-pinning, can be used to infer end-to-end service differentiation, and can be
used to select the most appropriate route for a particular application given the service demands.
Note that, contrary to the AF service, which provides three levels of drop precedence within
a class of traffic, Quantitative Assured Forwarding offers a single drop level per class. However,
it can be shown that Quantitative Assured Forwarding can be used to emulate the AF service, by
assigning each AF drop precedence level to a separate QAF class. Since the QAF service supports
absolute guarantees on delays, QAF can also be used to emulate the delay guarantees offered by the
EF service. Therefore, our proposed service model can implement and inter-operate with DiffServ
networks, with the possible addition of remarking primitives at the boundaries between DiffServ

and QAF domains in charge of mapping the different AF drop levels to different QAF classes.
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1.3.2 Scheduling and Dropping

The desired service guarantees are realized independently at each router by scheduling and drop-
ping algorithms. Scheduling is based on a service rate allocation to classes of traffic, which share a
common buffer. The rate allocation adapts to the traffic demand from different classes. The rates are
set so that the per-hop service guarantees are met. If this is not feasible, traffic is dropped. In prac-
tice, rate allocation and buffer management are combined in a single algorithm, which recomputes
the service rate allocation to classes of traffic at the same time it makes dropping decisions. The
service rate allocation is independent at each router, and there is no coordination among different

routers.

1.3.3 Regulating Traffic Arrivals

A mechanism has to be in charge of controlling the amount of traffic that enters the network, to
ensure that service guarantees can be met. Traditional approaches to QoS use a combination of
admission control and per-flow traffic policing. These approaches require to keep per-flow infor-
mation, which we want to avoid in our architecture. Furthermore, they do not consider the salient
feature of TCP traffic, which is to reduce the sending rate when losses occur. Hence, we do not
use admission control and policing, but instead, we regulate the amount of traffic that enters the

network by dropping traffic at routers and by relying on the congestion control algorithms of TCP.

1.4 Structure of the Dissertation

The remainder of this dissertation presents the details of each of the three components of our ser-
vice architecture, the service guarantees, the scheduling and buffer management algorithms, and
our approach to controlling traffic. The remainder of this dissertation is organized as follows. In
Chapter 2, we review previous work. We focus on the different class-based services that have been
recently proposed, and discuss the mechanisms required to implement them.

In Chapter 3, we express the provisioning of per-class QoS within a formal framework that

inspired by Cruz’s network calculus [41,42]. We define the metrics we use to quantify the level of
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service received by classes of traffic, and we offer a formal definition of the set of service guarantees
supported by our service architecture.

In Chapter 4, we express the problem of providing Quantitative Assured Forwarding service
guarantees as an optimization problem. We show that, assuming infinite computational power, one
can design a reference algorithm which dynamically allocates service rates and drop packets ac-
cording to the solution to a non-linear optimization problem. We discuss the optimization function
and the constraints of the optimization problem. We provide numerical simulation examples to
illustrate the effectiveness of the approach with respect to service differentiation, and to compare
our reference algorithm to existing methods for loss and delay differentiation. We also provide a
heuristic approximation of the optimization problem.

While the performance of the reference algorithm with respect to satisfying the service guaran-
tees is excellent, its computational overhead prohibits its implementation in network routers. Thus,
we propose in Chapter 5 a closed-loop control algorithm to approximate the reference algorithm.
We apply linear feedback control theory for the design of the closed-loop control, and, to this ef-
fect, make assumptions to circumvent the non-linearities in the system of study. To illustrate the
validity of the assumptions, we use simulation results to show that the closed-loop algorithm and
the optimization algorithm have comparable performance.

In Chapter 6, we describe the implementation of our service architecture in PC-routers using
the BSD family of operating systems [32]. We present measurement results obtained from a testbed
of PC-routers to show that the implementation can realize the desired service guarantees in links
with speeds in the order of a few hundred megabits-per-second on a 1 GHz PC-router. We point out
that the implementation is being disseminated as part of the popular KAME [3] and ALTQ-3.1 [30]
networking extensions to the BSD kernels.

In Chapter 7, we extend our service architecture to TCP traffic. Assuming at first that infinite
computational power is available, we present a per-flow reference algorithm which exploits TCP
feedback mechanisms for the purpose of avoiding packet losses and regulating traffic. We then
discuss a set of approximations to this reference algorithm for implementation purposes. We use

multi-stage filters to avoid per-flow management and devise an efficient heuristic approximation.
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We present our conclusions and summarize the contributions of this dissertation in Chapter 8.

We also outline future research directions.



Chapter 2

Previous Work

The past decade has seen numerous proposals for service architectures, e.g., [14,18,23,38,47,73,78,
100,113, 143]. Not all of the proposed service architectures directly relate to the work presented in
this dissertation. For instance, deployment of per-flow services such as the Tenet protocol suite [14],
or the Integrated Services architecture [23] discussed in the introduction is currently not actively
pursued.

The research community seems to have reached a consensus that per-class architectures will be
a viable solution for providing service guarantees in the Internet, because class-based architectures
have the advantage that they work with simpler algorithms for enforcing QoS guarantees than per-
flow architectures, and can be deployed with only minor changes to the network architecture.

The discussion in this chapter focuses on recently proposed class-based service architectures,
and the mechanisms required to implement them. The remainder of this chapter is organized as
follows. In Section 2.1, we discuss in greater detail the Differentiated Services architecture we
briefly introduced in Chapter 1. Then, in Section 2.2, we discuss the Proportional Differentiated
Services architecture from [47] which has been the starting point of our work. Last, in Section 2.3,
we discuss other class-based services that have been recently proposed to improve on either the

Best Effort model, or the Differentiated Services architecture.

15
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2.1 Differentiated Services

The Differentiated Services architecture (DiffServ, [18]) is the class-based service architecture pro-
posed by the Internet Engineering Task Force (IETF) for service differentiation on the Internet.
DiffServ relies on three fundamental ideas.

First, DiffServ uses flow aggregation to avoid per-flow operations in the core of the network. In
DiffServ terminology, individual flows, omicroflows are bundled iimacroflowswith similar ser-
vice requirements. Service guarantees are only provided to macroflows. To that effect, macroflows
use different classes of service, called Per-Hop Behavior (PHB). The aggregation of microflows in
macroflows requires per-flow classification [137], which is performed at the edge of the network,
where computational resources are less scarce than in the core. At the edge, in each packet, the
DiffServ CodePoint (DSCP, [114]) of the IP header is marked with a value denoting which class
of traffic the packet belongs to. The notion of “edge” is not precisely defined in DiffServ, but one
can envision two possibilities. The edge can be the host-network interface at an individual host,
in which case, per-flow classification is performed by the host operating system or applications, as
in [46,49]. Alternatively, the edge can be the router that connects a local, microflow-aware network,
to the rest of the Internet. A router connecting a microflow-aware network to the rest of the Internet
is typically called an access (or edge) router.

Second, the DiffServ architecture only provides local, per-hop differentiation at routers, which
motivates the name of Per Hop Behavior (PHB) for classes of service. Providing per-hop differenti-
ation has the advantage of eliminating the need for communication between different routers in the
network. A second advantage is that service differentiation can only be deployed at points of con-
gestion, without requiring deployment in the rest of the network. As an illustration, [46] gives the
example of a network operator, who can over-provision most of its network, thereby alleviating the
need for service differentiation, and only deploy DiffServ at transoceanic links where link capacity
becomes more expensive, and congestion can occur.

Third, there is no signaling in the DiffServ architecture. Even though some proposals for end-to-

end service differentiation in DiffServ, such as the Virtual Wire per-domain behavior [88], originally
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called the Virtual Leased Line service [87,115], require to reserve some resources, the reservation
is handled by a centralized agent, called a bandwidth broker [115].
In addition to supporting the traditional best-effort service, the Differentiated Services architec-

ture supports two per-hop behaviors: Expedited Forwarding, and Assured Forwarding.

2.1.1 Expedited Forwarding

The Expedited Forwarding (EF) PHB was initially proposed by Jacobson et al. in 1997 [115],
and was refined in [87], as a service that provides a guaranteed peak rate service with negligible
gueueing delays or losses. While EF only provides local, per-hop guarantees, the objective is to use
EF as a building block for network-wide services such as the Virtual Wire [88] per-domain behavior.
The goal of the Virtual Wire service is to provide each EF macroflow with a service equivalent to a
virtual leased line, or a virtual circuit in ATM networks.

The authors of [87] envision that EF requires shaping at the network edge, so that EF traffic does
not enter the network at a rate exceeding a peakRat& capacity ofR is reserved in the entire
network for EF traffic, so that EF macroflows do not experience delay or losses. The bandwidth
reservatiorR is statically configured in a bandwidth broker. The bandwidth broker is a centralized
agent configured with a set of policies, which determine the level of service different classes should
receive. The bandwidth broker keeps track of the current allocation of traffic to different classes, and
handles new requests to mark new traffic subject to the configured policies and current allocation.
Routers in turn query the bandwidth broker to determine how much link capacity shall be reserved
for EF traffic.

Subsequent research led by Charny, Le Boudec and others [15, 29, 22] showed that even with
peak rate allocation for EF macroflows, an EF service cannot be guaranteed negligible losses and
delays. Indeed, multiplexing EF traffic from several input ports in routers can result in bursty traffic,
which, in turn, may cause delay and losses. This finding led to a change to the original definition of
the Expedited Forwarding PHB [43]. Instead of guaranteeing no losses and negligible delays, the
authors of [43] propose to guarantee bounded delay variations to EF macroflows. More formally,

each EF packet arriving at a router obtains a a delay guarBrteE + E, whereF is a target delay
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guarantee, anH is an error.

2.1.2 Assured Forwarding

The Assured Forwarding service is based on a proposal that was originally called the “Allocated
Capacity framework”, introduced by Clark and Fang in [37]. In the Allocated Capacity framework,
a class of traffic is provided with a certain bandwidth profile, defined by aRatks long as the
aggregate amount of traffic from that class has a rate lowerRh#maffic is marked am-profile;
otherwise it is marked asgut-of-profile In times of congestion, out-of-profile traffic is dropped
more aggressively than in-profile traffic. In other words, a class is allowed to exceed its Rrofile
when there is no congestion and the network load is low, but is restricted to sending traffic within its
profile when the network is congested. The Mafis statically reserved, or provisioned, at network
design time.

The AF service of the DiffServ architecture supports qualitative guarantees, but no classes are
provided absolute service guarantees, and the difference in the service received by different classes
is not quantified. While some have argued that Assured Forwarding provides absolute differenti-
ation, because the profiR can be viewed as a throughput guarantee, we point out that in-profile
traffic is not guaranteed a lossless service. Hence, traffic sending afa taR thereby remaining
in-profile, can still experience traffic losses, and obtain a serviceRfate R < R, which contra-
dicts the notion thaR is a throughput guarantee. The absence of throughput guarantee is clearly
exhibited in the case of TCP traffic, as discussed in [154]: regardless of how well provisioned the
network is, it may be impossible to provide throughput guarantees to TCP flows with the AF ser-
vice. In fact, the only assurance that in-profile traffic gets is that, should congestion occur, it will
not be dropped as aggressively as out-of-profile traffic. In other words, AF only provides isolation
between different AF classes, and qualitative loss differentiation between the drop precedence lev-
els within each class. We refer to the discussion in [65] to summarize concerns raised about the

actual differentiation offered between different classes of traffic.
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2.1.3 Mechanisms

The DiffServ, AF and EF specifications given in [18, 75, 43] do not impose a particular scheduling
or buffer management algorithm. EF can for instance be implemented using well-known fixed-
priority scheduling algorithms [115], or rate-based scheduling algorithms, e.g., Class-Based Queue-
ing (CBQ, [69]).

While EF can be realized through appropriate scheduling algorithms, the Assured Forwarding
service, on the other hand, can be enforced with buffer management algorithms. Indeed, as long
as the network is correctly provisioned, i.e., enough link capacity has been reserved in advance
for each class of traffic, scheduling in Assured Forwarding can be realized with a first-in-first-
out (FIFO) discipline. Service differentiation can be enforced by marking packets as in-profile
or out-of-profile, and using a buffer management algorithm that drops out-of-profile packets more
aggressively.

The literature regarding buffer management algorithms, also called active queue management
algorithms, is rich, and we present here a brief summary of the proposed buffer management al-
gorithms, that can be used or extended to provide qualitative loss differentiation, as in the Assured
Forwarding PHB.

The key mechanisms of a buffer management algorithm areatidog controlley which spec-
ifies the time instances when traffic should be dropped, andridmper, which specifies the traffic
to be dropped. We refer to a recent survey article [97] for an extensive discussion of buffer man-
agement algorithms.

Backlog Controllers. Initial proposals for active queue management in IP networks [60, 68] were
motivated by the need to improve TCP performance, without considering service differentiation.
More recent research efforts [37,105, 117, 129] enhance these initial proposals in order to provide
service differentiation, and can be used to realize the AF service.

Among backlog controllers for IP networks, Random Early Detection (RED, [68]) is probably
the best known algorithm. RED was motivated by the goal to improve TCP throughput in highly
loaded networks. RED operates by probabilistically dropping traffic arrivals, when the backlog

at a node grows large. RED has two threshold parameters for the backlog at a node, denoted as
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Figure 2.1:Drop probability in RED. The probability of dropping a packet is a function of an
estimate on the average queue size in REDgnd 1e_ RED.

minty and maxy. RED estimates the average queue szg, and compares the estimate to the
two thresholds. Q. < minty, RED does not drop any arrival. @, > maxry, RED drops

all incoming traffic. If minry < Qust < maxry, RED will drop an arrival with probability?(Qes),

where 0< P(Qeg) < 1 is a function which increases linearly @, and satisfie®(maxry) =

max>. We illustrate the drop probability function in RED in Figure 2.1(a). Thetle_ variant of

RED has a smoother piecewise-linear drop probability function, as depicted in Figure 2.1(b), and
reportedly improves the robustness of RED with respect to parameter setting [67].

Several algorithms that attempt to improve or extend RED have been proposed, e.g., [13, 37,60,
77,105,117,129,148]. For example, Blue [60] uses different metrics to characterize the probability
of dropping an arrival. Instead of the backlog, Blue uses the current loss ratio and link utilization
as input parameters.

RIO, originally proposed to implement the Allocated Capacity framework [37] from which the
Assured Forwarding service is derived, WRED [148], and multi-class RED [129] are extensions to
RED which aim at class-based service differentiation. All three schemes have different dropping
thresholds for different classes, in order to ensure loss differentiation. Note that in an per-flow
context, the idea of using different threshold values is pursued for Flow-RED (FRED, [105]), which
uses per-flow thresholds. In FRED, flows are discriminated by their source-destination address

pairs.
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CHOKe [117] tries to provide per-flow loss differentiation without keeping any per-flow state
information. The algorithm works as follows. When the queue size exceeds a first threshold value,
a packet is drawn at random from the queue. If the incoming packet and the packet drawn from
the queue belong to the same flow, both are dropped. If they belong to different flows, and the
gueue size does not exceed a second threshold, the incoming packet is dropped with a probability
linearly dependent on the size of the queue. If the queue size does exceed this second threshold, the
incoming packet is dropped.

Random Early Marking (REM, [13]) is close in spirit to the dropping mechanisms of the algo-
rithm we will present in Chapter 4, since it treats the problem of marking (or dropping) arrivals as
an optimization problem. The objective is to maximize a utility function subject to the constraint
that the output link has a finite capacity. The REM algorithm marks packets with a probability
exponentially dependent on the cost of a link. The cost is directly proportional to the buffer occu-
pancy.

REM can also be expressed in terms of a feedback control problem. Based on a closed-loop
formulation of TCP throughput in [110], Hollot et al. propose to use a proportional-integral (PI)
backlog controller to achieve fast convergence to the desired queue length and to increase robustness
of the system [77]. It can be shown that REM and PI are in fact equivalent [155].

For a link of capacityC and buffer sizeB, the Adaptive Virtual Queue algorithm (AVQ, [96])
maintains a virtual queue of si& served at a capaci@ < C. Packets are marked or dropped
when they overflow the virtual queue. The valD@aries over time as a function of the difference
between arrival and departures, and relies on the closed-loop formulation of the TCP throughput
in [110].

Droppers. The simplest and most widely used dropping scheme is Drop-Tail, which discards
arrivals to a full buffer. For along time, Drop-Tail was thought to be the only dropper implementable

in high-speed routers. Recent implementation studies [147] demonstrated that other, more complex,
dropping schemes, which discard packets that are already present in the buffer (push-out), are viable
design choices even at high data rates.

The simplest push-out technique is called Drop-from-Front [98]. Here, the oldest packet in the
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transmission queue is discarded. In comparison to Drop-Tail, Drop-from-Front lowers the queueing
delays of all packets waiting in the system. Note that with Drop-Tail, dropping of a packet has no
influence on the delay of currently queued packets.

Other push-out techniques include Lower Priority First (LPF, [94, 104]), Complete Buffer Par-
titioning (CBP, [104]), and Partial Buffer Sharing (PBS, [94]). LPF always drops packets from the
lowest backlogged priority queue. CBP assigns a dedicated amount of buffer space to each class,
and drops traffic when this dedicated buffer is full. PBS uses a partitioning scheme similar to CBP,
but the decision to drop is made after having looked at the aggregated backlog of all classes. The
static partitioning of buffers in LPF, CBP, and PBS is not suitable for relative per-class service

differentiation, since na priori knowledge of the incoming traffic is available [48].

2.1.4 DiffServ Deployment

Despite the availability of algorithms suitable for implementing the different DiffServ PHB’s, de-
ploying the Expedited Forwarding service as originally specified in [87] turns out to be more dif-
ficult than initially expected. The lack of deployment is in part due to open issues regarding the
configuration of the components in charge of the resource reservations, that is, the bandwidth bro-
kers. On the one hand, a centralized bandwidth broker, as advocated in [115], is a single point of
failure, which may be undesirable for a service with strong guarantees such as the EF service. On
the other hand, maintaining consistency with distributed bandwidth brokers schemes remained an
open problem, as discussed in [143]. Additionally, the potential difficulties in realizing the service
with bursty traffic exhibited in [29] imply that the total amount of EF traffic must be only a small
fraction of the network capacity to be able to guarantee low queueing delays [142].

Assured Forwarding seems more amenable to deployment, but relies on weaker service guar-
antees. The main focus of the research on QoS networks in the past five years has thus been to
strengthen the service assurance that can be given within the context of class-based services such
as Assured Forwarding.

Two approaches have emerged: some efforts focused on quantifying the differentiation between

classes of traffic, without enforcing absolute service guarantees, while other efforts attempt to provi-
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sion absolute service guarantees for certain classes, without quantifying the differentiation between

other classes.

2.2 Proportional Service Differentiation

Proportional service differentiation, initially proposed by Dovrolis et al. [47] in their Proportional
Differentiated Services model is an effort to quantify the differentiation between classes of traffic
without absolute service guarantees. The Proportional Differentiated Services model for instance
attempts to enforce that the ratios of delays or loss rates of successive priority classes be roughly
constant. Proportional Differentiated Services was proposed at approximately the same time as the
work by Moret and Fdida on proportional qgueue control [112], which is a scheduling algorithm to
realize proportional delay differentiation.

Proportional service differentiation can be implemented through scheduling algorithms and/or
buffer management algorithms. The service guarantees are enforced on a per-node basis and do not
require any communication between participating nodes. We next present the scheduling and buffer

management algorithms that have been proposed for proportional differentiation.

2.2.1 Scheduling

The majority of work on per-class service differentiation suggests to use well-known fixed-priority,
e.g., [115], or rate-based scheduling algorithms, e.g., [69]. A few scheduling algorithms have been
specifically designed for proportional delay differentiation.

A number of scheduling algorithms, including those we describe in this dissertation, are based
on a rate allocation. Rate allocation to classes of traffic for meeting service guarantees is illustrated
by the Generalized Processor Sharing (GPS) algorithm [119]. GPS traffic consists of sessions,
which can be flows or classes of traffic. GPS takes a fluid-flow interpretation of traffic, which means
that multiple sessions can be served simultaneously at the link governed by GPS. Eachi s&ssion
allocated a weighty. GPS is work-conserving, which means that a GPS link is always busy serving

traffic when a backlog is present. Traffic from a given backlogged session, say sessserved at
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a service rate at least equalf%c, whereC is the total capacity of the GPS link. Approximations
of GPS in a packet network, where the fluid-flow assumption does not hold, include Packetized
GPS (PGPS, [119]) and Weighted Fair Queueing (WFQ, [45]).

With respect to proportional delay differentiation, the Proportional Queue Control Mechanism
(PQCM, [112]) and Backlog-Proportional Rate (BPR, [50]) are variations of GPS. Both PQCM
and BPR dynamically adjust service rate allocations of classes to meet proportional guarantees.
The service rate allocation is based on the backlog of classes at the scheduler. For two classes with

backlogsBi (t) andBy(t), at a link of capacityC, PQCM assigns a service rate of

By(t)

O B+ aBo)

to the first class, where€ a < 1 is the proportional differentiation factor characterizing the ratio of
the delays of the first class over the delays of the second class. BPR extends PQCM to an arbitrary
number of classes. In BPR, the claservice rate is set to
nt= o0
Zj §BJ (t)
Whereg characterizes the proportional delay guarantee between claasef.

Different from the rate-based schedulers discussed above, a number of algorithms instead use
dynamic time-dependent priorities to provide proportional delay guarantees. For instance, Waiting-
Time Priority (WTP, [50]) implements a scheduling algorithm with dynamic time-dependent pri-
orities initially proposed in [92], Ch. 3.7. A clasgpacket, which arrives at timg is assigned a
time-dependent priority as follows. If the packet is backlogged attime, then WTP assigns this
packet a priority oft — 1) - &, whered; is a class-dependent priority coefficient [92]. WTP packets

are transmitted in the order of their priorities. In [50], the coeffici@ntre chosen so that
S1=k-& =k 8=..=k% 3,

resulting in a delay differentiation under high loads, where Classt) Delay~ k-Classt Delay.
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The Mean-Delay Proportional scheduler (MDP, [113]) has a dynamic priority mechanism simi-
lar to WTP, but uses estimates of the average delay of a class to determine the priority of that class.
Thus, the priority of a classpacket is set t@; - Dj(t), whereDj(t) is the estimated average delay
for classi, averaged over the entire up-time of the link. The coefficiéntare as in WTP, i.e.,
o=k &=k 5=..=k &.

The Hybrid Proportional Delay scheduler (HPD, [46,51]) uses a combination of waiting-time
and average experienced delay to determine the priority of a given packet. Therefore, the priority

of a given class is set to

di(gt—1)+(1-9g)Di(t)) ,

with0<g< 1.
A slightly different approach, pursued by the Weighted-Earliest-Due-Date scheduler of [20],
is to provide proportional differentiation in terms of probabilities of deadline violation for a set of

classes.

2.2.2 Buffer Management

The Proportional Loss Rate (PLR) dropper [48] is specifically designed to support proportional
differentiated services. PLR enforces that the ratio of the loss rates of two successive classes re-
mains roughly constant at a given value. There are two variants of PLR.NPLE{es only the

lastM arrivals for estimating the loss rate of a class, whereas 8) R@s no such memory con-
straints. Average Drop Distance (ADD, [21]) is a variant of PMR {vhich aims at providing loss
differentiation regardless of the timescale chosen for computing the loss rates.

Different from PLR and ADD, the authors of [95] propose an algorithm that attempts to enforce
end-to-end proportional loss differentiation. To that effect, the proposed algorithm records infor-
mation about the loss rates observed at each hop in the packet header, using a technique similar to
Dynamic Packet State [143].

The recently proposed Class-Distance-Based-Priority-Delay-Loss scheduler (C-DBP-Delay-

Loss, [146]) tries to provide proportional delay and proportional loss differentiation in a single
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algorithm. Note that C-DBP-Delay-Loss is more recent than our initial proposal for an algorithm
combining scheduling and buffer management [102]. At any time, C-DBP-Loss-Delay keeps state
information as a set dim, k) pairs, where, for each clagsn represents the number of packets that

have been successfully transmitted in the kgsackets. For each packet, C-DBP-Loss-Delay com-
putes the distance between the current state of the system, and a “failure state”, defined as any state
wherem is less than a desired valag. The lower the distance, the higher the priority assigned to

the packet. The authors of [146] conjecture that sefting: k — &;, whered; is selected as in WTP

and MDP, can be used to provide proportional loss and delay differentiation.

2.3 Other Class-Based Services

The Proportional Differentiated Services model aims at strengthening the guarantees of the Diff-
Serv architecture by quantifying the differentiation provided by AF-like services. In parallel to
these efforts to strengthen the guarantees of the Assured Forwarding service, other researchers have
explored different directions in the design space of Figure 1.1 [73,78,100].

For instance, the Alternative Best-Effort (ABE) service explores simpler mechanisms for ser-
vice differentiation. The ABE service considers two traffic classes. The first class obtains absolute
delay guarantees, and the second class has no delay guarantees, but is given a lower loss rate than
the first class. Scheduling and buffer management algorithms for the ABE service are presented
in [78], and rely on a combined scheme called Duplicate Scheduler with Deadlines, which enforces
delay guarantees for the first class by dropping all traffic that has exceeded a given delay bound. A
type of service similar to ABE, called Balanced Forwarding, is proposed in [73].

The Dynamic Core Provisioning service model [100] is a class-based service, which supports
absolute delay bounds, and qualitative loss and throughput differentiation, but no proportional dif-
ferentiation. The mechanisms used in [100] prevent violations on service guarantees by dynami-
cally adjusting scheduler service weights and packet dropping thresholds in core routers. Traffic
aggregates are dimensioned at the network ingress by a distributed admission control mechanism

that uses knowledge of the entire traffic present in the network. Full knowledge of the traffic travers-
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ing a network is generally not available in practice, and the algorithm needs to be approximated.



Chapter 3

A Framework for Per-Class Service Guarantees

In this chapter, we introduce a framework for reasoning about per-class service differentiation in a
packet network without information on traffic arrivals. We will use the framework described in the
present chapter as a basis for the mechanisms we propose throughout this dissertation.

In particular, the proposed framework will allow us to describe a scheme for providing service
differentiation at the output link of a router. The scheme relies on treating buffer management and
scheduling as two instances of the same problem, namely, management of the transmission queue.
That is, buffer management and scheduling are considered in a single step. We give tlieiname
Buffer Management and Scheduli@BS) to this scheme, which we present in [102, 103]. This
dissertation will show that using algorithms based on JoBS at the output link of a router enables us
to enhance class-based service differentiation without any a priori information on the traffic arrivals.

In parallel to our efforts, there were other proposals that considered scheduling and buffer man-
agement in a single step [106, 146]. We assert that our approach is more rigorous and more general.
In [146], Striegel and Manimaran use a scheme combining buffer management and scheduling to
simultaneously provide proportional differentiation to losses and delays in the context of the C-
DBP-Delay-Loss algorithm discussed in Chapter 2. There are no absolute guarantees. In [106], Liu
et al. use a joint buffer management and scheduling scheme in the context of input-queued switches
to address the issue of maximizing both the aggregate throughput and buffer utilization at the same
time, revisiting a problem first described by Lapiotis in [99]. The approaches in [99, 106] solely

focus on efficiently using router resources, and do not attempt to apply the combined scheme to

28
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Figure 3.1:Router architecture. In this dissertation, we consider an output-queued router, where
all queueing occurs at the output links, in the transmission queues. There is no contention at the
input links or in the fabric interconnect. The figure shows&@3witch.

provide any service guarantees.

The remainder of this chapter is organized as follows. In Section 3.1, we first give an infor-
mal discussion of the operations used by an algorithm based on the Joint Buffer Management and
Scheduling scheme. In Section 3.2, we discuss the notions of arrival, input, and output curves,
which are adapted from the network calculus formalism originally presented by Cruz in [41, 42].
We use this formalism to introduce the metrics we use to quantify and enforce service differenti-
ation. In Section 3.3, we delve into the details of the service guarantees of Quantitative Assured

Forwarding [34] we are interested in providing.

3.1 Overview

In this section, we present an overview of the JoBS scheme. We start by outlining the assumptions
we use in our presentation, before succinctly describing the operations one can use in the context

of JoBS.
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3.1.1 Assumptions

We consider an individual router in the network. For the presentation of this framework, we consider
that all traffic backlogged in the router is queued in the transmission queues at the output links. In
other words, we assume that the router under consideration uses an output queueing architecture.
In Figure 3.1, we give a simplified representation of the router (or switch) architecture we consider.
The router consists dfl input and output linksN = 3 in the example of Figure 3.1), connected by

a fabric interconnect. Demultiplexers are used to direct packets from the input links to the proper
output links. Each output link is governed by a transmission queue. In the figure, packets flow
from left to right. Two packets, marked 1 and 2, are in contention for the same output link, while a
third packet, 3, is coming from the same input link as 2. The output queueing architecture implies
that the switch interconnect is fast enough to move packets from all input ports to the output ports
and completely avoid any contention at the input links or in the switch fabric. In the example of
Figure 3.1, packets 2 and 3 are immediately sent to their respective output links and do not create a
backlog at the input link they share.

By avoiding traffic backlogs at the input links or in the fabric, the output queueing assumption
enables us to solely focus on the operations performed at the output links. Howeves, tifie
capacity of an input link ant\ is the number of input links, output queueing requires the switch
interconnect to have a speed-up of at lddsthat is, to have a throughput of at led€. The
throughput requirement on the interconnect can pose practical challenges\varetC are both
high, that is, for routers with a large number of high-speed line cards. Even though current hardware
may be able to handle the required throughput for interconnectsNvith10 andC ~ 10 Gbps,
memory access speeds prevent us from writing packets into the output links transmission queues at
such speeds [66].

Therefore, typical high-speed routers generally use input queues in lieu of the demultiplexers
of Figure 3.1. Popular router architectures using input queues include Virtual Output Queueing
(VOQ, introduced in [12]), where all traffic is queuedNg input queues, and Combined Input-
Output Queueing (CIOQ), where traffic can be backlogged at both input and output links. Our

framework can be extended to CIOQ switches as follows. Previous research contributions showed
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that it is possible to perfectly emulate output queueing routers with CIOQ routers with a speed-up of
only two, and specific interconnect arbitration mechanisms, such as Critical Cells First (CCF, [35]).
Therefore, with CCF and an interconnect throughput ©f @e can implement our approach in
ClOQ switches.

Another solution to implement output queueing in high speed switches is the Feedback Output
Queueing (FOQ) architecture proposed in [66]. FOQ approximates output queueing at high speeds
with a modest speedup (between one and two) using a feedback control algorithm that drops packets
at the input lines, based on the congestion experienced at the output lines. Because FOQ switches
only enqueue traffic at the output links, FOQ switches rely on an output queuing architecture.
Hence, our proposed framework directly applies to FOQ switches.

In addition to assuming an output queueing router architecture, we take a fluid-flow interpre-
tation of traffic. That is, the output link is viewed as simultaneously serving traffic from several
classes. Since actual traffic is sent in discrete-sized packets, a fluid-flow interpretation of traffic is
idealistic. However, scheduling algorithms that closely approximate fluid-flow schedulers with rate
guarantees are available [119, 157]. In Chapter 5, we discuss in more detail how we realize the
fluid-flow interpretation in a packet network.

Last, we assume for now that no a priori information on the traffic arrivals is available.

3.1.2 JoBS Operations

With the assumptions described above, let us now consider a single router in the network and de-
scribe the operations performed by algorithms based on the JoBS scheme. In the router under
consideration, each output link performs per-class buffering of arriving traffic and traffic is trans-
mitted from the buffers using a rate-based scheduling algorithm such as [119,157], with a dynamic,
time-dependent service rate allocation for classes. Traffic from the same class is transmitted in a
First-Come-First-Served order. There is no admission control and no policing of traffic.

The set of performance requirements are specified to the router as a set of per-class QoS guar-
antees. As an example, for three classes, the QoS guarantees could be of the form:

. Class-2 Delay
Class-1 Delay™ ~’
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Class-3 Loss Ratge, 101 or

® Class-2 Loss Raté&’

e Class-3 Delayk 5ms

Using the definitions of Chapter 1, the first two guarantees are proportional guarantees, character-
ized by a proportional differentiation factor, and the last one is an absolute guarantee, characterized
by a bound. All QoS guarantees are deterministic. Statistical guarantees as in [27, 28], which, for
instance, provide a delay bouddto classt traffic with probability 1— € wheree > 0 are outside

the scope of this dissertation.

The set of guarantees we consider can be any mix of proportional and absolute guarantees.
There is no limit on the number of classes that are supported, and we further require that the al-
gorithms used to implement the service be independent of the choice of specific bounds or propor-
tional differentiation factors for each class. Our objective is that the proposed service generalizes
all previous efforts on class-based services.

Because we want to support absolute guarantees and do not use admission control, a set of
service guarantees may be infeasible at certain times. For example, it may be impossible to meet
both a delay bound and a loss rate bound at the time of a burst of traffic. In case the system of
service guarantees is infeasible, some guarantees may need to be relaxed. For instance, proportional
guarantees may be relaxed in favor of absolute bounds, or loss guarantees may be relaxed in favor
of delay guarantees. We assume that all QoS guarantees are given a precedence order, which is used
to determine which constraints are relaxed in case of an infeasible system.

The service rate allocation operates as follows. For each arrival, the service rate allocation to
traffic classes is modified so that all QoS service guarantees are met. If there exists no feasible rate
allocation that meets all service guarantees, traffic is dropped, either from a new arrival or from the
current backlog. We identify two methods of modifying the service rate allocation for meeting the

service guarantees:

e Using apredictiveservice rate allocation and buffer management. Here, a prediction on the

service differentiation received by all backlogged traffic is made, and based on the prediction,
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the service rates are adjusted and traffic is dropped so that per-class QoS guarantees will be

met in the future. This approach is discussed in Chapter 4.

e Using areactiveservice rate allocation and buffer management. Here, the performance of
the system with respect to service differentiation is continuously monitored, and compared to
the offered per-class QoS guarantees. Upon each arrival, the service rate allocation to each
class is adjusted in an effort to attenuate the difference between the service experienced and

the QoS guarantees. This approach is presented in Chapter 5.

Using a predictive service rate allocation allows to formulate the service differentiation problem
in terms of an optimization problem, as we will demonstrate in Chapter 4. On the other hand, a
reactive service rate allocation can help characterize the service rate allocation in terms of a closed-

loop problem, as we will show in Chapter 5.

3.2 Formal Description of the Metrics Used in JoBS

We next provide a more formal presentation of the metrics that we use to quantify and enforce
service differentiation. To that effect, we use results from the network calculus [41,42] to express
backlog and delay of traffic in the transmission queue of a router. These definitions are useful to
describe algorithms based on a reactive service rate allocation and buffer management. Then, we
provide a formal definition of the metrics used in the context of a predictive service rate allocation
and buffer management. Last, we discuss how we extend the delay and loss metrics to per-class
metrics. In this section, we assume that the link at which service differentiation is provided has a
capacityC and a total buffer spad@.

We assume that all traffic that arrives to the link is marked to belong to oeabdisses. In
general, we expedD to be small, e.g.Q = 4. We use a convention whereby a class with a lower
index receives a better service. We asg) andl;(t), respectively, to denote the clasasrivals
and the amount of claggraffic dropped (“lost”) at time. We useri(t) to denote the service rate
allocated to classat timet. The service rate of a clagss a fraction of the output link capacity,

which can vary over time, and is set to zero if there is no backlog of claafic in the transmission
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gueue. That is,

ri(t) >0,
only if there is a backlog of clagsraffic in the buffer and
ri(t)=0,

otherwise. In addition, we require that scheduling be work-conserving, that is,

Zri(t) =C, (3.1)

if there is at least one backlogged class at timBote that systems that are not work-conserving,
i.e., where the link may be idle even if there is a positive backlog, may be undesirable for networks
that need to achieve a high resource utilization or that need to support the best-effort service.

3.2.1 Arrival, Input and Output Curves

We now introduce the notions afrival curve, input curve andoutput curvefor a traffic class in

the time intervalty,ty]. The arrival curved and the input curvRﬁ” of classi are defined as
t2
Alttz) = [ Mo, (32
t S—~—
ai(x)

whereA;(t) is the instantaneous classasrival rate at time, defined by

N =)

and

) to
RN (t1,th) = At tp) — /t £ (x)dx, (3.3)
|i(X)
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whereg(t) is the instantaneous clasdrop rate at time, defined by

(_ AA—R")
From Eqn. (3.3), the difference between the arrival and input curve is the amount of dropped traffic.
The output curvéR*“ of classt is the transmitted traffic in the intervii, t,], given by

ROU(ty,1p) = /tzri(x)dx. (3.4)

t1

From now on, we will use the following shorthand notations to denote the arrival, input and output

curves at a given timg respectively:

Aty = A(O1),
R'(t) = RM(O1),
RY(t) = RM(O1).

We refer to Figure 3.2 for an illustration. In the figure, the service rate is adjusted attiines
andts, and drops occur at timésandts.

The vertical and the horizontal distance between the input and output curves from céass
spectively, are the backldg and the delayp;. This is illustrated in Figure 3.2 for timte The delay

D; at timet is the delay of an arrival which is transmitted at tim@&acklog and delay at timteare

defined as
Bi(t) = R"(t) - RP(1) , (3.5)
and
Di(t) = max{x | RP“(t) > R"(t —x)} . (3.6)

Upon a traffic arrival, say at timg JoBS sets new service rateés) and the amount of traffic to
be dropped;(s) for all classesr;(s) andl;(s) are selected such that all QoS guarantees can be met

at times greater thas If all service guarantees cannot be satisfied at the same time, then some
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Figure 3.2:Delay and backlog.A is the arrival curveR}n is the input curve an&'! is the output
curve.
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Figure 3.3:Predicted input curve, predicted output curve, and predicted delaysThe prediction
is performed at times for the time intervals,s+ T, g|.

guarantees are relaxed in a predetermined order. For instance, absolute guarantees can be given

higher precedence than proportional guarantees.

3.2.2 Predictions

The metricsD;, A, R", R and B; discussed above characterize past and present state of the
system. These metrics are therefore useful in the context of a reactive service rate allocation and
buffer management. Howevdp;, A;, R:” R and B; do not convey any information regarding
potential future behavior and are therefore not adequate in the context of predictive algorithms.
Here, we introduce the predictions used by a predictive rate allocation and buffer management
algorithm.

For the purpose of the predictions, we assume that the current state of the link will not change

after times. Specifically, indicating predicted values by a tilde (7), for tihess, we assume that

1. Service rates remain as they af¢t) = ri(s),
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2. There are no further arrivalg;(t) = 0,
3. There are no further droph(t) = 0.

With these assumptions, we now define the notions of predicted input ﬁ{l‘g,vpredicted output

curveRPY, and predicted backloB; s, fort > sas follows:

Rit) = R, (3.7)
RY() = R+ (t—9ri(s), (3.8)
Bis(t) = RL(t)-RY(®). (3.9)

We refer to thepredicted horizorior classi at times, denoted a?i,s, as the time when the predicted
backlog becomes zero, i.e.,

Ti.s= min{x | Bis(s+x) =0} . (3.10)
x>0 '

With this notation, we now express predictions for delays in the time intés)sa 'ﬁ.s]. We define
the predicted delaD; «(t) at timet € [s,s+ T ] as

Bis(t) = max {x| RY(t) > RN (t—x)} . (3.11)

t—s<x<t

If there are no arrivals after ting the delay predictions are correct, in the sense that the predicted
delay at times is the delay that will be encountered when the traffic element departs the system at
timet.

In Figure 3.3, we illustrate the predicted input curve, predicted output curve, and predicted
delays for predictions made at tinge In the figure, all values for > s are predictions and are
indicated by dashed lines. The figure includes the predicted delays forttjmedts.

Note that the prediction given in Eqgn. (3.11) assumes that, when drops occur, traffic is dropped
from the tail of the queue (Drop-Tail). Indeed, if drops are performed at the head of the queue
(Drop-from-Front, [98]), drops affect traffic that was admitted in the past. A Drop-from-Front

policy has therefore an influence pastvalues ofR", which changes the shape of the entire input
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curve at any time traffic is dropped. More formally, with a Drop-from-Front policy, Egn. (3.11)

does not hold anymore and must be replaced by

t—s<x<t

Dis(t) = max {x| R (t) > R}”(t—x)—/tE(T)dT}, (3.12)

Egn. (3.12) imposes knowledge of future drops to make a meaningful prediction. Because it is
practically difficult to evaluate how much traffic will be dropped in the future, we will consider a

Drop-Tail policy in the remainder of the dissertation.

3.2.3 Per-Class Delay and Loss Metrics

When defining proportional QoS guarantees as in Chapter 1, e.g., Class-2{l&jass-1 Delay

or Class-2 Loss Rate 1071 - Class-3 Loss Rate, we have assumed that a single metric is available
to specify the “delay” or the “loss” of a class. In general, since there are several packets backlogged
from a class, each likely to have a different delay, the notion of “delay of Elas®eds to be further

specified. Likewise, the notion of “loss rate of claseequires further clarification.

3.2.3.1 Delay Metrics

Beginning with the delay metriD; (t) from Eqn. (3.6), we provide the rationale for our choices of
per-class delay metrics.

Instantaneous Delay. The measur®;(t), given by Eqgn. (3.6) describes the delay of the class-
packet that is in transmission at tirseD;(t) is a good measure for the delay of all claggsaffic

if Dj(t) is roughly constant.D;(t) may be an appropriate metric if the service rate allocation is
formulated in terms of a closed-loop control problem, i.e., if the service rate allocation to classes is
regarded as taking corrective actions to an “error” in the current rate allocation.

Average Delay. Averaging the instantaneous del@y(t) over a time window of length provides

a simple measure for the history of delays experienced by “typical” ¢lpaskets. We obtain
avg 1 /s
Diy (1) = = Di(x)dx. (3.13)

TJs1
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Alternatively, one may want to give more weight to the most recent delays. Using an exponentially
weighted moving average, denotedDf*™ one obtains

it e= D4+ w- (Di(s) — DY) (3.14)
wheret defines the window size of the moving average, ardw < 1 is the smoothing factor.

Average delay metrics as defined above only take into consideration the history of delays. Since
the recent history of delays may not be a good indicator for the delays to be experienced by currently
backlogged traffic, using Egs. (3.13) and (3.14) may lead to poor predictions of delay guarantee
violations. On the other hand, Egs. (3.13) and (3.14) can be appropriate for closed-loop control,
when the service rate allocation attempts to correct past observed behavior. Comed tm
average delay metric will yield a more conservative, and likely more stable control, at the expense
of a reduced reactivity.

The instantaneous and average delay metrics are suitable for a closed-loop control, characteris-
tic of a reactive service rate allocation. Different from the above, the per-class delay metrics used
in the case of a predictive rate allocation should attempt to measure the delay for the currently
backlogged traffic. Per-class delay metrics we propose to use in the context of a predictive rate al-
location take advantage of the notion of predicted d@@g{t) as defined in Egn. (3.11). Under the
assumption that there are no arrivals and no losses aftestiamel using the service rate allocation
from times, the predicted delaﬁis(t) provides the delay of the packet in transmission at time
We define two delay metrics for the backlog from claastimes, one for the worst-case delay and
one for the “typical” delay.

Maximum Predicted Delay. As a metric for predicting the worst-case delay of the currently back-

logged traffic from clasg we define thenaximum predicted delat times, as

D™= max_Dis(t). (3.15)
s<t<s+Tis

If there are no arrivals and no changes to the rate allocation afterstitinen 5{1""" is an upper

bound of the future delays of traffic which is backlogged at tane
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Average Predicted Delay.We define theaverage predicted dela; s as the time average of the

predicted delays from a class, averaged over the hoﬁz@nNe obtain

_ 1 [stTis o
Dis= = / Bi s(x)dx. (3.16)
Tis/s '

Note that this metric takes into account both the time that has already been spent in the scheduler,
and the predicted time before the packet is serviced.
3.2.3.2 Loss Metrics

Similar to delays, there are several sensible choices for defining “loss”. In this dissertation, we
select one specific loss measure, denotegifty, which expresses the fraction of lost traffic since
the beginning of the current busy period at titpeA busy period is a time interval with a positive

backlog of traffic. For timexwith ¥ Bi(x) > 0, the beginning of the busy peritglis given by

o= TgX{IZBi (y) = 0} .

So, pi(t) expresses the fraction of traffic that has been dropped in the time infigrvglthat is,

o Jplitodx
B R}”(to,t_) +a(t) —li(t)
— 1- Ao . (3.17)

with

t~ =sup{x|x<t}.

With the metrics just defined, we can now formally introduce the service guarantees our service

architecture can support.
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3.3 Quantitative Assured Forwarding

We propose here a formal definition of the Quantitative Assured Forwarding service guarantees.
In QAF, service differentiation is enforced over the duration of a busy period. An advantage of
enforcing service differentiation over short time intervals such as the busy period is that the output
link can react quickly to changes of the traffic load. Further, providing differentiation only within

a busy period requires little state information to be maintained. As a disadvantage, at times of
low load, when busy periods are short, providing service differentiation only with information on
the current busy period can be unreliable. However, at underloaded links transmission queues are
mostly idle and all service classes receive a high-grade service. So, from now on, we consider
to=0.

We want the QAF service to be able to generalize all recently proposed class-based services. In
particular, the proposed service should be able to emulate the Assured Forwarding and Expedited
Forwarding services of the DiffServ architecture. We also want the proposed service to support
the guarantees of the Proportional Differentiated Services architecture, and of other class-based
services such as the Alternative Best Effort service.

Quantitative Assured Forwarding provides proportional and absolute differentiation on losses,
delays, and throughputs of classes of traffic. The guarantees are expressed as follows.

An absolute delay bound on clasis specified as
Vt:iDi(t) <di, (3.18)

whered; is the desired upper bound on the delay of clagsn absolute loss rate bound for cldss
is defined by
Vi:pi(t) <L. (3.19)

Throughput guarantees guarantee a minimum throughput to classes that are backlogged. The

throughput guaranteed to classes that are not backlogged should be usable by backlogged classes.
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A throughput guarantee is defined by a bound on the service rates of,dpssified as

VEBi(t) >0.,ri(t) > . (3.20)

Proportional differentiation on delay and loss, respectively, is defined, fosadh tha;(t) >

0 andB;11(n) >0, as

=k, (3.21)

and

pita(t) .,
P ©22

wherek; andk{ are proportional differentiation factors, that is, constants that quantify the propor-
tional differentiation desired. Note that even though Egs. (3.21) and (3.22) impose that proportional
differentiation only apply to classes with contiguous indices, simply reordering class indices enables
to provide proportional differentiation between any two classes.

We have fully specified the service guarantees of Quantitative Assured Forwarding, and we now

turn to a description of the specifics of the algorithms we propose to realize the QAF service.



Chapter 4

Service Rate Allocation and Traffic Drops: An

Optimization Problem

In this chapter, we discuss two algorithms based on the JoBS scheme to provide the service guar-
antees of the Quantitative Assured Forwarding service at a given output link. The algorithms we
propose in this chapter use a predictive rate allocation and buffer management. That is, every time
an arrival occurs, the algorithms predict the delays that will be experienced by backlogged traffic
if the current rate allocation stays in force and if no traffic is dropped. If the predicted delays indi-
cate impending service violations, the rate allocation is changed so that the predictions satisfy all
proportional and absolute guarantees on delays. Traffic is dropped, subject to loss guarantees, only
if no feasible rate allocation can satisfy all delay and throughput guarantees. In other words, at a
given times, the goal is to compute the rate allocatig(s) and traffic dropd;(s) so that service
guarantees are met in the future, at tirhess.

We describe a first algorithm where the service rate allocation and traffic drops are expressed in

terms of the solution to an optimization problem [103]. An optimization problem is defined by
e An optimization variable, which is the unknown in the problem,
e A set of constraints, which define the solution space of the problem, and

e An obijective function, which selects a specific solution in the solution space.

44
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The optimization is performed each tirmat which an arrival occurs. Considering a num@er

of classes, the optimization variable is a time-dependent vector

Xs = (r1(s)...ra(s) 11(5)...10(9)" ,

which contains the service ratg$s) and the amount of traffic to be droppk(k) for each class.

The optimization problem has the form

Minimize  F(Xs)
Subjectto gj(xs) =0, j=1,...,M (4.1)
hi(xs) >0, j=M+1,....N,

whereF(.) is the objective function, and thgy’s and h;’s are constraints. More precisely;’s
define equality constraints, ar’s define inequality constraints. The optimization at tigis
done with knowledge of the system state before tirthat is the optimizer knova§n andR°“t for
all timest < s, andA; for all timest < s.

We use an objective function that minimizes the amount of traffic to be dropped, and, as a
secondary objective, aims at maintaining the current service rate allocation. The first objective
prevents traffic from being dropped unnecessarily, and the second objective tries to avoid frequent
fluctuations of the service rate allocation. The constraints are the Quantitative Assured Forwarding
service guarantees defined in ChaptefQ®$ constrainfs and constraints on the link and buffer
capacity §ystem constrain}s

The computational complexity of the algorithm effectively in charge of the rate allocation and
traffic drops is determined by the number and the type of constraints, and by the frequency of
running the above optimization. For now, we assume that sufficient computing resources are avail-
able. The optimization-based algorithm can be used as a reference algorithm against which more
practical scheduling and dropping algorithms can be compared. We will later approximate the
optimization-based algorithm with a heuristic algorithm that incurs less computational overhead.

The remainder of this chapter is organized as follows. In Section 4.1, we present the constraints
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of the optimization problem in details. In Section 4.2, we give a formal definition of the objective
function. In Section 4.3, we introduce a heuristic algorithm to approximate the solution to the
optimization problem. In Section 4.4, we evaluate the performance of both the optimization and
heuristic algorithms with respect to meeting service guarantees through simulation experiments,

and provide a numerical comparison with other algorithms available in the literature.

4.1 System and QoS Constraints

We next discuss the constraints of the optimization problem. There are two types of constraints:
system constraintdescribe constraints and properties of the output link, wWQiteS constraints
enforce the desired service differentiation. All constraints in the optimization problem must be
expressed in function of the optimization variakle Hence, the object of the present section is to

to derive expressions for the constraint functign&s) andh;(xs) in Eqn. (4.1).

4.1.1 System Constraints

The system constraints specify physical limitations and properties at the output link and the associ-
ated transmission queue where service guarantees are enforced.

The first system constraint enforces that scheduling at the output link is work-conserving. At a
work-conserving link servin@ classes of traffic, Eqn. (3.1) holds for all timesherey; Bi(t) > 0.
For the optimization problem as defined by Eqn. (4.1), Egn. (3.1) is written as an equality constraint

defined by the functiog; (xs) as follows:

Q
01(Xs) = _eri (s)—C. (4.2)

The second set of system constraints characterizes bounds on the service rates and traffic drops.

In particular, service rates and traffic drops cannot be negative, and the amount of traffic that can be
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dropped is bounded by the current backlog. So, we obtain, for each ctassy time,

ri(t) > 0,
Il(t) 2 07
li(t) < Bi(t).

We use a convention wherebydenotes thg-th inequality constraint, applied to classind obtain

three inequality constraints per class,

hiZ(XS):ri(s)v i:la"'an
h(xs) = li(s) i=1...,Q, 4.3)
hly(xs) =Bi(s) —li(s), i=1,...,Q.

The last system constraint states that the total backlog in the transmission queue cannot exceed

the buffer sizeB, that is,

Q
ZlBi (H)<B, (4.4)
for all timest. Since we have, for all|
Bi(s) =Bi(s ) +ai(s) —li(s) , (4.5)

the buffer size constraint in Eqn. (4.4) can be rewritten as

Q
Z(Bi(s*Ha(s) —li(s)) <B, (4.6)

where the only unknown i(s). Egn. (4.6) directly translates into an inequality constraint charac-
terized by
M) =B— 3 (Bi(s")+ai(s) —Ii() - (4.7)
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4.1.2 QoS Constraints

The QoS constraints describe the service guarantees offered by the Quantitative Assured Forward-
ing Service. We consider two types of QoS constraints, relative constraints and absolute constraints.
Relative constraints are used to enforce proportional service differentiation, while absolute con-
straints translate absolute bounds on the service received. QoS constraints can be expressed for
delays, loss rates and service rates.

The number and type of QoS constraints is not limited. However, since absolute QoS constraints
may result in an infeasible system of constraints, one or more constraints may need to be relaxed
or eliminated at certain times. We assume that the set of QoS constraints is assigned some total
order, and that constraints are relaxed in the given order until the system of constraints becomes
feasible. For our optimization-based algorithm, we select a specific relaxation order that gives
absolute guarantees priority over proportional guarantees, and that gives loss guarantees priority
over delay or rate guarantees. So, usiag to denote the order in which guarantees are relaxed,
we have

RDC < RLC < ADC < ARC < ALC < System constraints (4.8)

QoS constraints for classes which are not backlogged are simply ignored.

Quantitative Assured Forwarding service guarantees in Egs. (3.18)—(3.22) are expressed in
terms of delays, loss, and service rates, but the only parameters the optimization-based algorithm
can directly control at time are the components of the optimization variaklethat is, the service
ratesr;(s) and the amount of dropped traffi¢s). Furthermore, the optimization-based algorithm
uses the predictions of the delays of all backlogged traffic to express the delay guarantees. There-
fore, we have to rewrite the service guarantees in Egs. (3.18)—(3.22) as constraj(ss amdl; (s)
depending on the predictions.

We next discuss how each of the service guarantees of the Quantitative Assured Forwarding
Service maps to a set of QoS constraints in the optimization problem.

Delay bounds. A classt delay boundd;, as specified in Egn. (3.18), translates intoAdrsolute

Delay Constrain{ ADC) in the optimization problem.
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Figure 4.1:Determining service rates required to meet delay boundsThe figure indicates the
service ratg{""(s) required so that the maximum predicted delay sati€i{&&'= d;. Allocating at

leastr/™"(s) ensures that the delay boudds met for class.

The delay bound} holds if, for any timet, the predicted delays of classespect the bound.

In other words, classis guaranteed the boumtlif, for all t,
DY <di, (4.9)

wheref)i”}axis the maximum predicted delay, defined in Egn. (3.15). We illustrate the relationship
betweerd; and the minimum service raté“” required to meed; in Figure 4.1. Figure 4.1 describes

the worst-case arrival pattern for the maximum predicted delay, where all traffic backlogged at
timesarrived in a single burst of traffic. In such a case, the maximum predicted anys equal

to the predicted delay of the traffic at the tail of the queue, and is given by
DY =Di(s) + Tis.

Where"l'vivs, the predicted horizon defined in Eqn. (3.10), characterizes the time at which the entire

backlog at timeswill be transmitted if the service rate allocation at tiswg;(s) > 0) is maintained.
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Hence, we can expredss with:

and replacing in the expression ﬂﬁﬁ“sax, we get

6Wsax =Di(s) + .

To satisfy Eqn. (4.9), we obtain

We denote by™"(s) the minimum service rate needed at tigte meet the delay bourdj, and get

min/aqy _ Bi(s)
i (S) - di — Di(S) .

Then, to enforce the delay boudd r;(s) needs to satisfy:
ri(s) > r™(s) . (4.10)
Using Egn. (4.5) in Egn. (4.10) gives, after reorganizing the terms,
Bi(s™) +ai(s) —li(s) —ri(s)(d —Di(s)) <0 (4.11)
Here, the only unknowns arg(s) andl;i(s). Thus, the Absolute Delay Constraints are:
hi(xs) = (di — Di(s))ri(s) — (Bi(s™) +ai(s) - li(s)), i=1,...,Q. (4.12)

Proportional delay differentiation. We denote the constraints that express proportional delay
differentiation between classes, as described in Eqn. (3.2Belative Delay ConstraintgkDC).

For the expression of the Relative Delay Constraints, we use the average predicte®dglag,
defined in Egn. (3.16), for characterizing the “delay of cidss

To obtain a solution space, rather than a single solution for the service rate allocation, we allow
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for some slack in the expression of the relative delay constraints. The relative delay constraints at

timesare given as

<k(l+e), (4.13)

wherek; > 1 is the target proportional differentiation factor an(D < € < 1) indicates a tolerance
level.

We obtain the following inequality constraints after reorganizing terms in Eqgn. (4.13):

hi7(xs) = 6i+l,s—ki(1_€)5i,37 i:]-v"'7Q_lv
hiS(XS) k|(1+ 8)6i,5_§i+1§7 i = 17 . '7Q_ 17

(4.14)

whereD; s andD;_1 s can be expressed as a function of the unknaw(ss, ri1(s), li(s) andliy1(s).
SinceD; s is not a linear function oXs, hi7(xs) and hi8(xs) are not linear.

Next we discuss constraints on the loss rates at thediofi@n arrival,p;(s). Recall that in the
definition of p;(s) given by Eqn. (3.17), all values excdpfs) are known at times.
Loss rate bounds.The loss rate bounds of the Quantitative Assured Forwarding service, as defined
in Egn. (3.19), map td\bsolute Loss ConstrainffA\LC). Using the definition of the loss rate at

times, pi(s), given in Eqn. (3.17), the service guarantee Eqn. (3.19) reduces to

CR'(s)+alsd)-li(s) _,
1 A(S <L,
which can be rewritten as
li(8) < (Li— D) A(S) +R(s ) +a(s) (4.15)

wherel;(s) is the only unknown. Eqn. (4.15) defines the following inequality constraints:

ho(xs) = (Li — D) A(S) + R (s7) +ai(s)—li(s), i=1,...,Q. (4.16)

Proportional loss differentiation. Proportional loss differentiation between classes, as defined by
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Egn. (3.22) results iRelative Loss Constrain{ffRLC). Similar to the RDCs, we provide a certain
slack when expressing the Relative Loss Constraints. The RLC for cliasdeandi at times has
the form

K(l—g)< p;é)s) <K(1+€), 4.17)

wherek! > 1 is the target differentiation factor, asfd(0 < €’ < 1) indicates a level of tolerance.
From Eqgn. (3.17), at timg, pi(s) can be expressed as a function;¢$). Therefore, the RLCs
can be expressed as a functionxgf From Eqn.(4.17), we get the following set of inequality

constraints:
hio(Xs) = Pirrs—K(1—€)pis, i=1,...,Q-1,

hill(XS) =ki(1+¢) Pis—Pi+1s, 1=1,...,Q-1.

(4.18)

Throughput guarantees. Last, the throughput guarantees of Egn. (3.20) are mappAddolute

Rate Constraint$ARC), which are expressed as the following inequality constraints:

(X)) =Ti(S) -, i=1,...Q. (4.19)

4.2 Objective Function

Provided that the QoS and system constraints defined above can be satisfied, the objective function
will select a solution foxs. As briefly discussed in the beginning of this chapter, even though the
choice of the objective function is a policy decision, we select two specific objectives, which, we

believe, have broad validity:
e Objective 1. Avoid dropping traffic,
e Objective 2 Avoid changes to the current service rate allocation.

The first objective ensures that traffic is dropped only if there is no alternative to satisfy the QoS
and system constraints. The second objective tries to hold on to a feasible service rate allocation as

long as possible. We give the first objective priority over the second objective.
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The following formulation of an objective function expresses the above objectives in terms of a

cost function:
Q

Q
. (V2 L2 .

F(xs) :i;(r.(s)—r,(s ))“+C i;I.(s), (4.20)
whereC is the link capacity. The first term expresses the changes to the service rate allocation and
the second term expresses the losses atgimte that, at times, r;(s) is part of the optimization
variable, whileri(s™) is a known value. In Eqn. (4.20) we use the quadratic famis) —ri(s))?,

because

S (1i(s) ~ri(s)) =0

|
for a work-conserving link with a backlog at tinse The scaling facto€? in front of the second

sum in Eqgn. (4.20) ensures that traffic drops are the dominating term in the objective function.
This concludes the description of the optimization problem. At a given §inadl of the QoS

and system constraints are expressed in ternmg®)fandl;(s), that is, as a function of the vector

Xs. Summarizing Egs. (4.2)—(4.20), the optimization problem at the siai@n arrival at the output

link under consideration has the form:

Minimize 324 (ri(s) ~ri(s))* +C* 524 (9)

Subject to ZiQ:lri(s)—C =0,
ri(s) >0, i=1...,Q,
li(s) >0, i=1,...,Q,
Bi(s) —li(s) >0, i=1,...,Q,
B— 32, (Bi(sT)+ai(s)—i(9)) >0,
(di —Di(s))ri(s) = (Bi(s") +a(s) ~li(s)) =0, i=1,...,Q, (4.21)
Diy1s—ki(1—¢)Dis >0, i=1....0-1,
ki(1+¢€)Dis—Dis1s >0, i=1,...,0-1,
(Li—1)A(s)+R"(s7) +ai(s) —li(s) >0, i=1,...,Q,
Pi+1(s) —K(1—€)pi(s) >0, i=1,...,0-1,
K (1+€")pi(s) — pi+i(9) >0, i=1..,Q-1,

ri(s) — 1 >0, i=1...,Q0-1.
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Packet Arrival

N packets
arrived since No———>
Yes ADC violation
Buffer Overflow Find  I(s),r(s)
subject to: .
Find  I(s) - ﬁEgs
subject to: - ALLS
- ALCs — ignore RDCs
- RLCs and RLCs
- Eqgn. (4.22) () No R
RDC violation
Find  r(s) N
subject to:
(*) If necessary relax the RLCs (RDCs) to - ADCs v
obtain a feasible solution for the /(s) of r(s) - RDCs DOD

Figure 4.2:0utline of the heuristic algorithm. The heuristic algorithm decomposes the optimiza-
tion problem into several smaller, computationally less intensive, problems.

The system (4.21) is maon-linear optimization problembecause (1) the optimization function

is quadratic, and (2) we ha s = O(ﬁ) which causes the RDC to be non-linearxin A
non-linear optimization problem as defined by Eqn. (4.21) can be solved with available numerical
algorithms such as [131]. If Egn. (4.21) yields an empty solution space, some constraints are

relaxed, according to the precedence order of Eqgn. (4.8).

4.3 Heuristic Algorithm

Approximating the solution to a non-linear optimization problem as presented in this chapter can
be performed by well-known techniques such as fuzzy systems, or neural networks. However, these
techniques can be computationally expensive. To reduce the computational complexity, we devise
a heuristic algorithm, which decomposes the optimization problem into several smaller, computa-

tionally less intensive, problems. The heuristic algorithm presented here maintains a feasible rate
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allocation until a buffer overflow occurs or a delay violation is predicted. At that time, the heuristic

picks a new feasible rate allocation and/or drops traffic. Also, the tests for violations of ADCs and
RDCs are not performed for every packet arrival, but only periodically, or when there is a buffer
overflow.

As in the optimization-based algorithm, a set of constraints that includes absolute constraints
(ALCs or ADCs) may be infeasible at certain times. Then, constraints are relaxed in the order given
in Eqn. (4.8).

A high-level overview of the heuristic algorithm is presented in Figure 4.2. We decompose the
optimization problem into a number of smaller sub-problems. Each sub-problem characterizes a
case that requires to adjust the service rate allocation and/or to drop packets. The proposed heuristic
algorithm consists of a sequence of procedures that compute the rate allocation and packet drops
required to solve each sub-problem. We next present each of the sub-problems and the associated

computations.

Buffer Overflow. If an arrival at times causes a buffer overflow, one can either drop the arriving

packet or free enough buffer space to accommodate the arriving packets. Both cases are satisfied if

NICEOXICE (4.22)

The heuristic picks a solution for thgs) which satisfies Eqn. (4.22) and the RLCs in Eqn. (4.17),
where we set’ = 0 to obtain a unique solution. If the solution violates an ALC, the RLCs are
relaxed until all ALCs are satisfied. Once thés)'s are determined the algorithm continues with
a test for delay constraint violations, as shown in Figure 4.2. Recall that while the algorithm only
specifies the amount of traffic which should be dropped from a particular class, and does not select
the position in the queue from which to drop traffic, we assume a Drop-Tail dropping policy.

If there are no buffer overflows, the algorithm makes predictions for delay violations only once
for everyT packet arrivals. The selection dfrepresents a tradeoff between the runtime complex-
ity of the algorithm and performance of the scheduling with respect to satisfying the constraints.

Simulation experiments, as described in Section 4.4, were performed with thelvaiu®0 and
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exhibit good performance.

The tests use the current service rate allocation to predict future violations. For delay constraint
violations, the heuristic distinguishes three cases.
Case 1: No violation. In this case, the service rates are unchanged.
Case 2: RDC violation. If some RDC (but no ADC) is violated, the heuristic algorithm determines
new rate values. Here, the RDCs as defined in Egn. (4.13) are transformed into equations by setting
€ = 0. Together with the work-conserving property, one obtains a system of equations, for which
the algorithm picks a solution. If the solution violates an ADC, the RDCs are relaxed until the
ADCs are satisfied.
Case 3: ADC violation. Resolving an ADC violation is not entirely trivial as it requires to
recalculate the;(s)’s, and, if traffic needs to be dropped to meet the ADCs|iil®¢s. To simplify
the task, our heuristic ignores all relative constraints when an ADC violation occurs, and only tries
to satisfy absolute constraints.

By simply reordering the terms, we can rewrite the constraint given in Egn. (4.11), and define a

variablep; as

1 Bi(s))+ai(s) —li(s)
W9 G Dy - (4.23)

Pi

The heuristic algorithm will select thg(s) andl;(s) such that Eqn. (4.23) is satisfied for all
Initially, rates and traffic drops are settds) = ri(s~) andl;(s) = 0. Since at least one ADC is
violated, there is at least one class wgth> 1, wherep; is defined in Eqn. (4.23). Now, we apply
a greedy method which tries to redistribute the rate allocations piril1 for all classes. This is
done by reducing;(s) for classes witlp; < 1, and increasing;(s) for classes withp; > 1. If itis
not feasible to achievg; < 1 for all classes by adjusting thigs)’s, thel;(s)’s are increased until
pi <1 for alli. To minimize the number of dropped packdiss) is never increased to a point
where an ALC is violated.

In terms of computational overhead, the heuristic algorithm requires to solve several linear
systems ofQ equations, wher@ is the number of service classes. The systems of equations used

in the heuristic algorithm are made explicit in [101], Appendix B. Solving each of these systems of
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Figure 4.3:0ffered load. The graph describes the offered load at our simulated bottleneck link.

equations requires to compute the product qf a Q matrix with a vector of dimensio, which

has a computational complexity 6 Q?).

4.4 Evaluation

We present an evaluation of the algorithms developed in this chapter using packet-level simulation
experiments. Our goals are (1) to determine if and how well the desired service differentiation is
achieved; (2) to determine how well the heuristic algorithm from Section 4.3 approximates the op-
timization; and (3) to compare our algorithm with existing proposals for proportional differentiated
services.

In the simulations, we evaluate the following four schemes.
e The optimization-based algorithm described in Sections 4.1 and 4.2,

e The heuristic algorithm discussed in Section 4.3. Unless there is a buffer overflow, tests for

delay violations are performed once for ev@ry= 100 packet arrivals.

e WTP/PLR() [48]: We evaluate a combination of the WTP scheduler and the &) Bgck-
log controller. Both of the WTP and PLR algorithms from [48] are discussed in Chapter 2.
Since WTP/PLR) provides a better service differentiation than WTP/PLR(M), we only in-
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clude results for WTP/PLR{). Note that neither WTP/PLRY) nor WTP/PLR¢e) supports

absolute guarantees to traffic classes.

e MDP [113]/Drop-Tail: The MDP scheduler presented in [113] is discussed in Chapter 2.
Since MDP does not provide mechanisms for loss differentiation, we assume a simple Drop-
Tail algorithm for discarding packets. As WTP/Pleby( MDP does not support absolute QoS

guarantees.

We present two simulation experiments using the simulator available in [31]. In the first exper-
iment, we compare the proportional differentiation provided by the optimization-based algorithm,
the heuristic algorithm, WTP/PLRY), and MDP/Drop-Tail without specifying absolute constraints,
at a single node. In the second experiment, we augment the set of constraints by absolute loss and
delay constraints on the highest priority class, and show that the algorithms based on the JoBS

scheme can effectively provide both proportional and absolute differentiation at a single node.

4.4.1 Simulation Experiment 1: Proportional Differentiation Only

The first experiment focuses on proportional service differentiation, and does not include absolute
constraints. We consider a single output link with capaCity 1 Gbps and a buffer size of 6.25 MB.

We assum&) = 4 classes. The length of each experiment is 20 seconds of simulated time, starting
with an empty system. In all experiments, the incoming traffic is composed of a superposition of
Pareto sources with = 1.2 and average interarrival time of 3p@ The shape parameterof the

Pareto distribution essentially characterizes the burstiness of the traffic arrivals. The sinidéer
burstier the traffic. The number of sources active at a given time oscillates between 200 and 550,
following a sinusoidal pattern. All sources generate packets with a fixed size of 125 bytess.
resulting offered load is plotted in Figure 4.3. Modulating the number of active Pareto sources by a
sinusoidal wave allows us to test our algorithm under very bursty conditions over short timescales,
while having the load vary significantly over longer timescales. At any time, each class contributes

25% of the aggregate load.

Ipacket sizes on the Internet are in fact subject to a multimodal distribution [9], and thus, the simulation presented
here is only a simplified model.
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Figure 4.4:Experiment 1: Proportional delay differentiation. The graphs show the ratios of the
delays for successive classes (a)-(d) and the absolute delay values (e)-(h). The target value for the
ratios, indicated by a dashed linekis- 4.
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Figure 4.5: Experiment 1. Proportional loss differentiation. The graphs show the ratios of loss
rates for successive classes (a)-(d) and the loss rates (e)-(h). The target value for the ratios, indicated
by a dashed line, i€ = 2.
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Proportional differentiation factors are set to four for the ratio of delays of two successive
classes, and to two for the ratio of loss rates of two successive classes, i. e.kwe 4endk = 2
fori € {1,2,3}. The tolerance levels are set ta¢’) = (0.0010.05) in the optimization-based
algorithm, and t& = 0.01 in the heuristic algorithm. The results of the experiment are presented
in Figures 4.4 and 4.5, where we graph the delays and loss rates, respectively, of successive classes
for the optimization-based algorithm, the heuristic algorithm, WTP/B)Rénd MDP/Drop-Tail.

Using a measure adopted from [48], the plotted delay and loss values are averages over moving
time windows of size 0.%.

When the link load is above 90% of the link capacity, that is, in time interfa6 s| and
[10 s,15 g, all methods provide the desired service differentiation. The oscillations around the
target values in the optimization-based algorithm and the heuristic algorithm are mostly due to the
tolerance values ande’. The selection of the tolerance valueande’ in our proposed algorithms
presents a tradeoff: smaller values foande’ reduce oscillations, but incur more adjustments for
the algorithms. When the system load is low, that is, in time inteats10 s] and [16 s,20 g,
only the optimization-based algorithm and WTP/PbtdRMmanage to achieve some delay differen-
tiation, albeit far from the target values. MDP/Drop-Tail, plotted in Figure 4.4(d), provides some
differentiation, but the system seems unstable, particularly after a transient change in the load. At
an underloaded link, the absolute values of the delays are very small for all classes, regardless of
the scheduling algorithm used, as shown on Figures 4.4(e)-(h), and all classes receive an excel-
lent service. Figures 4.4(e)-(h) also show that the absolute values for the delays are comparable
in all schemes. In fact, proportional delay differentiation cannot be realized at low loads without
artificially delaying some packets, that is by making the scheduler non-work-conserving.

In Figures 4.5(a) and 4.5(c), we observe all algorithms show some transient oscillations with
respect to loss differentiation when the link changes from an overloaded to an underloaded state.
These transient spikes during a transition between an overloaded and an underloaded system are
caused by the low number of packets dropped when the link becomes underloaded, which makes
the ratios of loss rates become less meaningful.

Note that, since proportional differentiation does not guarantee an upper bound, an algorithm
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may provide excellent proportional loss differentiation, but have an overall high loss rate, which
can translate into poor service. Figures 4.5(e)-(g) show that in the simulations, the loss rates of
WTP/PLR0) and of our proposed algorithms are very similar. With WTP/RER{nd both of our
proposed algorithms, the average of the per-class loss rates is equal to the loss rate obtained with
a Drop-Tail policy, plotted in Figure 4.5(h). This shows that, in this experiment, all schemes only

drop packets when a buffer overflow occurs.

4.4.2 Simulation Experiment 2: Proportional and Absolute Differentiation

In this second experiment, we evaluate how well our algorithms can satisfy a mix of absolute and
proportional guarantees on both delays and losses. Here, we only present results for the heuristic
algorithm WTP/PLR¢) and MDP/Drop-Tail do not support absolute guarantees, and refer to [101]
for results obtained with the optimization-based algorithm. The experiment illustrates how traffic
is dropped to help meet absolute delay guarantees.

We consider the same simulation setup and the same proportional delay guarantees as in Ex-
periment 1, but add an Absolute Delay Constraint (ADC) for Class 1 suchiikatl ms and we
replace the Relative Loss Constraint (RLC) between Classes 1 and 2 by an Absolute Loss Constraint
(ALC) for Class 1 such thdt; = 1%. We call this scenario “with ADC, all RDCs". With the given
proportional delay guarantees from Experiment 1, the other classes have “implicit” delay bounds,
which are approximatefy4 msfor Class 2, 16nsfor Class 3, and 64nsfor Class 4. Removing
the RDC between Class 1 and Class 2, we avoid the implicit delay bounds for Classes 2, 3, and 4,
and call the resulting constraint set “with ADC, one RDC removed”. We also include the results for
the heuristic algorithm from Experiment 1, with the ALC on Class 1 replacing the RLC between
Classes 1 and 2, and refer to this constraint set as “no ADC, all RDCs". In Figures 4.6(a)—(c) we
plot the delays of all packets, and in Figures 4.6(d)—(f) we plot the loss rates of all classes, aver-
aged over time intervals of length 0s1We discuss the results for each of the three constraint sets

proposed.

2Dye to the tolerance value the exact values are not integers.



Chapter 4. Service Rate Allocation and Traffic Drops: An Optimization Problem 63

Concerning the experiment “with ADC, all RDCs”, Figure 4.6(a) shows that the heuristic
maintains the proportional delay differentiation between classes, thus, enforcing the implicit de-
lay bounds for Classes 2, 3, and 4. With a large number of Absolute Delay Constraints, the system
of constraints easily becomes infeasible, as pointed out by the following two observations. First,
Figure 4.6(d) shows that the loss rates of Classes 2, 3 and 4 are similar. This result illustrates that
the heuristic relaxes Relative Loss Constraints to meet the Absolute Delay Constraints.

Second, Figure 4.6(a) shows that the absolute delay guamdniesometimes violated. How-
ever, such violations are rare (over 95% of Class-1 packets have a delay less thas), @0@
Class-1 packet delays always remain reasonably close to the delay qouRdr the experiment
“with ADC, one RDC removed”, Figure 4.6(b) shows that, without an RDC between Classes 1 and
2, the ratio of Class-2 delays and Class-1 delays can exceed a factor of 10 at high loads. With this
constraint set, the absolute delay guaranleis never violated, and Figure 4.6(e) shows the RLCs
are consistently enforced during periods of packet drops.

Finally, for the experiment “no ADC, all RDCs", Figure 4.6(c) shows that, without the ADC,
the delays for Class 1 are as high an$ The delay values for Classes 2, 3, and 4 in Figures 4.6(b)
and (c) appear similar, especially since we use a log-scale. We emphasize that the vahoes are

identical, and that the results are consistent.

4.5 Summary and Remarks

In this chapter, we showed that providing proportional and absolute service guarantees to classes
of traffic at an output link without reservations or a priori knowledge of the traffic arrivals can be
expressed in terms of an optimization problem.

The formulation of the optimization problem uses predictions on the service that will be re-
ceived in the future. The constraints of the optimization problem are the service guarantees and
properties of the output link under consideration. The objective function of the optimization prob-
lem is chosen to minimize traffic losses and changes in the rate allocation. We presented an algo-

rithm that uses the solution to the optimization problem to allocate the service rates and drop traffic
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Figure 4.6: Experiment 2: Delay and loss differentiation. The graphs show the delays of all
packets in (a)—(c) and the loss rates of all classes in (d)—(f). All results are for the heuristic algo-

rithm.
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so that QAF service guarantees are met.

When the optimization problem does not yield a solution, meaning that it is impossible to satisfy
all service guarantees simultaneously, some of the QoS guarantees are selectively ignored, based
on a precedence order specified a priori.

Due to the form of the constraints, the optimization problem is a non-linear optimization, which
can only be solved numerically. The computational cost of solving a non-linear optimization upon
each arrival to the link under consideration may be prohibitive to consider an implementation of
an optimization-based algorithm at high-speeds. To reduce the computational overhead of the ap-
proach, we described a heuristic algorithm that approximates the optimization-based algorithm.

We showed in a set of simulation experiments that both the optimization-based and heuristic
algorithms were effective at providing proportional and absolute per-class QoS guarantees for delay

and loss.



Chapter 5

A Closed-Loop Algorithm Based on Feedback Control

In this chapter, we present an algorithm based on a reactive service rate allocation and buffer man-
agement [34]. Recall from Chapter 3 that a reactive service rate allocation and buffer management
uses measurements of the service experienced and tries to attenuate the difference between the
service experienced and the service guarantees offered.

Compared to predictive algorithms such as discussed in the previous chapter, a reactive service
rate allocation and buffer management has the following interesting properties. Since mechanisms
are based on past measurements, the need for predicting the service that will be experienced in
the future is alleviated. In particular, an algorithm based on a reactive service rate allocation and
buffer management does not need to compute predicted delays, thereby reducing the total number
of operations performed by the algorithm.

In addition, a reactive service rate allocation and buffer management can be described as a
closed-loop problem, which enables us to use feedback control theory to analyze the properties of
the algorithm. For instance, we will use feedback control analysis to derive configuration bounds
that ensure the algorithm will realize the desired service differentiation.

To better reflect the design idea behind the algorithm presented in this chapter, we will refer
to the algorithm as a “closed-loop algorithm”. Similar to the optimization-based and heuristic
algorithms in Chapter 4, the closed-loop algorithm relies on the JoBS scheme to allocate service

ratesr; and traffic losse§ upon each packet arrival, but instead of directly computing the service
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Figure 5.1: Overview of the closed-loop algorithm. The figure is an overview of the feedback
loop for delay differentiation. A similar mechanism is used for loss differentiation.

rater; as in the algorithms of Chapter 4, the closed-loop algorithm computes a chanigethe
service rate allocation.

We illustrate in Figure 5.1 how the adjustmémt for classi is computedAr; is the output of a
controller, which takes a measurement angbapointas inputs. The measurement characterizes the
value of the classbacklog and delay of the traffic leaving the router. The set point is obtained from
the proportional delay guarantees. The controller is subject to saturation effects, which translate the
absolute delay and throughput guarantees, and limit the range of vatueen take. The effect of
the rate adjustments on future delays completes the description of the loop, and imposes conditions
on the controller to guarantee a stable feedback loop, that is, to ensure that proportional delay
guarantees are met.

Recall that, in our JoBS scheme, traffic is dropped, either from a new arrival or from the current
backlog, at times when no feasible service rate allocation for meeting all delay guarantees exist,
or when the transmission queue is full. A mechanism similar to that presented in Figure 5.1 for
service rate allocation governs how traffic is dropped. To satisfy proportional loss guarantees,
traffic is dropped from classes according to a drop priority order, defined as follows. For each class,
the difference between the loss rate needed for perfect proportional differentiation and the observed
loss rate defines an error. The larger the error of a class, the higher its drop priority. For each
classi, we stop dropping traffic when either (1) the loss guarahtde reached, or (2) the buffer

overflow is resolved or a feasible rate allocation for absolute guarantees exists and there is no need
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for dropping traffic anymore.

The remainder of this chapter is organized as follows. In Section 5.1, we start by introducing the
formalism used in the description of the closed-loop algorithm. In Sections 5.2 and 5.3 we describe
in more details the feedback loops that are used in the design of the algorithm. In Section 5.4, we

present simulation results to quantify the performance of the algorithm.

5.1 Notations

In this section, we introduce the notations that we use in the description of our closed-loop algo-

rithm.

5.1.1 A Discrete Time Model

The formalism of the optimization problem and of the associated heuristic of Chapter 4 assumes
a continuous time model. That is, all quantities are expressed in function of the continuous time
variablet. The description of our closed-loop algorithm, on the other hand, relies on a discrete,
event-driven time model, where events are traffic arrivals.

We uset[n] to denote the time of the-th event in the current busy period, afn] to denote
the time elapsed between theh and(n+ 1)-th events. We use a shorthand notation with square
brackets to specify that a quantity is evaluated at a given event. For instance, instead of writing
g (t[n]) andl;(t[n]), we usea[n] andli[n] to denote the classarrivals and the amount of class-
i traffic dropped at the time of the-th event, respectively. Likewise, we ugén| to denote the
service rate allocated to classt the time of then-th event. As in Chapters 3 and 4, we assume
bursty arrivals with a fluid-flow service, that is, the output link is viewed as simultaneously serving
traffic from several classes.

Let t[0] define the beginning of the busy period. In the discrete time model, the arrival, input,
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and output curves for clagst then-th event A [n], R"[n] andRP"![n] are defined by

Al = kia[k] ,

R = Aln- S Ik,
k=0
n-1
R = 3 nldat (5.1)
=0

respectively, by simply rewriting Egs. (3.2)—(3.4).

Expressing Egs. (3.5) and (3.6) in terms of events, we have
Bi[n] = R"[n] — R [n] ,

and

Di[n] = t[n] —t[max{k < n | R*“[n] < R"[K]}] . (5.2)

Eqn. (5.2) characterizes the delay of the clesaffic that departs at theth event. The loss rate at
then-th event,p;[n], is simply

(5.3)

Last, the service guarantees of the Quantitative Assured Forwarding service are expressed as in

Egs. (3.18)—(3.22).

5.1.2 Rate Allocation and Drop Decisions

We now sketch a closed-loop solution for realizing the service differentiation specified in
Egs. (3.18)—(3.22) at the output link of a router with capaCignd buffer sizé8. The assumptions

on the router architecture outlined in Chapter 3, Section 3.1, still hold. We still assume per-class
buffering of incoming traffic, and that traffic from each class is transmitted in a FIFO manner. In the
proposed solution, the service ratgs] and the amount of dropped traffign] are adjusted at each

eventn so that the constraints defined by Egs. (3.18)—(3.22) are met. As before, if not all constraints
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in Egs. (3.18)—(3.22) can be met at thh event, some service guarantees need to be temporarily
relaxed. We assume that the order in which guarantees are relaxed is given by Eqn. (4.8).

Recall from Eqgn. (4.10) that a minimum service rate allocated to clgs®quired to meet an
absolute delay bound on claisg;. If classi has, in addition, an absolute throughput boundhe
expression for the minimum rate needed by classthen-th event, becomes

minp.] Bi [n] i
N = max{di—Di[n]’M 'XBi[n]>O} . (5.4)

The service rate that can be allocated to classbounded by the output link capacity minus the

minimum service rates needed by the other classes, that i§with
rMmaXn] =C — érﬁni”[n} :
J#I

Therefore, the service rate can take any vajireé with

subject to the constrairjjri[n] < C. Given this range of feasible valuas|n| can be selected to
satisfy proportional delay differentiation.

We view the computation af[n] in terms of the recursion
rifn] = ri[n—1] + Ari[n] , (5.5)

whereAr;[n] is selected such that the constraints of proportional delay differentiation are satisfied
at eventn. From Egs. (5.1) and (5.2), the delBy[n] at then-th event is a function ofi[k] with

k < n. By monitoringD;[n] we can thus determine the deviation from the desired proportional dif-
ferentiation resulting from past service rate allocations, and infer the adjustmént= f (D;[n])
needed to attenuate this deviation.

If no feasible service rate allocation for meeting all delay guarantees existsrathtrevent, or

1For any expressiongkpr’, we definexexpr = 1 if “expr’ is true andxexpr = 0 otherwise.
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if there is a buffer overflow at the-th event, traffic must be dropped, either from a new arrival or
from the current backlog. Loss differentiation determines which class(es) suffer(s) traffic drops at
then-th event.

We obtain a recursion to express loss differentiation. We rewrite Eqn. (5.3) as the difference

equation

o AN =R

pl[n} - A|[n]
_ An-1+an— (R"[n—1)+an] —li[n])
- AN
_ A=1-R'[n—1]+1n]
- AN
o An—=1] [
= PN AN &0

From Egn. (5.6), we can determine how the loss rate of élasslves if traffic is dropped from
classi at then-th event. Thus, we can determine the set of classes that can suffer drops without
violating absolute loss bounds. In this set, we choose the class whose loss rate differs by the largest
amount from the objective of Eqgn. (3.22).

Having expressed the service rate and the loss rate in terms of a recursion, we can character-
ize the service rate allocation and dropping algorithm as feedback control problems. In the next
sections, we will describe two feedback problems: one for delay and absolute rate differentiation

(“delay feedback loop”), and one for loss differentiation (“loss feedback loop”).

5.2 The Delay Feedback Loop

In this section, we present feedback loops which enforce the desired delay and rate differentiation
given by Egs. (3.18), (3.20), and (3.21). We have one feedback loop for each class with proportional
delay differentiation. In the feedback loop for cldssve linearize the control loop around an
operating point, and derive a stability condition on the linearized control loop, similar to a technique

used in[77,107,108,120]. While the stability condition derived does not ensure that the non-linear
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control loop converges, the stability condition gives useful guidelines for selecting the configuration
parameter of the controller.

An alternative to using a linear approximation of the non-linear system under consideration is
to directly apply non-linear control techniques to derive the stability conditions. Non-linear control
techniques, e.g., adaptive control [136], resort to algorithms such as gradient estimators. It is not
immediate how a gradient estimator could be implemented to be executed upon each packet arrival
in a network router. Furthermore, adaptive control theory is used to dynamically estimate unknown
parameters that remain constant over time [136]. All quantities in the feedback loops we are study-
ing vary over time, which implies that some approximations have to be made to use adaptive control
theory. These approximations, e.g., assuming that the backlog remains constant over a very short
time interval, are similar to the approximations we will use to linearize the feedback loops, so that

there is no immediate advantage of using adaptive control in the design of our algorithm.

5.2.1 Objective

Let us assume for now that &)l classes are offered proportional delay guarantees and no absolute
delay guarantees. Later, this assumption will be relaxed. The set of constraints given by Eqgn. (3.21)

leads to the following system of equations:

Dz[n] = k]_'Dl[n] s
(5.7)

Dol = (Mf'k) Dalnl.

Letm = nij;ll kj fori > 1, andm = 1. We define a “weighted delay” of clasat then-th event,

denoted byD![n], as

Q
D{n] = (k_!,_Lﬂ rnk) D] . (5.8)

The weighted delay;[n] is the delay of class at then-th event, multiplied by a scaling factor
expressing the proportional delay differentiation desired. By multiplying each line of Eqn. (5.7)

with [T ji m;j, we see that the desired proportional delay differentiation is achieved for all classes
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Vi, j,vn:Din] =Djn. (5.9

Eqn. (5.9) is equivalent to
Vi, ¥n:Df[nj=D"[n],

where

D'[n| = é > Difn]. (5.10)

We setD"[n] to be the set point common to all delay feedback loops. The feedback loop for class
reduces the differend®" — D;[n]| of classi from the common set poifd [n].

Remark: If proportional delay differentiation is requested for some, but not for all classes, con-
straints as in Eqn. (5.7) can be defined for each group of classes with contiguous indices. Then, the

feedback loops are constructed independently for each group.

5.2.2 Service Rate Adjustment

Next, we determine how to adjust the service rate to achieve the desired proportional delay differ-
entiation. Letg[n], referred to as “error”, denote the deviation of the weighted delay of cfass
the set point, i.e.,

&[n =D"[n] - Dj[n] . (5.11)

Note that the sum of the errors is always zero, that is, fam,all

> &ln=QD’[n] — 3 Df[n] = 0.

If proportional delay differentiation is achieved, we ha/@] = 0 for all classes. We use the error
&[n] to compute the service rate adjustm&ntn| needed for clasgo satisfy the proportional delay
differentiation constraints. From Eqn. (5.11), we note tha[if < 0 thenD;[n] > D"[n], which
means that clagsdelays are too high with respect to the desired proportional delay differentiation.

Thereforeri[n] must be increased. Conversedjn] > 0 indicates that classdelays are too low,
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andr;[n] must be decreased. Hence, the rate adjustdwem] is a decreasing function of the error

& [n], written asAr;[n] = f(&[n]), wheref(.) is a monotonically decreasing function. We choose
Anifn) =K -&[n] (5.12)

whereK|n| < 0, which, in feedback control terminology, is the controller. An advantage of the
controller in Eqn. (5.12) is that it requires a single multiplication. Another advantage is that, at any
n, we have

ZAri[n] =K]|n| Za[n] =0. (5.13)

From Eqgn. (5.13), the controller produces a work-conserving system, as long as the initial condition
yiri[0] = C s satisfied.

We next derive two conditions df[n]. The first condition makes the feedback loops stable, in
the sense that they attenuate the ergjrg over time. The second condition &jn| ensures that

the rate adjustmentsr[n] do not create a violation of the absolute delay and rate constraints.

5.2.3 Deriving a Stability Condition on the Delay Feedback Loop

The first condition we derive is a stability condition Kin|, which ensures that the delay feedback
loops attenuate the erroggn] over time. We linearize the delay feedback loops to obtain the
stability condition, using a set of assumptions. Then, we express the relationship between the
service rate adjustments; and the delay®;. We use this relationship to derive the stability
condition.

Assumptions.We consider a virtual time axis, where the event numbeiare equidistant sampling
times. The analysis of the control loop is performed on the virtual time axis, so that the stability
condition on the control loop applies on the virtual time axis. The stability condition applies to real
time only if the skew between virtual time and real time can be neglected, that is, if we assume that,
over very short time intervals such as a busy period, dlgssskets arrive at an almost constant
rate. We note that, over a busy period, the aggregate arrival rate remains roughly equal to the link

capacity, because, if the aggregate arrival rate remains below the link capacity for too long, the
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gueue becomes empty and the busy period ends. If the aggregate arrival rate remains above the
link capacity for a while, the queue overflows, and the rate of traffic admitted (i.e., not dropped)

to the queue becomes equal to the amount of traffic leaving the queue, that is, to the link capacity.
So, assuming that claspackets arrive at an almost constant rate is equivalent to assuming that the
traffic mix between classes does not change much in the router over a busy period.

In addition to the assumption that the traffic mix does not change much over a busy period, we
assume that over a busy period, the clabacklog, delay, and service rate remain in the vicinity
of an operating point characterized by a trirﬂBt, Di, ri). So, we consider that the clasbacklog,
delay and service rate are only subject to small variations over the duration of a busy period. The
intuition behind this assumption is that (1) the variations on the backlog are bounded by the buffer
size, which we expect to be relatively small, and (2) the changes in the service rate allocation should
be relatively limited when the traffic mix does not change much. This also indicates that the delays
do not vary much, because the delays are a function of the service rates and the backlogs.

In practice, we cannot be certain of the validity of the assumptions we just made, and cannot
make any claim as to the stability of the delay feedback loops resulting from the analysis presented
here. However, the numerical data in Section 5.4 suggests that the loops converge adequately well.

With the assumptions above, we next describe the effect of the rate adjuétnjehon the
delayD;[n].

Effect of the rate adjustment on future delays. To express the relationship between rate and

delays, we start by defining[n] as:
Di[n| =t[n] —t[n—T1i[n]] .

In other wordsj;[n] denotes the delay of classraffic departing at the-th event, expressed as a
number of events. We formalize here the small variation assumption on the delays.
Assumption (Al). The delay of class-raffic does not vary significantly between eventand
(n+1),ie.,

Di[n+ 1] ~ Dj[n].
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Figure 5.2:Definition of the average rate ;. This figure shows the relationship betwdayin], T;
andri[n].

This implies

Ti[n] = [N+ 1] .

We will, from now on, refer ta;[n] andti[n+ 1] asT;.
Let us definerj[n] as the average rate experienced by the dlassfic departing at the-th
event over the time this claggraffic was backlogged. Using Assumption (Al), we have

. Bi [n—ri]

i = o (5.14)

which we illustrate in Figure 5.2. Figure 5.2 shows that traffic leaving the routé atith a delay
Di[n] has been subject to a changing service rate allocation between its arriviting] andt[n],
indicated by changes in the slope of the output cl¥& The line between the values of the output
curve at times[n— ;] andt[n] represents the average service rdt@. We express the relationship
betweenAr;[n] onTi[n] to model the effects of a rate adjustméni[n] on the delay. This is where
we use the assumption that the backlog is only subject to small variations.
Assumption (A2). The backlog of classtraffic does not vary significantly between evefris- t;)
and(n+1—T1;), that is,

Bi[n+1—1i] ~ Bi[n—T1j].
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With Assumptions (A1) and (A2), we obtain the following relationship betwgandr; on the

virtual time axis where events are equally spaced:

(ti — D)ri[n] +ri[n]
Ti '

rin+1 = (5.15)

We just characterized the relationship between the service rate atreandithe average rate that

will be experienced by clagsraffic departing at everin+ 1). Let us now define
Arn+1] =Ti[n+1] —r[n] . (5.16)

Combining Egs. (5.15) and (5.16), we get

(ti — D)AF;[n] + Ari[n]

Arn+1] = <
|

(5.17)

Eqgn. (5.17) describes the relationship between a change in the service rate and a change in the
average rate.
We now derive the relationship betweArmn[n] and a change in the delay of classlenoted as
AD;[n], and defined by
ADj[n+1] = Dij[n+1] — Di[n] .

Since we have from Eqn. (5.14) that

i = 21
and
Din+1] = Sin+1-tl [rr:[;:i;]ri] ;
we get

Biin+1—1i] Bi[n—T1]

AN =" am

(5.18)

We use the small variation assumption on the service rate to linearize Eqn. (5.18):
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Figure 5.3: The classt delay feedback loop. This model useg-transforms of the relationships
derived in Section 5.2.2.

Assumption (A3). The variations in the average rate are small compared to the average rate. This
is expressed as

Ariin+1] < T[N .
Using Assumptions (A1), (A2), and (A3), a first order expansion of Eqn. (5.18) gives

B Bi[n—Ti]

ADi[n+1] = =

Arn+ 1] +wi[n] , (5.19)

wherewy [n] is the error in the evaluation &D;[n+ 1] resulting from Assumptions (A1), (A2) and

(A3). Then, the relationship between delay variations and the delay is given by

Di[n+1] = anDi(k) : (5.20)
k=0

Di[n+ 1] is used to computB;[n—+ 1], using Egn. (5.8). From Egs. (5.10) and (5.10)[n+ 1]
defines the new errag[n+ 1] at the(n+ 1)-th event, that is, the next time a rate adjustment is
performed. This remark completes the description of a linearized model of the delay feedback
loop. We can now turn to the derivation of a stability condition for our linearized model.

Modeling the loop usingz-transforms. The derivation of the stability condition on the linearized
model relies on a modeling of the loop usiegransforms of Egs. (5.8)—(5.20). We denote the

z-transform of a functiorf [n] by Z[f [n]], defined as
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Egs. (5.8), (5.11), (5.12), (5.19) are unchanged when ustransforms. Eqn. (5.17) yields

 ZlArin]] | Z[Ari[n] 7

Z[Arn+1)]=(—1) - -

which gives, using the property that for any continuous funcfipd[f[n]] = 1Z[f[n+ 1]], that

Ziariin+1)) , Zian[n])

Ziarin+ ) = (1) == .

By reordering the terms we obtain

Z|Arin+1]] (1— T‘Z; 1> = Z[Arr_‘ -

which is equivalent to
z

Zlaniin+ 1)) =

Z[Ari[n]] .

Similarly, usingz-transforms, Eqgn (5.20) becomes

Z[Di[n+1]) = ZilZ[ADi[M 1] .

Also, the relationship between the weighted delay a{the 1)-th andn-th iterations is given by

lZ[Di*[n+ 1]] .

Z[DjIn]) =

Theztransforms discussed above are summarized in Figure 5.3, where we give a representation of
the class-delay feedback loop usirgtransforms.

We notice that in the clagsdelay feedback loop of Figure 5.3, some quantities (&.08;, T;)
are time-dependent. This does not cause stability problems if the product of all individual blocks
in Figure 5.3 (called the “loop gain”), is non-increasing over time. Since the coeffikigntis
time-dependent, we have to sel&dh] so that the loop gain is non-increasing over time.

Denoting the loop gain b$(z), a necessary and sufficient condition for the loop to be stable is
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that the roots of the characteristic equation
1+G(2 =0,

have a module less than one [71]. Taking the products of all blocks in Figure 5.3, we get

1z (Mjzm)Biln—tlKn] z
zz—1 r—iZ[n] ZTi—Ti—}-l‘

G(z) =

The negative sign comes from the fact tB¥{n] is subtracted fronD"[n] to obtaing[n]. We use
the small variation assumption on the service rate to further simplify the expressiGizorwe
use the following approximation:

Ari[n+1] = Ari[n] ,

which enables us to approximate the gain of the second b% by 1. with this approxima-
tion, we get a new loop gai@’(z) as follows

1z (Mjz M) Biln—T]K([n|

G2 = zz—-1 i2[n| ’

The characteristic equation of the approximate system is

1 (Mjzm)Biln—T]K[n]

1-—
z—-1 1i2[n]

=0,

which has exactly one root,

(Mjm;) Biln—T]Kn| .

z=1+
ri2[n]

With the rootZ, we obtain the following stability condition

(M) Biln—t]K(n| <1

1
T =
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or, equivalently,

(M4 m;) Biln—t]K[n|

1+ T > -1 (5.21)
(Mjz M) Bifn—Ti]K[n]
1+ i < 1. (5.22)

All quantities in Egn. (5.22), with the exceptionl¢fn], are positive. Hence, the condition described

by Eqgn. (5.22) simply reduces t[n] < 0. The condition in Eqn. (5.21) becomes, after reordering

the terms,
K[ > —2 ren) (5.23)
~ (Myamy) Biln—t] '
Since, from Eqn. (5.14), we have
Bi[n—1)?
R o
Bi[n—Tj] Bi[n—T1]
B Bi[n—T1]
- Di[n]z ’
Egn (5.23) can be rewritten as
Bi [n—ri]
Kn>-2.—M—. (5.24)
" (M m;) DF (]

The condition given by Egn. (5.24) requires to keep a history of the backlogs. The need to main-
tain a backlog history can be alleviated, by replacing Assumption (A2) by the slightly stronger
assumption:

Assumption (A2’). The backlog of classtraffic does not vary significantly between evefits-t;)

andn, that is,

Bi[n—ri] ~ Bi[n].

Assumption (A2’) allows us to get a simplified expression for the stability condition for the class-

delay feedback loop:
Bi[n]

— = <K[n<O.
Mj, M; - D[] )
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SinceK[n] must be common to all classes for Eqn. (5.13) to hold, we finally get

_zmm{n#ﬁﬁkﬂm}<xm<o. (5.25)

The condition in Eqgn. (5.25) ensures that the linearized delay feedback loops will not engage in
divergent oscillations. We cannot be certain that the assumptions made to linearize the delay feed-
back loops hold in practice, and cannot claim that Eqn. (5.25) ensures stability of the (non-linear)

delay feedback loops, but can use Eqgn. (5.25) as a design guidelikénfor

5.2.4 Including the Absolute Delay and Rate Constraints

We have obtained a stability condition &1n|, which is necessary to enforce proportional differ-
entiation. So far, we have not considered the absolute delay and rate constraints in the construction
of the delay feedback loops. These absolute delay and rate constraints are viewed as a “saturation
constraint” on the rate adjustment, and yield a second bounid[gn To satisfy the constraints

ri[n] > rMn[n], we may need to clighr;[n] when the new rate is below the minimum. This, however,

may violate the work-conserving property resulting from Eqn. (5.13). To respect the saturation

constraintK[n] has to satisfy
rin— 1]+ Knla[n] > r™[n],

and apply thaK[n] to all control loops. The above implies that we must have

Kni Zmiax<rimm[n] a‘ﬁ”‘“) | (5.26)

We note that if

rmn(n] —ri[n—1]
miax< al > >0,

we cannot hav&[n] < 0. In other words, we cannot satisfy absolute delay and throughput bounds
and proportional delay differentiation at the same time. In such a case, we relax either Egn. (5.25)

or (5.26) according to the precedence order on the service differentiation given in Eqn. (4.8).
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5.3 The Loss Feedback Loop

We now describe the feedback loop which controls the traffic dropped fromidasatisfy pro-
portional loss differentiation within the limits imposed by the absolute loss bounds. As before, we
assume that all classes are offered proportional loss differentiation. The assumption can be relaxed
as described in the remark at the end of Section 5.2.1.

Traffic must be dropped at theth event either if there is a buffer overflow or if absolute
delay bounds cannot be satisfied given the current backlog. With a buffdB,di@agrevent buffer

overflows at then-th event, the following condition must hold:

%(Bk[n—l}Jrak[n} —Ig[n]) —At[h—1]C < B. (5.27)
k=1

To provide absolute delay and throughput bounds, the following condition must be satisfied

Q Bk[n— 1] — ri[n— 1JAt[n— 1] + a[n] — lk[n]
3 max{ ST X <€ 629)

To choose the amount of traffic to drop from each class so that Egs. (5.27) and (5.28) hold, we

define the weighted loss rate to be
[n] ( : m, ) [n]
pi[n] = B
j:ﬂ#i
wheren{ = |‘|‘j;11 Kj fori > 1 andm = 1. With this definition, Eqn. (3.22) is equivalent to
v(i,j) . Vn:pf[n] = pj[n] .

This condition is equivalent to

Vi, vn:pn =pn .

I
-
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wherep®[n| is the set point for the loss feedback loop, given by

5[N] = =

S piin] -

Ol

We use the set point to describe an error

To reach the set point, the error is decreased by incregsimj for classes that have[n] > 0
as follows. Let(iy,i2,...,ir) be an ordering of the class indices from all backlogged classes, that
is, B [n] > 0 for 1<k <R, such that [n] > € [n] if is <i;. Traffic is dropped in the order of
(i1,i2,...,IR)-

Absolute loss rate bounds impose an upper boljtid], on the traffic that can be dropped at

eventn from class. The value of;"[n] is determined from Egs. (3.19) and (5.6) as
I7[n] = Aln)L; — piin— AN —1] .

If the conditions in Egs. (5.27) and (5.28) are violated, traffic is dropped from iglassil the
conditions are satisfied, or until the maximum amount of traffio] has been dropped. Then traffic
is dropped from clask, and so forth. Suppose that the conditions in Egs. (5.27) and (5.28) are
satisfied for the first time if; [n] traffic is dropped from classgs=iy,iz,...,i;_;, andX[n] < IX[n]

traffic is dropped from clasg, then we obtain:

Ii*[n] ifiZil,iz,...,iﬁil,
liin) =< x| ifi=ig, (5.29)

0 otherwise

If Ik[n] =1[n] for allk =4, i2,...,ir, We allow absolute delay and rate conditions to be violated. In
other words, condition (5.28) is relaxed.

The loss feedback loop never increases the maximum €frdr if €[n] > 0, and more than
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Figure 5.4:Experiment 1. Delay differentiation. The graphs show the proportional delay dif-
ferentiation obtained by each class at the simulated 1 Gbps bottleneck link. (b) is a duplicate of
Figure 4.4(a).

one class is backlogged. Thus, the errors remain bounded and the algorithm presented will not
engage in divergent oscillations around the target valyie]. Additionally, the loss feedback loop

and the delay feedback loops are independent of each other, since we always drop traffic from the
tail of each per-class buffer, losses do not have any effect on the delays of traffic admitted into the

transmission queue.

5.4 Evaluation

As in Chapter 4, we perform an evaluation by simulation of our closed-loop algorithm. We com-
pare the performance of the closed-loop algorithm with the optimization-based algorithm from the
previous chapter, using the same single-bottleneck simulation experiment as in Section 4.4. This
single-bottleneck simulation experiment also allows us to assess the stability of the feedback loops
used in the closed-loop algorithm by subjecting the bottleneck link to a highly variable offered load.
Then, we present a multi-node network simulation experiment with a mix of TCP and UDP traffic,

and examine how per-hop, per-class guarantees translate into end-to-end guarantees.

5.4.1 Simulation Experiment 1: Single Node Topology

We first use the single node simulation experiment we described in Section 4.4 to compare the

performance of our closed-loop algorithm to that of the optimization-based algorithm discussed in
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Figure 5.5:Experiment 1. Loss differentiation. The graphs show the proportional loss differ-
entiation obtained by each class at the simulated 1 Gbps bottleneck link. (b) is a duplicate of
Figure 4.5(a).

the previous chapter. So, we use the same service guarantees, network topology, and traffic pattern
as in Experiment 1 of Chapter 4.

We plot the ratios of delays and loss rates in Figures 5.4 and 5.5. In the graphs, each datapoint
corresponds to a moving average with a sliding window of sizesOTlhe results obtained for the
ratios of delays in Figure 5.4(a) show that proportional delay differentiation is achieved with good
accuracy when the link is overloaded. Furthermore, the plots show that the cloded-loop algorithm
reacts immediately when the offered load goes from underload to overload, and reacts swiftly (be-
tween 0 and 0.2depending on the class concerned) when the link goes from overload to underload.
This indicates that the delay feedback loops used in the closed-loop algorithm are stable. Propor-
tional delay differentiation does not match the target proportional fa&oers4 when the link is
underloaded, due to the fact that our algorithms are work-conserving, and therefore cannot artifi-
cially generate delays when the load is small. As illustrated in Figure 5.4(b), which is a duplicate of
Figure 4.4(a), we observe the exact same behavior with the reference optimization-based algorithm
from Chapter 4.

Results for ratios of loss rates in Figure 5.5(a) indicate that proportional loss differentiation is
achieved when the output link buffer overflows and traffic is dropped. The transient spikes ob-
served when the link goes from overload to underload are, as discussed in Chapter 4, due to short

busy periods leading to a very small number of packet drops, which in turn, makes ratios of loss
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rates become less meaningful. Comparing Figures 5.5(a) and Figure 5.5(b), which is a duplicate
of Figure 4.5(a), indicates that the loss differentiation obtained with the closed-loop algorithm is
almost identical to the loss differentiation realized by the optimization-based algorithm.

From this simulation experiment, we conclude that:

e The feedback loops used in the closed-loop algorithm appear to be robust to variations in the

offered load.

e The results of the closed-loop algorithm closely match those of the optimization-based algo-

rithm from Chapter 4.

5.4.2 Simulation Experiment 2: Multiple Node Simulation with TCP and UDP Traf-
fic
Next, we present a multi-node network simulation, and evaluate if our approach provides the desired

service, in the context of a mix of TCP and UDP traffic, with multiple hops and propagation delays.

We assess thend-to-endservice seen by traffic in the presence of per-hop guarantees. To that effect,
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Flow Class Type
Protocol Traffic On Off a

TCP-1 1 TCP Greedy N/A N/A N/A
TCP-2 2 TCP Greedy N/A N/A | N/A
TCP-3 3 TCP Greedy N/A N/A N/A
UDP-4 4 UDP Pareto On-off 10ms 10ms | 1.9
A-1 1 TCP Exponential On-off| 1000 pkts| 200ms | N/A
A-2, A-3 2 TCP Exponential On-off| 1000 pkts| 200ms | N/A
A-4, A-5, A-6 3 TCP Exponential On-off| 1000 pkts| 200ms | N/A
A-7, A-8, A-9, A-10 4 UDP Pareto On-off 120ms | 200ms| 1.9

Table 5.1:Experiment 2: Traffic mix. The traffic mix for flows B-1, .., B-10and C-1,.., C10is
identical to the traffic mix described here for flows A-1,A-10. a is the shape parameter used in
the Pareto distribution.

Class Service Guarantees
di Li ki ki
1 2ms| 0.1% | - -
2 - - 4 4
3 - - 4 4
4 - - N/A | N/A

Table 5.2:Experiment 2: Service guaranteesThe guarantees are identical at each router.

we implemented our closed-loop algorithm in thee2network simulator [5]. This implementation
is now included in the standard-2distribution, as ohs-2.26.

We simulate a network with a topology as shown in Figure 5.6. We have four routers connected
by three 45 Mbps links, and sources and sinks connected to the routers by independent 100 Mbps
links. Each 45 Mbps link has a propagation delay oigand each 100 Mbps link has a propagation
delay of 1Ims There are four classes of traffic. The composition of the traffic mix is given in
Table 5.1 and the service guarantees are given in Table 5.2. Traffic consists of a mix of TCP
and UDP flows. TCP sources run thi€P Renocongestion control algorithms. TCP flows are
either greedy, to model long file transfers, or on-off flows with exponentially distributed on and off
periods, to model short, successive file transfers (e.g., HTTP requests). UDP flows are on-off flows
using a Pareto distribution for the on and off periods. Due to the presence of on-off TCP flows,

we do not need to have UDP traffic as bursty as in the experiment of the previous section, where
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o = 1.2, and we set here the shape parametera = 1.9.

Cross-traffic flows (denoted by A-1,., C-10) start transmitting at time= 0 s. The flows
TCP-1, TCP-2, TCP-3 and UDP-4 start transmitting at time10s. All flows consists of packets
with a fixed size of 500 bytes, and the experiment lasts 70 seconds of simulated time. The resulting
load at the bottlenecks is roughly constant and equal to the capacity of the bottleneck links.

From Tables 5.1 and 5.2, Classes 1, 2 and 3 only consist of TCP traffic, and Class 4 only consists
of UDP traffic. Initially Class 1 contributes 10% of the aggregate cross-traffic, Class 2 contributes
20%, Class 3 contributes 30% and Class-4 contributes 40 %. We made the choice of having almost
as much UDP traffic as TCP traffic so that we could examine the effects of mixing the two types
(UDP and TCP) of traffic more easily.
Per-hop per-class QoSWe graph the per-class queueing delays and per-class loss rates at each of
the first three routers in Figure 5.7, starting at time 0 s. Given that the aggregate arrival rate
at Router 4 is always less than the total output capacity of Router 4, there is never any backlog
at Router 4, and thus, the queueing delays and loss rates are constantly equal to zero. With the
exception of Figure 5.7(c), (g) and (k), where the individual packet delays are plotted, each point
on Figure 5.7 represents an average over a sliding window of size (Figure 5.7 shows that
the proposed algorithm manages to enforce all proposed service guarantees at each router, with
only a couple of transient violations of the absolute delay bound on Class 1 at Router 1, and that the
algorithm seems to respond appropriately to transient changes such as the introduction of additional
traffic at timet = 10s.
End-to-end per-flow QoS.Finally, we present end-to-end measurements for the flows TCP-1,
TCP-2, TCP-3 and UDP-4. Each of these four flows traverses four routers, each router provid-
ing an absolute delay guarantee ahgon Class 1. Adding to these per-node delay guarantees the
propagation delays between each node, one can infer that the end-to-end delays of TCP-1 packets
have to be less thanx42+ 3 x 3+ 2 x 1 =19ms Similarly, the end-to-end loss rate encountered
by TCP-1 should be less than-1(1—L;)* ~ 0.004, that is, 0.4%.

In Figure 5.8(a), we present the individual end-to-end packet delays encountered by each flow.

The figure shows that Flow 1's end-to-end delays are indeed always belavg X8presented by
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Figure 5.7:Experiment 2. Multiple node simulation with TCP and UDP traffic. The graphs

show the delays and loss rates encountered at each router by Class 1 traffic, and the ratios of delays
and the ratios of loss rates for Classes 2, 3 and 4 at each router. The absolute constraints and the
target ratios are indicated by straight dashed lines.
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Figure 5.8:Experiment 2: End-to-end packet delays.The graphs represent the individual, end-
to-end, packet delays encountered by flows TCP 1, TCP-2, TCP-3, UDP-4 (a), the ratios of delays
over a sliding window of size 0.5for TCP-2, TCP-3, and UDP-4 (b), the loss rates (c), ratio of

loss rates (d), and the throughput obtained by TCP-1, as well as the aggregate throughput obtained
by all four flows (e). The end-to-end delay guarantee on TCP-1, indicated by a dashed line in (a), is
a delay bound of 18ns the end-to-end loss guarantee on TCP-1, indicated by a dashed line in (c),

is 0.4%.
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the dashed line, and we see again that the algorithm we propose uses a conservative estimate of
the delays for enforcing delay bounds, since most Flow 1 packets encounter a total delay close to
15ms? Figure 5.8(b) also suggests that the proportional delay differentiation holds with respect to
the end-to-end delays between Classes 3 and 4, even if the relative delay constraints are enforced
only on a per-node basis. This result can be explained by the fact that the propagation delays
are negligible compared to the large queueing delays encountered by TCP-3 and UDP-4. The
propagation delay cannot be neglected compared to the queueing delays in the case of the flow
TCP-2, which explains why the proportional differentiation between TCP-2 and TCP-3 is close to
a factor of 3.3 instead of the desired factor of 4.

We plot the end-to-end packet loss rates in Figure 5.8(c). The end-to-end loss rate bound of
0.4% on flow TCP-1, represented by a dashed line, is respgctddwever, as shown in Fig-
ure 5.8(d), proportional guarantees on loss rates between classes do not translate into proportional
guarantees between end-to-end flows: loss rates ratios between flows TCP-2, TCP-3, and UDP-4
are consistently above the desired ratibs- ki = 2, even though the per-hop, per-class loss guar-
antees are consistently respected. This result confirms that per-class guarantees do not necessarily
translate into per-flow guarantees. Here, a discrepancy between per-flow differentiation and per-
class guarantees is exhibited because the different flows present in the network do not have the
same probability of suffering packet drops, since some of them are greedy flows, while others are
on-off flows. The result indicates that additional mechanisms identifying greedy flows are needed to
provide a better match between per-class guarantees and per-flow differentiation. Describing mech-
anisms to identify greedy flows and using these mechanisms to improve per-flow differentiation
will be the object of Chapter 7.

Last, in Figure 5.8(e), we graph the throughput received by flow TCP-1, as well as the aggregate
throughput received by flows TCP-1, TCP-2, TCP-3 and UDP-4. In this experiment, there is no

throughput guarantee on any class, but we observe that the flow TCP-1 consistently gets an end-

2The queueing delays at Router 4 are always zero due to the topology we use. If we ignore the guarantees offered at
Router 4 in the computation of the end-to-end delay guarantee, the end-to-end delay guarantee benwmsmesdlié
respected as well.

3Due to the topology we chose, the loss rate at Router 4 is always zero. If we ignore the guarantees offered at Router 4
in the computation of the end-to-end loss guarantee, we obtain an end-to-end loss bound ef 11 )3 ~ 0.003, that
is, 0.3%, which is also respected.
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to-end throughput greater than 1 Mbps, and close to 3 Mbps in general. This result shows that
the absolute guarantees on the loss and delay of Class 1 are not realized at the expense of a low
throughput. For readability purposes, we do not show the throughput plots for the three other flows,
but mention that they present values close to that of TCP-1.

As a conclusion to this second experiment, we showed that our algorithm was able to provide
the desired per-class, per-node service guarantees in a multiple node simulation, with a mix of TCP
and UDP traffic. We also showed how these per-class, per-node service guarantees could translate

into end-to-end, per-flow performance.

5.5 Summary and Remarks

We proposed a closed-loop algorithm for realizing the Quantitative Assured Forwarding service at
a router. The delays and losses experienced by classes are monitored, which allows the algorithm
to infer a deviation compared to the expected service differentiation. The algorithm then adjusts
service rate allocation and the drop rates to attenuate the difference between the service experienced
and the service guarantees.

We used linear control techniques in the design of the algorithm. In particular, we proposed to
use a proportional control to achieve proportional delay differentiation. Absolute differentiation is
expressed in terms of saturation constraints that limit the range of the controller. We linearized the
control loop around an operating point, and derived a stability condition on the linearized control
loop. While the stability condition derived does not ensure that the non-linear control loop con-
verges, the stability condition gives useful guidelines for selecting the configuration parameter of
the controller.

Simulation results indicate that the proposed closed-loop algorithm is an effective approxima-
tion of the optimization-based algorithm, and that the feedback control is stable. Additionally, we

described the effect of per-hop service differentiation on end-to-end service guarantees.



Chapter 6

Implementation

In this chapter, we present the design of a configurable router that provides the service guarantees
of Quantitative Assured Forwarding in IP networks such as the Internet [32]. We call such an IP
router a “QoSbox”. Using a QoShox at a bottleneck link, the network operator only needs to specify
the service guarantees that are desired at the bottleneck link, by means of a configuration file, and
turn on the QoSbox to obtain the desired QoS. The central mechanism used in the QoSbhox is the
closed-loop algorithm for buffer management and service rate allocation discussed in Chapter 5.

We discuss our implementation of the QoSbox in PC-routers running an operating system from
the BSD family, i.e., FreeBSD [1], NetBSD [4] or OpenBSD [6]. The implementation we describe
is now part of the base distributions of the KAME [3] and ALTQ-3.1 [30] packages. Inclusion in
the base BSD distributions as part of ALTQ is currently under consideration.

We use the implementation of the QoSbox in PC-routers to demonstrate that Quantitative As-
sured Forwarding can be realized in packet networks with links of speeds in the order of a few
hundred megabits per second. We also outline how the closed-loop algorithm can be further modi-
fied to be implemented in switch architectures at higher line speeds, at the expense of some reduced
accuracy in the service differentiation.

This chapter is organized as follows. In Section 6.1, we present an overview of the implementa-
tion. In Section 6.2, we discuss the implementation details. In Section 6.3, we present a numerical

evaluation using a testbed of PC-routers. The evaluation illustrates how service differentiation is

94
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realized, and assesses the overhead of the associated mechanisms. In Section 6.4, we briefly review

the related work on publicly available implementations of service architectures for PC-routers.

6.1 Implementation Overview

In this section, we present an overview of the implementation. Recall from the discussion in Chap-
ter 3, that Quantitative Assured Forwarding imposes that there be no communication between dif-
ferent routers, admission control or policing of traffic. Hence, realizing the QAF service in an IP
network only requires to implement our algorithms for service differentiation in the data path of IP
processing at QoShoxes.

The QoSbox is an output queueing architecture. On the other hand, the PC-routers that we use
for our implementation rely on a shared memory architecture, with input and output queues, and are
therefore CIOQ routers. From the discussion in [111], input queues in a PC-router are empty when
the CPU of the PC-router is not overloaded. So, barring CPU overloads, PC-routers are equivalent
to output queueing architectures. From now on, we assume that traffic control is only performed at
the output queues and solely focus on the operations performed at the output queues. We will show
that the overhead associated to our proposed mechanisms is limited enough so that we should not
face CPU overload conditions in typical access networks where our implementation in PC-routers
can be deployed, and that, as a result, the output queueing assumption is justified.

In the remainder of this section, we discuss how service guarantees are configured in a QoSbox.
Then, we present an overview of the mechanisms in place in the transmission queues at the output

link(s) governed by a QoSbox.

6.1.1 Configuration of the Service Guarantees

Network interfaces in a QoSbox are configured with a configuration file. The structure and syntax of
the configuration file is based on the syntax of an ALTQ-3.1 configuration file [52]. Figure 6.1 is an
example of a QoSbox configuration file. The configuration file defines the properties of the output

interface(s), the guarantees each class of traffic receives and the filters used by the classifier to map
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(1) interface fxp0 bandwidth 100M glimit 200 jobs
(2) class jobs fxp0 high_class NULL priority O\
adc 2000 rdc -1 alc 0.01 rlc -1 arc 10M
(3) class jobs fxp0 med2_class NULL priority 1\
adc -1 rdc 2 alc -1 rlc 2 arc -1
(4) class jobs fxp0 medl_class NULL priority 2\
adc -1 rdc 2 alc -1 rlc 2 arc -1
(5) class jobs fxp0 low_class NULL priority 3 default)
adc -1 rdc -1 alc -1 rlc -1 arc -1

(6) filter fxpO high_class 0 0 0 0 0 tos 1
(7) filter fxp0 med2_class 0 0 0 0 O tos 2
(8) filter fxpO medl_class 0 0 0 0 0 tos 3
(9) filter fxp0O low_class 0 0 0 0 O tos 4

Figure 6.1:Example of a QoSbhox configuration file.The configuration file defines (1) the prop-
erties of the output interface, (2) the guarantees each class of traffic receives and (3) the filters
used by the classifier to map packets to given classes of traffic. Line numbers are not part of the
configuration file, but are used here for readability purposes.

packets to given classes of traffic. In the example of Figure 6.1, the interface concesmedas

a bandwidth of 100 Mbps and a buffer size set to 200 packets. Thejfieldindicates that traffic

control at this interface relies on the JoBS scheme discussed in Chapter 3, and, in particular, on the
closed-loop algorithm presented in Chapter 5.

The next set of configuration commands, in lines (2)—(5), contains the service guarantees offered
to each class. In the example of Figure 6.1, the ctagg_class is given a delay guarantee,
indicated by the keyworddc,! of 2000 microseconds, no proportional delay differentiation, as
specified by the fielddc -1, a loss bound of 1%, configured by the command 0.01, no
proportional loss differentiationr{c -1) and a guaranteed throughput of 10 Mbpsd 10M).
Thepriority field simply indicates a class index, but does not denote a priority order. Classes
medl_class, med2_class, med3_class are not offered delay, loss, or throughput bounds, but are
subject to proportional delay and loss differentiation.

The rdc andrlc keywords specify the proportional differentiation desired between the class

to which they are applied, and the class denoted by the following class index. In the example of

1Even though the QoSbox uses an implementation of the closed-loop algorithm, the keywords are based on the names
of the QoS constraints in the optimization-based algorithm.
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Figure 6.1, since the clased2_class with class index 1 is given ardc factor of 2, packets which
belong to the class with the class index 2, ined1_class, should get queueing delays twice as
long as those experienced hyd2_class packets. Note that the parameters takerrdxy or ric
can be any positive value, including values less than one.

The commands in lines (6)—(9) describe the mapping from packet headers to service classes. In
this example, the only classification criterion is the Type-of-Service (TOS) field of the IP header,
recently renamed DiffServ Codepoint (DSCP, [114]). In the present example, a value of 0x03 in the
DSCP field of an incoming packet indicates that the packet belongs to thenelfisg1ass. The
configuration file presented above assumes the use of IP version 4 (IPv4, [122]), but the implemen-
tation of the QoSbox presented in this chapter also supports IP version 6 (IPv6, [44]). In the case
of IPv6, the DSCP corresponds to the IPv6 Traffic Class octet.

The example of Figure 6.1 assumes that marking of the DSCP field is performed upstream,
for instance by the applications at the end hosts. To avoid maintaining per-flow information in
QoSboxes, we advocate that marking should not be performed by QoSboxes. We note however that
ALTQ provides per-flow marking primitives, using IP Filter [L25hnd that a network operator

could configure QoSboxes to mark packets based on source/destination pairs.

6.1.2 Mechanisms

All output queues in the QoSbox have the same architecture, which is outlined in Figure 6.2. Each
class of traffic is associated with a FIFO per-class buffer. When a packet is passed to a network
interface a classifier looks up which class the packet belongs to, and places the packet in the appro-
priate per-class FIFO buffer. The classifier does not identify the flow to which the incoming packet
belongs. The per-class buffers have a finite size selected by the network operator as follows. The
maximum amount of traffic that can be held in each per-class buffer can be fixed to a cosegpant (
arate buffer$, or, alternatively, the maximum total amount of traffic backlogged can be bounded

(shared buffer.

2Future versions of ALTQ are likely to instead use ttigpacket filter [74].
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Figure 6.2: Architecture of an output queue in the QoSbox. The three main components are

the packet classifier, in charge of storing incoming packets in the proper FIFO per-class buffer, the
rate allocation and dropping algorithm, and the scheduler, which forwards packets according to the
service rates allocated.

After the incoming packet has been placed in a per-class buffer, the closed-loop algorithm
adjusts the service rates allocated to each class of traffic and possibly drops packets in order to
enforce the desired service guarantees. The computation of the service rates and packet drops is
based on the current backlog, arrivals, loss rate on the one hand, and on queueing delays reported
by the scheduler on the other hand. If needed, packets are dropped from the tail of each per-class
buffer.

The service rates calculated by the rate allocation algorithm must be translated into packet
forwarding decisions, which is the task of the packet scheduler. Schedulers translating service rates
into packet forwarding decisions, such as Packetized-GPS [119] or Virtual Clock [157], have been
proposed in the early 1990s. These schedulers have provable worst-case delay bounds, but require
dynamic sorting of the packets backlogged in the system, and have a worst-case complexity of
O(N) whereN is the number of packets backlogged in the system. We propose a heuristic, inspired
by the Deficit-Round Robin algorithm [135], that avoids packet sorting. The heuristic F@&3n
complexity, wherd is the number of classes in the system.

A variable recording the amount of traffic that has been sent in each class since the beginning

of the current busy perio& mit, is maintained by the scheduler. The output cuRf¥, is updated
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every time a packet enters the output queue, with

RO RO ;- At (6.1)

whereAt corresponds to the amount of time that has elapsed since the last up&4te &f other

words, the output curvB®" corresponds to the amount of traffic that would have been transmitted
since the beginning of the current busy period if packet scheduling perfectly matched the service
rate allocation, as is the case in the fluid-flow model we used in the previous chapters. Every
time the output link is available for transmission of a packet, the scheduler computes, for each
class, the differencB’“t — Xmit. Denoting byk the index of the class for which this difference is
maximum, meaning that clakss the “most behind” its allocated service rate, the scheduler chooses
to transmit the packet at the head of the classHfer, and records the queueing delay experienced

by the transmitted packet, by taking the difference between the current time and the time this packet

was enqueued.

6.2 Implementation Details

Next, we describe the details of our implementation. We first focus on the specifics of the imple-
mentation we carried out for BSD kernels using the Alternate Queuing framework (ALTQ, [30]).
We provide a short review of ALTQ, and then turn to a discussion of the operations performed by
our implementation. In our PC-router implementation, all operations are sequential. Even without
exploiting potential parallelism in the algorithm, we will show in Section 6.3 that our implementa-
tion can operate at line speeds in the order of 100-500 Mbps in a 1 GHz PC if the number of classes

is small.

6.2.1 ALTQ

Our implementation of the QoSbox for PC-routers builds on ALTQ. ALTQ is an extension to the

FreeBSD, OpenBSD and NetBSD operating system kernels. In addition to various bug fixes to



Chapter 6. Implementation 100

ip_output ip_output

kernel module

if_output if_output F altq_enqueue —» disc_enqueue
IF_ENQUEUE IF_ENQUEUE

struct struct
ifqueue ifaltq
> >
A A
IF_DEQUEUE ’—‘ IF_DEQUEUE
if_start if_start altq_dequeue ——» disc_dequeue
Standard BSD ALTQ-enabled BSD

Figure 6.3: Functions and structures associated with the output queue in BSD and ALTQ-
enabled BSD.Each queueing discipline implemented in ALTQ consists of a kernel module, repre-
sented by the dotted box.

networking device drivers, ALTQ provides a modular framework for replacing the default FIFO
gueueing discipline of network interfaces by custom-designed queueing disciplines.

In BSD kernels, an output networking interface is governed byitheutput andif_start
functions, which enqueue and dequeue packets from the transmission queue, respectively. The
transmission queue is represented byitheueue structure and is shown on the left in Figure 6.3.

An incoming packet is passed 1p_output which, after looking up the route, filling the IP header,
and possibly fragmenting the packet passesitt@utput; if_output enqueues the packet in the
ifqueue structure. When the output link is available for transmission, a packet is dequeued from
the i fqueue structure by the f_start function.

As shown on the right in Figure 6.3, ALTQ replaces the operations performed bytput
and if_start by user-defined transmission queue structures and functions included in dynami-
cally loadable kernel modules. Each kernel module implements a specific queueing discipline. A
custom packet queue structure fuct ifaltq) is used as a replacement to th&jueue struc-
ture to implement the transmission queue. Transmission queue management is realized by en-

queue and dequeue functions specific to each queueing discipline, as denatedt kyrqueue
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anddisc_dequeue in the figure. For instance, the enqueue and dequeue functions of our the QoS-
box are calledjobs_enqueue andjobs_dequeue, respectively. Queueing disciplines that have been
developed for ALTQ include Class-Based Queueing (CBQ, [69]), Hierarchical Fair Service Curve
(HFSC, [144]), Random Early Detection (RED, [68]) and Blue [60].

Additionally, ALTQ provides a classifier that is used to map incoming packets to classes of
traffic. In the QoSbox, classification only consists of selecting in which buffer to store the packet
by looking up a class index contained in the DSCP, as marked upstream, and adding a priority field
tag to the packet buffer. In a BSD implementation, packets are stored in memory buffers called
mbuf’s. Thembuf structure can be modified to record information, such as the priority field tag we
need to insert, in addition to the packet header and payload

We refer to [30] for more details on the implementation of ALTQ.

6.2.2 Packet Processing

All mechanisms specific to the QoShox are realized dys_dequeue andjobs_dequeue. We next
describe both functions in detail.

The jobs_dequeue function implements the packet scheduler described in the last paragraph
of Section 6.1.2. Thgobs_dequeue function has knows the value of the variabR&" and X mif,
for each class, finds the class for which the diﬁereﬁﬁ\é — Xmit is maximized, and dequeues
the packet located at the head of the corresponding per-class buffer. These operations consist of an
integer subtraction and an integer comparison per class, and the actual packet dequeueing. There
is a total of ) arithmetic operations and@+ 1 memory accesses, one for reading each of the
variablesR*U andX mit, and one for accessing the packet to be dequeued.

The processing overhead in the QoSbox is caused by the operations occurring during the en-
gueueing of an incoming packet, that is, the operations performed by the rate allocation and packet
dropping algorithm. This algorithm is implemented by thw#s_enqueue function in ALTQ and
relies on several arithmetic operations (e.g., computatid€) ofn a network simulator, these oper-
ations can be performed using double precision floating-point numbers. In the case of a kernel-level

implementation, floating-point operations should be avoided, because the hardware floating-point
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(1) functionjobs_enqueuepkt)
(2) if (output_link _is_idle())

3) resetall _variables();
(4) transmit( pkt);
(5) else
(6) insert_tail( pkt);
) if (not_backloggedanymore() or now_backlogged()
(8) resetrates();
9) while (buffer _overflow())
(20) i =selectdropped_class()
(11) drop(i);
(12) accounting(kt);
(13) compute min _rates();
(14) while (§ min_rates> C andcan.drop())
(15) i =selectdropped_class()
(16) drop(i);
(a7) compute min_rates();
(18) adjust_rates();

(19) return (dropped);

Figure 6.4:Rate allocation and packet dropping in the QoSbox.This sequence of operations is
performed immediately after a packet arriving at the output queue has been classified. Line numbers
are printed for readability purposes.

unit (FPU) is generally not supported in the kernel, and floating-point operations using the FPU
emulation library are extremely slow.

The computations ifobs_enqueue only use fixed-point arithmetic. In our implementation, all
guantities are expressed using 64-bit unsigned integers, which requires to adopt some specific units.
Delays are expressed in clock ticks, service rates are expressed in bytes per clock tick scaled by a
factor of 22, and loss rates are expressed as fractions%fThese units can achieve a satisfactory
degree of precision.

Pseudo-code for théobs_enqueue function, which returns a boolean indicating whether pack-
ets have been dropped, is presented in Figure 6.4. The first set of operations, in lines (2)—(4), are
executed when a new busy period starts. A memory access to check the status of the output link is
followed by a reset, for each class, of all four variables corresponding to the arrival curve, the input
curve, the output curve and the transmissi¥msit. The current time is recorded as the start of a

busy period, and all variables of the class corresponding to the incoming packet are subsequently set
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to the size of the incoming packet. This requiré®4- 1) + 1 assignments and arithmetic operations
before transmitting the packet.

If the output link is not idle, the incoming packet is added to a per-class buffer, based on the
value of its priority field tag. Theinsert_tail operation stores the arrival time of the packet
in a timestamp, which is inserted at the tail of a timestamp?listo record the arrival time,
jobs_enqueue needs to access the CPU clock. A simple solution would be to use thetime ()
function provided in BSD, which has a microsecond granularity. Usingotime () increases
portability of the implementation, because all BSD systems implementiheotime () func-
tion since 4.4-BSD. Howevenicrotime () may not have a fine enough granularity, and requires
a periodic adjustment to account for possible clock skews. Also, usihgotime () generates
significant overheafl. A more efficient solution is to directly read the timestamp counter (TSC)
register available in the Pentium series processors [81], and compatible architectures, such as AMD
processors. This register is an unsigned 64-bit precision integer, and gives the number of cycles
elapsed since the machine has been turned on. The resolution of the TSC register is much finer than
that provided bymicrotime (). A similar counter (processor cycle counter, PCC) can be found
on DEC Alpha architectures, but only provides a 32-bit precision [40]. We read the TSC or PCC
registers if they are available, and if not, roll backrtocrotime () to ensure portability of our
implementation. Despite potential variations in the duration of each clock cycle in recent proces-
sors, due for instance to power management, reading a cycle counter provides time measurements
accurate enough for our implementation.

Once the packet has been added to its per-class buffer, the test in lines (7) and (8) in Figure 6.4
checks if the set of classes with a backlog in the per-class buffers has changed. If there is a change,
service rates of all classes are reset: classes with no backlog get a service rate of zero, while
backlogged classes equally share the capacity of the output link. In our implementation, tii@re are
tests to check which classes are backlogged, and, if a change in the backlogged classes is detected,

thereset_rates call consists of) assignments.

30ne could also use an extra tag added tarthes holding the packet to mark its arrival time.
4As of 4.4-BSD, aanotime () function is also availableranotime () provides nanosecond granularity, but suffers
the same overhead and clock skew adjustment problemscast ime ().



Chapter 6. Implementation 104

Next, in lines (9)—(11),jobs_enqueue drops packets in case a buffer overflow occurs. The
while loop in lines (10) and (11) is executed in the worst-case for each backlogged packet. How-
ever, since this while loop is executed upon each packet arrival, the number of iterations is in fact
bounded by the number of packets that have arrived since the last packet arrival. In a PC-router, itis
extremely rare, if not impossible, in practice, to have simultaneous packet arrivals. In other switch
architectures, the number of iterations is bounded by the internal speed-up of the switch, which is
generally less than the number of line cards in the switch, and remains a relatively small number.

The overhead of the functioselect _dropped_class in line (10) depends on the type of
loss guarantees offered to the incoming packet(s). If only absolute loss guarantees are offered,
select_dropped_class checks that dropping the incoming packet(s) does not violate loss guar-
antees. This requires looking up the incoming packet size, and computing the value for the loss
rate if the incoming packet is dropped, which can be done with one addition and one integer di-
vision. If no class can be dropped without violating a loss bound, the addition and division are
performed for each class, for a total d@®perations. Themelect_dropped_class has to find
the class for which the violation is minimal. This requires anofQesubtractions and compar-
isons. So, the worst-case corresponds to a totalpéBthmetic operations an@ comparisons.

The select_dropped_class function implements the orderin@s,i,...,ir) On classes indices
provided by the loss feedback loop for proportional loss differentiation, as discussed in Chapter 5.
Determining this ordering requireQ4+ 1 arithmetic operations an@ comparisons. If both pro-
portional loss differentiation and a loss rate bound are offered to all classes, the worst-case overhead
amounts to a total af4Q+ 1+ Q) +3Q+ Q = 9Q+ 1 operations.

After buffer overflows are resolvedobs_enqueue executes, in line (12), the accounting op-
erations that take place upon each packet arrival. In addition to increasing the arrival curve and
possibly the input curve if no packet is dropped, the function also updates the outpuRetirve
using Eqgn. (6.1). This requires one memory access, and two arithmetic operations.

The computation in line (13) determines the service ra,-'l‘@é needed for meeting the delay
bounds and minimum throughput guarantees. For each gldee computation ofimi”, given

by Eqgn. (5.4), involves looking up the timestamp of the head-of-the-line packet in the per-class
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buffer and reading the TSC register, to obtBjn performing a subtractiord{— D;) and an integer

division (df‘Di). These operations are augmented by a comparison in case a throughput guarantee
is also present. In case a delay bound violation has occurred (i.e., for da,atlassD; < 0 and

B; > 0), the minimum rate is set G, the capacity of the output link. Here, the entire class-
backlog is transmitted as soon as possible in an effort to resolve the situation in a timely manner.
Non-backlogged classes are assigned a minimum service rate of zero.

The while loop in lines (14)—(17) drops packets until a feasible rate allocation exists or
all loss rate bounds are reached. The relaxation order of Eqn. (4.8) imposes that loss rate
bounds have higher precedence than delay bounds, which is enforced bynthigop () test
in line (14). Note that all operations in thexile loop in lines (14)—(17), including the func-
tionsselect_dropped_class andcompute_min_rates, can be executed once for each backlogged
packet in the worst case. To reduce the total number of operations, we propose to replace lines (14)—
(17) by a call to a function calledreedy_alloc. The functiongreedy_alloc implements the
greedy service rate allocation used by the heuristic algorithm proposed in Chapter 4 in the case
of an ADC violation. The reduced complexity offered by the functigredy_alloc comes at
at the expense of a potential relaxation of proportional loss guarantees when packets have to be
dropped to meet delay bounds. Theedy_alloc usesQ arithmetic operations to redistribute the
service rates. Most of the overheaddreedy_alloc comes from the number of operations re-
quired when dropping packets. Each time a packet is dropped, a memory access is performed, and
four arithmetic operations are used to update the vari@le® andXmit. In the worst case, all
backlogged packets are dropped.

The last step, described in line (18), adjusts the service rates subject to proportional delay dif-
ferentiation. The functioadjust_rates implements the controller of the delay feedback loop, and
computes the parametér common to all classes. To compiteadjust_rates needs to compute
theg’s, theD;’s, andD". In the worst case, computing requiresQ(Q — 1) multiplications to
compute[];, m; for all i.> With the values fof];.;m;, one needs anoth€ multiplications to

computeD;" for all i. Then, one need? — 1 additions and one integer division to compDte and

5This computation is only required when there is a change in the classes backlogged.
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Q subtractions to compute for all i. The condition forK given in Eqgn. (5.25) then requir€3g
multiplications andQ integer divisions, followed by comparisons. Implementing the condition

for K in Egn. (5.26) require® subtractionsQ integer divisions, an@@ comparisons. There is an
additional comparison to check if both conditions (5.25) and (5.26) can be met at the same time.

All in all, the computation oK requiresQ? + 5Q arithmetic operations in the worst case.

6.2.3 Overhead Reduction

We have described our implementation in PC-routers running a BSD kernel. We next describe how
the overhead of our implementation can be reduced for higher performance switches.

The overhead of our implementation is primarily caused by three operations in the
jobs_enqueue function: the adjustment of the service rates for proportional differentiation, per-
formed by the call to the functioadjust_rates, the computation of the minimum service rates
required for meeting delay bounds, implemented by the calbt@ute min_rates, and the re-
allocation of service rates and packet drops for meeting delay bounds, realized by the call to
greedy_alloc.

An option to reduce the computational overhead is to reduce the frequency at which
adjust_rates, computemin_rates, andgreedy_alloc are called. This comes at the expense
of degraded performance with respect to QoS guarantees. The degradation in performance may
remain acceptable for high sampling frequencies. For instance, recall from the evaluation in Chap-
ter 4, that updating the service rate allocation evErgrrivals, withT in the order of 10-100,
managed to achieve almost the same results as adjusting the service rates upon each packet arrival.

When the calls tadjust_rates, compute_min_rates, andgreedy_alloc are performed only
everyT arrivals, we can splifobs_enqueue into operations that have to be performed on a per-
packet basis, that is, lines (1)—(12) in Figure 6.4, from sampled operations, that is, lines (13)—(18).
Because no per-packet operation follows a sampled operation, sampled operations can be delegated
to a co-processor. As a practical example, in an architecture such as the Intel IXP 1200 network
processor [2], sampled operations such@sust_rates could be performed on the StrongARM

processor, whereas per-packet operations should be performed by the micro-engines.
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In addition to sampling some operations, simplifications to the arithmetic operations involved
can be carried out at the expense of flexibility. For instance, one may want to restrict the propor-
tional differentiation factors to powers of two, so that all the multiplications used for proportional
differentiation can be replaced by bit-shifting operations. One may also consider fixed sampling
intervals for computing loss rates, instead of the current busy period, to avoid integer divisions in
the loss rate computations. Last, we use byte counters in our implementation in PC-routers, but one
may instead elect to use packet counters, which require increment/decrement operations instead of

additions/subtractions for accounting.

6.3 Evaluation

We present measurement experiments of our QoSbox implementation in ALTQ in a testbed of PC
routers. The PCs are Dell PowerEdge 1550 with 1 GHz Intel Pentium-Ill processors and 256 MB
of RAM. The system software is FreeBSD 4.3 and ALTQ 3.0. Each system is equipped with five
100 Mbps-Ethernet interfaces.

In our experiments, we determine if the QoSbox provides the desired service differentiation
on a per-node basis, through two experiments with different traffic mixes. We also evaluate the
overhead associated to thebs_enqueue andjobs_dequeue operations of the QoSbox.

The objective is to show that the implementation of the QoSbox in BSD-based PC-routers is a
solution that can be readily deployed for service differentiation in medium-speed access networks
with capacities in the order of a few hundreds megabits per seconds, and to confirm that the opera-
tions responsible for most of the overhead are those that can be performed as background tasks in

higher performance architectures.

6.3.1 Testbed Experiment 1: Near-Constant Load

We use a local network topology using point-to-point Ethernet links as shown in Figure 6.5. All
links are full-duplex and have a capacity®f 100 Mbps. Three PCs are set up as routers, indicated

in Figure 6.5 as Router 1, 2 and 3. Other PCs are acting as sources and sinks of traffic. The topology
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Figure 6.5:Experiments 1 and 2: Network topology.All links have a capacity of 100 Mbps. We
measure the service provided by Router 1 and 2 at the indicated bottleneck links.

T

| Router
3

Bottleneck

Class Service Guarantees
di Li M ki ki
1 8ms| 1% - - -
2 - — | 35Mbps| 2 2
3 - — - 2 2
4 - - - N/A | N/A

Table 6.1:Service guaranteesThe guarantees are identical at each router.
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Class | No. of Type
flows | Protocol| Traffic
1 6 UDP On-off
2 6 TCP | Greedy
3 6 TCP | Greedy
4 6 TCP | Greedy

Table 6.2:Experiment 1: Traffic mix. The traffic mix is identical for each source-sink pair. The
on-off UDP sources send bursts of 20 packets during an on-period, and havere @fperiod.

All TCP sources are greedy, i.e., they always have data to transmit, and iNewhlRen@ongestion
control algorithm.
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Figure 6.6:Experiment 1: Offered load. The graphs show the offered load at Routers 1 and 2.

has two bottlenecks: the link between Routers 1 and 2, and the link between Routers 2 and 3. The
buffer size at the output link of each router is seBte- 200 packets.

We consider four traffic classes with service guarantees as summarized in Table 6.1. The traffic
mix, the number of flows per class, and the characterization of the flows for each source is as shown
in Table 6.2. Class 1 traffic consists of on-off UDP flows, and the other classes consist of greedy
TCP flows. All sources start transmitting packets with a fixed size of 1024 bytes at tirfeuntil
the end of the experimentstat 60 seconds.

Sources 1, 2 and 3 send traffic to Sinks 1, 2 and 3, respectively. The traffic mix, the number of
flows per class, and the characterization of the flows, is identical for each source, and as shown in
Table 6.2. Each source transmits six flows from each of the classes. Class 1 traffic consists of on-off
UDP flows, and the other classes consist of greedy TCP flows. All sources start transmitting packets

with a fixed size of 1024 bytes at time= 0 until the end of the experiments ta= 60 seconds.
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Traffic is generated using theetperfv2.1pl3 tool [90]. The network load overloads the bottleneck
links of Figure 6.5. Congestion control at the TCP sources maintains the total load at a level of
about 99% of the link capacity at Router 1 and Router 2, as shown in Figure 6.6.

In Figures 6.7 and 6.8, we present our measurements of the service received at the bottleneck
links of Routers 1 and 2, respectively. All datapoints correspond to moving averages over sliding
windows of size 0.5, except in Figures 6.7(b) and 6.8(b), which presents the delays of each class-1
packet.

Figures 6.7(a) and 6.8(a) depict the ratios of the delays of classes 4 and 3, and the delays of
classes 3 and 2. The plots show that the target vallke-02 (from Table 6.1) is achieved.

In Figures 6.7(b) and 6.8(b) we show the delay of class-1 packets at Router 1 and Router 2. The
delay bound ofl; = 8 msis satisfied, with few £ 1.5%) violations. The violations occur due to the
precedence order we chose for our absolute guarantees in Egn. (4.8), that is, in case of an infeasible
set of service guarantees, absolute delay guarantees are relaxed in favor of absolute loss guarantees.
No class-1 packet ever experiences a delay higher thamsa®either Router 1 or 2. Figures 6.7(c)
and 6.8(c) indicate that delay values of other classes are in the ranged§-50

In Figures 6.7(c) and (d), and Figures 6.8(c) and (d), we show the measurements of the loss
rates. Figures 6.7(c) and 6.8(c) depict the ratios of loss rates for classes 4 and 3, and for classes 3
and 2. The desired ratios & = k; = 2 are maintained most of the time. As Figures 6.7(d) and
6.8(d) indicate, the bound on the loss rates for classly ef 1 % is always kept. We also see that
the loss rate of class 1 may be higher than the loss rate of other classes, because class 1 is not tied to
other classes by proportional guarantees. Our implementation always drops first from class 1, until
the loss bound.; as been reached, before dropping to satisfy proportional loss guarantees. Note
that much less traffic is dropped at Router 2, because Router 2 receives traffic from Source 3 and
Router 1, instead of receiving traffic from two sources. Half of the traffic arriving at Router 2 has
already been policed by Router 1, resulting in a lower loss rate.

Finally, in Figures 6.7(f) and 6.8(f) we include the throughput measurements of all classes. We
observe that the rate guarantee for class @6f 35 Mbps is maintained. The total throughput of

all classes, labeled in Figures 6.7(e) and 6.8(e) as ‘Total’, is close to the link capacity of 100 Mbps
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Figure 6.7:Experiment 1: Router 1. The graphs show the service obtained by each class at the
output link of Router 1.
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Class | No. of Type
flows | Protocol Traffic
1 6 UDP On-off
2 6 TCP | Greedy/On-off
3 6 TCP | Greedy/On-off
4 6 TCP | Greedy/On-off

Table 6.3:Experiment 2: Traffic mix. The traffic mix is identical for each source-sink pair. The
on-off UDP sources send bursts of 20 packets during an on-period, and havere @period.
TCP sources are greedy during time interviils, 10s|, [20s,30s], and [40s,505], and transmit
chunks of 8 KB with a pause of 1#sbetween each transmission during time interya®20s|,
[30,40s], and[50s,60s|. TCP sources run thdewRenaongestion control algorithm.

at each router.

6.3.2 Testbed Experiment 2: Highly Variable Load

The second experiment uses the network topology of Figure 6.5 and the parameters of Table 6.1.
The difference between Experiments 1 and 2 consists in the traffic generation of TCP flows. Instead
of using greedy TCP sources over the whole experiment, we configured the TCP sources to be
greedy during time intervalfs, 10s], [20s,30s] and [40s,50g). In the remaining time intervals
(10s,20s), (30s,40s), and(50s,60s), the TCP sources send chunks of 8KB of data and pause for
175msbetween the transmission of each chunk. We summarize the traffic mix for Experiment 2 in
Table 6.3. This modification to the behavior of the TCP sources results in a more variable offered
load at Routers 1 and 2, which we present in Figure 6.9.

As in Experiment 1, we measure the delay, the loss rate, and the throughput of each traffic class
at the bottleneck link and present our results on Figures 6.10 and 6.11. Except for Figures 6.10(b)
and 6.11(b), which plot all class-1 packet delays, all datapoints correspond to moving averages over
a sliding window of 0.5.

In Figures 6.10(a) and 6.11(a), we present the ratios of the delays of classes 4 and 3, and the de-
lays of classes 3 and 2. We observe that when the load is high, in time int@w4l8s|, [20s, 30g],
and [40s,50s], the target value ok, = k3 = 2 is achieved. When the load is low, we observe

oscillations in the ratios of delays, but, at both routers, all classes get low delays, as shown in Fig-
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ures 6.10(b), 6.10(c), 6.11(b), and 6.11(c), and one can argue that there is no need for differentiation
since all classes receive a high-grade service. We also see that, at tinftle$ = 20 andt = 40,

when the load increases abruptly over a short period of time, the delay differentiation is realized
almost immediately. This confirms that our implementation quickly reacts to rapid increases in the
offered load. As seen before in Experiment 1, Figures 6.10(b) and 6.11(b) show that the absolute
delay guarantee of classd; = 8 msis generally enforced. The delay bounds are violated when it

is not possible to satisfy simultaneously absolute loss and delay guarantees. In Experiment 2, the
delay bound violations occur for less than 0.15% of all class-1 transmitted traffic.

Figs. 6.10(d) and (e) and 6.11(d) and (e) present plots of the ratios of loss rates averaged over
a sliding window of size 0.5, and show that proportional loss differentiation is realized, with the
desired factok), = k; = 2, whenever there are packet losses. Figs. 6.10(d) and 6.11(d) show the
loss rate experienced by class-1 traffic, and we see that, even at times of packet drops, the loss rate
of class 1 remains below the loss guarantee of 1%. Loss rates of other classes are below 1%, which
indicates that traffic is dropped mostly to satisfy the delay bound on Class 1.

We include the throughput measurements for all classes in Figures 6.10(f) and 6.11(f). The
throughput guarantee for class|2 & 35 Mbps) is maintained whenever class 2 is sending at more
than 35 Mbps. As in Experiment 1, the QoSbox can use the full output link capacity of 100 Mbps
when needed. We infer that the time needed to runjtie _enqueue andjobs_dequeue functions

is less than the average transmission time of a packet.

6.3.3 Overhead

Experiments 1 and 2 showed that our implementation of the QoSbox in PC-routers with a 1 GHz
processor can fully utilize the capacity of a 100 Mbps link. We next present an analysis of the
overhead of our implementation, where we attempt to predict the data rates that can be supported
by the PC-router implementation of the QoSbox, and where we measure the sensitivity of our
implementation to the number of service constraints and to the number of classes. We will show
measurements of number of cycles consumed byjthe_enqueue and jobs_dequeue functions

for four different sets of service guarantees, tested for four traffic classes.
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Set | jobs_enqueue | jobs_dequeue | Pred.

o o fpred
X s X S (Mbps)
1 11323 | 3140 | 1057 | 316 291
2 10723 | 2305 | 1092| 340 305
3 3039 | 1512 | 1138| 348 864
4 2573 | 668 | 1078| 343 988
FIFO 25 66 221 147 —

Table 6.4:0verhead and predicted maximum throughput. This table presents, for four different

sets of service guarantees, the average number of cy€Jefisumed by thgobs_enqueue and
jobs_dequeue operations, the standard deviation (s), and the predicted throu@gutin Mbps)

that can be achieved. In the 1 GHz PCs we use, one cycle roughly corresponds to one nanosecond.

Set1: Same guarantees as in Table 6.1.
Set 2: Set 1 with absolute guarantees from Set 1 removed.
Set 3: Set 2 with proportional guarantees from Set 1 removed.

Set 4. No service guarantees.

In the measurements we determine the number of cycles consumed faibthenqueue and
jobs_dequeue functions, and we indicate the contribution of each function cafldbs_enqueue
to the total overhead. The TSC register of the Pentium processor is read at the beginning and at the
end of each of the monitored functions, for each execution of the function.

We compiled our implementation with a code optimizer, in our case, we usgctin?.95.3
compiler [138] with the “-O2" flag set. The results of our measurements, collected under FreeBSD
4.5 and ALTQ 3.1, are presented in Table 6.4, where we include the machine cycles consumed
by jobs_enqueue and jobs_dequeue, and the cycles spent in each of the functions called by
jobs_enqueue. The measurements are averages of over 500,000 datagram transmissions on a
heavily loaded link, using the same topology as in Figure 6.5. The measurements in Table 6.4
were collected at Router 1. Measurements collected at Router 2 showed deviations of no more
than+5% compared to Router 1. The row containing “FIFO” denotes the overhead of the FIFO

gueueing discipline in ALTQ, and is used to measure the overhead created by ALTQ itself.
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Set | accounting select compute greedy_alloc | adjust_rates
dropped_class | min_rates

X s X S X s X s X s
1 777 | 393 46 585 582 | 419 | 3128 667 6471 | 1512
2 | 1052 | 350 44 616 219 | 135 - - 6696 | 1087
3 774 | 401 | 1138 1005 568 | 434 | 3172 | 1044 - —

4 | 948 | 382 | 793 190 202 | 121 - - - -

Table 6.5: Overhead distribution.  This table presents, for the four considered sets of ser-
vice guarantees, the average number of cycl@sconsumed by each of the functions called by
jobs_enqueue, and the standard deviation (s). In the 1 GHz PCs we use, one cycle roughly corre-
sponds to one nanosecond.

Since thejobs_enqueue and jobs_dequeue functions are invoked once for each IP datagram,

we can predict the maximum throughput of a PC-router to be

F _
P
Nenqueust Ndequeue

whereF denotes the CPU clock frequency in Higaqueuddenotes the number of cycles consumed by
the jobs_enqueue function, ngequeuedenotes the number of cycles consumed byjthies_dequeue
function, andP is the average size of a datagram. The equation given above assumes that clock cy-
cles have a fixed duration, neglects bus contention and operations that occur in an interrupt context
(e.q., arrival of a packet at the input link), and does not take into account the cost of packet classifi-
cation. Thus, Egn. (6.2) is an optimistic estimate. In the case of our implementation in 1 GHz PCs,
we haveF = 10°. Data from a recent report [9] indicates that the packet size distribution on the
Internet is multimodal, and that the average size of a packet on the InteFhetd$1 bytes. Using
these values fdP andF in the above equation shows that, in the four sets of constraints considered,
we estimate that our implementation can be run at data rates of at least 292 Mbps.

Table 6.5 indicates that a dominant portion of the overhead is linked to the presence of pro-
portional delay guarantees (Sets 1 and 2). In particular, Table 6.5 confirms most of the overhead

is incurred by functions that can be sampled, notably, the implementatipre#ily _alloc of the

8previous measurements in [34] exhibited slightly more significant overhead under the same type of arrivals, but were
collected using an older version of our software, and an older version of the FreeBSD operating system.
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Number of | jobs_enqueue | jobs_dequeue
classexQ

2 3094 1000

4 11323 1057

6 15090 1091

8 20656 1224

Table 6.6:0verhead in function of the number of classes. This table shows that the overhead,
expressed as an average number of cycles, appears to be linear in the number of classes.

greedy algorithm for the redistribution of the service rates in presence of absolute delay bounds,
and the rate adjustment for proportional delay differentiatiorydiflust_rates. The row corre-
sponding to Set 4 gives some insight as to the cost of the operations that have to be performed on
a per-packet basis: considering thatpute min_rates can be sampled, the overhead, albeit not
negligible, appears to be reasonable.

Last, varying the number of classes in Set 1, we gathered the overheadjebthenqueue
and-jobs_dequeue functions in Table 6.6. Table 6.6 indicates that, as discussed in Section 6.2, the
overhead of thejobs_enqueue function appears linear in the number of classes. The small dis-
crepancy observed f@ = 2 is linked to the absence of proportional guarantees in that experiment.
Measurements for théobs_dequeue function tend also to exhibit linearity, but with a much higher

constant cost independent of the number of classes.

6.4 Related Work

Tools that facilitate the implementation and configuration of queueing disciplines in PC-routers
have been devised since the days of UNIX System V, with STREAMS [126]. More recent packages,
such as ALTQ [30], Netgraph [53], thekernel [79], Click [93] and Dummynet [127] allow for
implementing sophisticated queueing disciplines in Linux or BSD.

Hence, the implementation of QoS architectures using PC-routers is not new. For instance, the
ALTQ package itself supports natively the Class-Based Queueing (CBQ, [69]) and the Hierarchi-

cal Fair Service Curves (HFSC, [144]) schedulers. However, without external admission control,
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the ALTQ implementations of these QoS schedulers are in practice essentially used to control the
bandwidth individual users can receive.

With respect to building fully functional QoS networks, one can cite the attempts at creating
DiffServ networks using PC-routers. Implementations of DiffServ components in the Linux 2.1
kernel are for instance discussed in [19]. The authors of [19] integrate traffic policing and schedul-
ing/dropping in the same router, which generates significant overhead, and, as a result, traffic can
only be forwarded at approximately 20 Mbps. A similar effort to implement DiffServ components
in the Linux kernels has been recently pursued by [11], and as an application of Click [93]. Last,

an implementation of the Proportional Differentiated Services architecture is described in [72].

6.5 Summary and Remarks

We discussed how to implement our service architecture in an IP router, called a QoSbox. We
showed through analysis and measurements that our implementation of the QoSbhox in BSD-based
PC-routers can be used in networks with link speeds in the order of a couple of hundred megabits
per second. We also identified a few techniques that can be applied to implement our proposed
mechanisms at higher line speeds.

We evaluated the performance of our implementation using a testbed of PC-routers on a
100 Mbps Ethernet network, and showed that our implementation was able to provide the desired
service differentiation, thereby corroborating the simulation results presented in the previous chap-
ters.

A version of the QoSbox for BSD kernels is available to the public, along with the source code
and documentation attp://gosbox.cs.virginia.edu. The software has been available under
the BSD license since late October 2001, and is now distributed as part of ALTQ-3.1, and of the

KAME snap-kits. Inclusion in the base BSD distributions as part of ALTQ is under consideration.


http://qosbox.cs.virginia.edu

Chapter 7

Extending JoBS to TCP Traffic

The JoBS scheme and the algorithms we presented so far in this dissertation do not make any dis-
tinction between TCP and non-TCP (e.g., UDP) traffic. Our algorithms drop traffic when no feasible
service rate allocation exists for meeting all service guarantees, and do not take into account the sen-
sitivity of TCP traffic to losses. TCP, which accounts for more than 90% of the total traffic on the
Internet [9, 36], is a feedback-driven protocol that uses losses as an indicator for congestion avoid-
ance and control [10,82,83]. Hence, TCP packet losses lead to significant performance degradation
of the throughput of TCP sources. In addition, due to the relatively complex relationship between
packet losses and TCP throughput [116] and the lack of discriminating mechanisms between flows
belonging to the same service class, quantitative loss differentiation on traffic aggregates can result
in unpredictable throughput differentiation between individual TCP flows [154].

Furthermore, JOBS is a hop-by-hop scheme, while TCP is an end-to-end protocol. A service
architecture which offers absolute bounds on delays, losses and throughput, such as the Quantitative
Assured Forwarding service we propose, requires to control the amount of traffic that enters the
network to ensure that all guarantees can be met at all times. For instance, in the numerical examples
of Chapter 6, we observed that the offered delay bounds were sometimes violated. These violations
are caused by an impossibility to satisfy all service guarantees at the same time at a given link, due
to the instantaneous traffic arrivals at the link. To avoid packet losses and service violations, one

must consider mechanisms to reduce the traffic input to the network.

121
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In an effort to reduce losses in TCP/IP networks, Explicit Congestion Notification (ECN, [124])
has been proposed as an additional congestion signal for TCP flows. ECN allows to mark packets
with a Congestion Experienced (CE) codepoint. When a packet marked with the CE codepoint
is received by its destination, the data is acknowledged with a packet containing the CE-ECHO
codepoint. When the CE-ECHO marked acknowledgment reaches the sender, the sender reduces
its throughput, as if a loss had happened in the network.

The emergence of ECN has stimulated research on appropriate marking algorithms at routers
that indicate congestion to TCP sources to avoid packet losses resulting from buffer overflows
[13,60,61,62,68,76,77,105,117]. The key idea behind these algorithms, which have been presented
in Chapter 2 in the context of active queue management, is to mark packets proactively, that is,
before congestion occurs, to limit the amount of lost traffic in the network. For instance, instead of
dropping packets, RED can mark packets when the smoothed average of the buffer ocd@gpancy,
is between the two thresholdsinr; andmax . Packets are only droppedQ.g; > maxy. Other
algorithms discussed in Chapter 2, e.g., Blue [60], REM [13], or PI [77] can also use ECN marking
instead of packet drops when proactive action is taken. Recall that, to mark/drop packets, the PI
algorithm [77] uses a feedback-based model for TCP arrival rates [110] to let the buffer occupancy
converge to a target value. The TCP model used in PI requires a priori knowledge of the number of
flows traversing the router, and of the maximum round-trip time experienced by these flows.

While all of the proactive marking algorithms discussed above can, to some extent, reduce the
amount of losses in the network, we try to address a broader question in this chapter. Since ECN
provides congestion signals that can be conveyed before any traffic is dropped, we are exploring
how ECN can be integrated with scheduling and buffer management into JoBS to extend service
differentiation to TCP traffic.

We first explore if it is feasible to devise a marking algorithm which can ensure that the traffic
load at a router remains at a level that entirely avoids losses due to buffer overflows at routers,
without wasting available network bandwidth. The basic idea is to anticipate the behavior of TCP
sources at the routers, by tracking the window size and the round-trip time of flows at the router,

and to use ECN marking to have the senders adjust the window size of the flows. More precisely,
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when a router predicts future losses, the router sends congestion signals to the sources via ECN
with the goal of reducing the sources’ sending rates before a loss occurs. To that effect, we first
present a reference marking algorithm that tracks and controls all TCP flows at a router to prevent
impending buffer overflows. This reference marking algorithm is useful to assess the viability of
our design, but violates our design constraint of avoiding to maintain per-flow information. We note
that measurement studies indicate that only a small number of TCP flows, which we call “heavy-
hitters”, contribute to the majority of TCP traffic [9,57,59]. We conjecture that tracking and marking
only these heavy-hitters is sufficient for avoiding packet drops. Based on the idea of filtering flows,
we present a set of heuristic approximations for the marking algorithm, which do not require to
maintain per-flow state information. Then, we examine if ECN can be used to concurrently pursue
both objectives of avoiding losses and regulating traffic to meet per-class service guarantees.

This chapter is organized as follows. In Section 7.1, we present the reference marking algo-
rithm for avoiding buffer overflows. In Section 7.2, we describe the heuristic approximations. In
Section 7.3, we show how the proposed marking algorithm can be used for traffic regulation in the
context of class-based service differentiation. We compare the performance of the reference mark-
ing algorithm and of the heuristic approximations to other algorithms proposed in the literature in

Section 7.4, and draw brief conclusions in Section 7.5.

7.1 A Reference Marking Algorithm for Avoiding Losses

In this section, we describe a reference algorithm for marking TCP traffic at network routers. The
objective of the algorithm is to determine when to mark TCP traffic and which flows to mark in order
to completely avoid packet losses due to router buffer overflows, while maximizing the utilization
of the network capacity.

Throughout this section, we assume that all traffic uses TCP. While in practice one can expect a
mix of flows using different protocols (e.g., TCP, UDP, SCTP [140]), we can make this assumption
without loss of generality, since one can always reserve fixed resources at each router for TCP traffic

such as a dedicated buffer and a fixed portion of the output link capacity. Furthermore, we assume
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Figure 7.1: Overview of the marking algorithm. At time t of a packet arrival, the router pre-
dicts future arrivals, by inferring how the TCP source will send traffic. When an impending buffer
overflow is predicted, at time here, a packet is marked to reduce future arrivals.

that ECN is available in the network. This assumption should hold in future networks, as ECN

is being rapidly deployed on the Internet: recent operating systems such as FreeBSD 4.x and 5.x
(with KAME) or Linux 2.4 already support ECN. For the description of the marking algorithm in

the remainder of this section, we assume that enough resources are available to perform the needed
computations.

We next describe the marking algorithm at a single router, for a single greedy TCP flow. For
the time being, we assume that there is no other traffic in the network, and that the only cause of
packet losses at the router is a buffer overflow. The router estimates the congestion window size
and the round-trip time of the TCP flow. With these estimates, future traffic arrivals are predicted,
and impending buffer overflows are inferred, as illustrated in Figure 7.1. In the case of Figure 7.1,
at timet, a buffer overflow is predicted for timg. If a packet loss is predicted, the algorithm
reduces the congestion window size of the TCP source by marking packets with ECN. By reducing
the congestion window size, the sending rate of the TCP source is reduced, and impending packet
losses can be avoided. Note that the proposed algorithm does not require any changes to TCP, and

only relies on ECN to reduce the traffic load.
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The remainder of this section describes the calculations at the router to predict future packet
losses. We explain how to use the predictions to mark traffic and avoid packet losses using the
simplified model of a single TCP flow. We then generalize the proposed technique to multiple TCP

flows with different sources and destinations crossing paths at a same router.

7.1.1 Predicting Traffic Arrivals to Prevent Losses

Let us assume for now that packet losses can only be caused by a buffer overflow at the considered
router, and leB denote the size of the router’s buffer. Using the notions of input and output curves
that we defined in Chapter 3, at any timehe backlog at the router is equal RS (t) — ROY(t).

Hence, we have the following constraint:
vt: R(t) —RPU(t) <B. (7.2)

Assume that the output link capacity of the router has a constanCrated that the router uses a
work-conserving scheduler. Thus, for angndt > 0 such that traffic is always backlogged over
[t,t+1,

RU(t+1)=RM(t)+C- 1. (7.2)

Since Eqn. (7.2) characterizB8" whenever there is a backlog, the algorithm only needs to infer
R"(t +1) for T > 0, to ensure Eqn. (7.1) holdstat T, thereby avoiding impending buffer overflows.

To clearly distinguish between known, measured values and future, predicted values of the arrivals
and of the departures, we will use the notations introduced in Chapter 3, tRft(ts+ 1) is the

value predicted at timefor the input curve at timeé-+ t. While the prediction of the output curve,

ROU s identical to that introduced in Eqn. (3.8), the prediction of the input curve will use the
properties of TCP congestion control to provide a more accurate prediction than the prediction
proposed in Eqgn. (3.7).

To predict future arrival®R"(t 4+ 1) for T > 0, we need to examine how traffic is sent at the

1Since we consider a single TCP flow here, there is a single class of traffic, and we do not need to use subscripts to
denote a class index.
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source, so that we can infer how much traffic is received by the router. For this discussion, we
consider “segments” and “packets” as synonymous. Furthermore, we ignore the slow-start phase of
TCP, since the flow is unlikely to send enough traffic to create a buffer overflow during slow-start,
and only focus on the congestion avoidance phase. Every time an acknowledgment is received at
the source, the source sends a number of packets equal to the maximum of the receiver’s advertised
window size,adut), and the source’s congestion window simmd(t),2 minus the number of
packets sent and not yet acknowledgednd(t) is increased bw every time an acknowledg-

ment is received, unless the acknowledgment is marked with the CE-ECHO codepoint or a packet
drop is inferred by reception of a triple-duplicate acknowledgment, in which caed(t) is de-
creased td‘%d(t). Last, if the retransmission timer of the TCP source expiresidt) is reset to

one and the flow is back to slow-start.

Sincecwnd(t) is conditioned by receiving acknowledgments at the source, the round-trip time
(RTT), that is, the time difference between the instant a packet is sent and when its acknowledgment
is received at the source, is central to the evolutionvafidt). The RTT depends on time, due to
variable queueing delays, and/or changing routes. We dend®Thyt) the value of the RTT at
timet, and define a series of “rounds” as follows. The first round starts when the first packet is
sent by the source, and ends when the acknowledgment to the first packet sent in the first round is
received. Thék+ 1)-th round starts immediately after tkeh round ends. Denoting ks the start

time of thek-th round at the source, ttgeare linked by the recursive equation
S+1=s+RTT(s).

Now, within thei-th round, i.e., between times andsi, a TCP source sends at ma§t(s)
packets withW(s) = max{adus),cwnds)}. Furthermore, it can be shown (see [116], or the
example in [139], Chap. 21) that, in absence of retransmission timer timeouts, and if the TCP

source is not in slow-start mod#/(s;+1), the number of packets sent in thie+ 1)-th round is

2At the end hostszwnd(t) is internally expressed in bytes, which does not affect our present discussion.
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bounded by

2W(s) SW(s1) SW(s)+1. (7.3)

The lower bound is given by the consideration that at most one ECN congestion signal is taken into
account per round [124], while the upper bound is reached only if all packets sentiiththeund

are successfully acknowledged by the destination. Note that Eqn. (7.3) is general enough to capture
the behavior of Delayed-ACKs implementations, which issue on average only one acknowledgment
for each two data packets.

SinceW(t) andRT T(t) are not known by a router, Eqn. (7.3) tells us that a router that wants to
estimate future traffic arrivals must be able to estimate, at anyttiR& T(t), W(t), ands; for the
current round. We denote bY(t), RT T(t), ands(t) the estimates at the considered routent),

RTT(t), and ofs, respectively.

These estimates are computed as follows. The first time a packet is received at the router, the
current time, Ty, is recorded. When the second packet arrives at the router, aTiintiee value of
RT T(T) is initialized toT, — Ty,3 andW(t) is initialized to 1. At timeTy, &(t) is initialized toTs.

After time T, the key idea to update the RTT estimates is to discriminate the rounds. Mea-
surement studies [56, 121] show that the RTT is generally significantly larger than the time needed
to receive all packets from a given rouhdlhus, monitoring the packets’ interarrival times at the
router can determine alone if a new round has started. More specifically, if, for a coxstaht

chosen by the network operatdy, ; andT; satisfy

RTT(T,_
Ti—Tioa> f(l) , (7.4)
the router considers th@t marks the start of a new round. Empirical results, such as our evaluation
in Section 7.4, indicate that using~ 10 generally manages to accurately distinguish between
different rounds.

If Egn. (7.4) does not holdl;_; andT; are part of the same round, aﬁ’/d'\T('I'i) is set equal to

3This method is equivalent to the SYN-ACK algorithm of [89].
4The same assumption is used in [116] for modeling the sending rate of a TCP source, and has been confirmed in
experimental measurements.
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RTT(Ti_1), W(T;) is set toW(Ti_1) + 1, ands(T;) is set equal t&(T;_1). Conversely, if Eqn. (7.4)

holds, the router updates the estimates as follows:

S(Ti) = T,

W) = 1,
RTT(T) = o-RTT(ET-1)+(1—a) (§T) -8Ti-1)),

where 0< a < 1 is a constant. The method to estimﬁT(t) described above is similar to the
round-trip time estimator at the TCP sources [82], which wses0.9, and has shown to provide
reasonably accurate results. We point out that except in rare cases of persistent link failure, where
packets end up being re-routed, the RTT does not vary significantly over time, and thus, the algo-
rithm should be rather insensitive to the selectio of

With the estimates of the RTT and the window size, the router can predict future window sizes.
Specifically, for any timé and any timer > 0, denoting by (t+1) the prediction of the window

size at timet + T, the router computésf(t + 1) as

>

(t) if t+T <§t)+RTT(t),

>

() +1 ift+1>8t)+RTT()
and no packet has been
marked (or dropped)

W(t+T) = in [§(t),1], (7.5)

W) ift+T>81t) +RTT(Y)

and at least one packet

has been marked (or

dropped) inS(t), t].

The router can discover if a packet has been marked (or dropped upstrelath), thby checking
the ECN bits and the TCP sequence numbers. From Eqn. (7.5), the router predicts that the window

size does not change until the end of the current round, and that its value at the beginning of the next
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round depends on whether or not a packet has been dropped or marked during the current round.
Eqn. (7.5) captures that, at the earliest, ECN signals have an effect only at the beginningextthe
round.

We shall note that this prediction is correct only when all packets in a round have been received
by the router. This may seem a restriction, but since the RTT of a flow is generally larger than the
time needed to receive all packets in a given round for this flow [56, 116, 121], the prediction is
generally accurate. With (t + 1) given by Eqn. (7.5), a router can predict the input curve with the
following expression:

RM(t+1) = R"(t) + MSS y (1) - W(t+ 1), (7.6)

whereMSSis the maximum segment size of the TCP flow, and

1 ift+1>8t)+RTT(t),
(1) =

0 otherwise.
That is, a router can assume that all traffic sent in the next round arrives in a batch right at the start
of the next round, which is a conservative assumption. In practice, such bursts of traffic are rarely
observed.

Next, we discuss how arrivals are marked. To determine if an arrival attimest be marked,

a router checks that the flow has not already been marked (or has experienced some losses) during
the current round. This test is necessary since at most one ECN-marked packet per round has an
impact on the arrivals. If the flow has not experienced any losses or packet marking [@(i)irigy

the router verifies if the following condition holds:
R\(t+1) - RM(t+1) <B,
that is, replacing the prediction of the output curve by its expression,

R'(t+1)—RY(t)—C-1<B. (7.7)
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This condition tests if a buffer overflow is going to occur at the beginning of the next round. Since
ECN feedback does not have any impact until the beginning of the next round, the condition in
Eqgn. (7.7) is checked far= §(t) + R’/T\T(t) —t. If the condition of Eqn. (7.7) is violated, then the
router marks the packet at the head of the transmission queue with the CE codepoint. Marking
the packet at the head of the queue minimizes the delay needed for the ECN feedback to reach the
source.

We conclude with a discussion on the robustness of the above estimators. If the censtant
Eqn. (7.4) is too small (e.gg, = 1.01), or if W(t) is extremely large and data transmission appears
continuous, the test described in Eqn. (7.4) may not be able to discriminate between rounds. In
the worst-case, the router may never infer the start of a new roundNVagmws unbounded. To

address this problem, we use a safeguard, based on Eqn. (7.3) as follows. If, Bt timdave
W(T) >W(S(T) ) +1,

the router infers thal; marks the start of a new rounglyen if Eqn. (7.4) does not holdow, if K is

too large (e.g.k > 1000), the router incorrectly infers that each packet arrival marks the start of a
new round, and thu§lY andRT T underestimat®/ andRT T. In the worst-case, whéV — 0 and
RTT— 0, no prediction is performed, thus no traffic is marked, and the algorithm degenerates to
Drop-Tail. Our experiments show that the algorithm is quite robust to changes of the parameters.
In fact, the experimental results gathered in Section 7.4 with10,a = 0.9 are almost identical

to those obtained with any value 30k < 100, and 07 < a < 1.

7.1.2 Generalization to Multiple TCP Flows

We next consider a more general situation wWitreedy TCP flows. We uSeT T (t),Wi(t), MSS,

and$§l (t) to denote the estimated round-trip time, congestion window size, maximum segment size
and start time of the current round for TCP flgyrespectively. Let us assume, for the moment, that
the router is able to monitor aN TCP flows and can keep track of all R T (t), Wi(t), MSS

andsl (t).
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Now, by defining for each flow, at any timet,
V=8 +RTT(t) -t (7.8)

i.e., T is the (estimated) remaining time before the start of the next round for TCPjflaud
by iterating the prediction technique of Section 7.1.1 for all flows, the router first computes the
predicted congestion window in the next roub@j,(t +1}) for each flowj, using Eqn. (7.5). Then,

for anyt > 0, the predicted arrivals are

RI(t+1) =R"(1) + Y MSS - (1) W (t+ 1), (7.9)
]
where
j 1 ift>1,
V(1) =
0 otherwise.

If the condition given in Eqn. (7.7) is violated for any of th&s of Eqn. (7.8), the algorithm

proactively marks the oldest backlogged packet from #omith
k=argmaxj | W (t+1/) =Wi(t)+1} (7.10)

that is, the algorithm marks the flow with the largest congestion window that has not yet been
marked (or experienced a packet drop) in its current round. As soon as the oldest backlogged flow-
k packet is marked(t + 1) is set toWX(t) /2, and the condition of Eqn. (7.7) is reevaluated. The
marking process is repeated until Eqn. (7.7) does not hold for any af teor all flows have one

packet marked in the current round.

7.2 Emulating the Reference Algorithm without Per-Flow State

The algorithm presented in Section 7.1 maintains the per-flow state information, thereby violat-

ing our design constraints. We now present a set of heuristic approximations for the reference
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algorithm. The approximations use flow filtering to reduce the number of tracked TCP flows, and

employ linear interpolation to reduce the computational complexity of the predictions.

7.2.1 Flow Filtering

As observed in measurement studies [9,57,59], only a small percentage of flows (“heavy-hitters”)
accounts for a large percentage of traffic. These heavy-hitters transmit at a high data rate due to (1)
a large congestion window, and (2) a relatively small round-trip time. From the description of the
reference algorithm in Section 7.1, these are generally the only flows that need to be marked by the
reference algorithm. Thus, by limiting the tracking operations to the heavy-hitters we expect that
the reference algorithm can be closely approximated.

To identify the heavy-hitters, we use the serial multistage filter proposed in [54]. The objective
of the multistage filter is to identify, at any tinte the flows that have sent more th@rbytes
during the time interval [t/o] - 0,t), where® is a given threshold, and > 0 is a fixed time
constant denoting the sampling interval used for measurement. The serial multistage filter proposed
in [54] works as follows. Every time a packet arrives at the router, a hash function is applied to
the source and destination IP addresses and port numbers. Flows are then grouped into buckets
depending on the value returned by the hash function. Then, flows in the fullest buckets are hashed
by a second, independent, hash function and grouped into second-level buckets. The same type of
hashing operation is repeated a third time. Flows belonging to the fullest buckets after the third hash
are recorded into memory. The authors of [54] showed that the serial multistage filter minimizes
false positives (i.e., only a few flows with a small sending rate are labeled as heavy-hitters) and
avoids false negatives (i.e., all flows with a large sending rate are tracked).

We implement flow filtering as follows. We use two linked lists in the router's memoyryor
current sampling, and, for flows previously recorded. Initially, bothi; and £, are empty. In
the first sampling interval, flows are addedA¢ only if they pass the multistage filter, while,

remains empty. At timé = g, £ is copied into£, before being resét. The process is iterated

5This operation can be implemented efficiently by swapping the two pointers and £, and resetting the pointer
on L.
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everyo seconds. At any time the router updates the estimatifT, W, andsfor all flows in £4
and ;.

Only the flows inL, are used for the predictions, and the prediction of Egn. (7.9) always un-
derestimates the input curve. To adjust the estimate of the input curve, at arty tigéntroduce

a correction factor{ (t), whose value is updated tat ko, wherek is a positive integer, with

() - — RO-R(k-1)-0)
Yjer, (RM(t) —RM((k-1)-0))
whereR™I(t) denotes here the amount of floptraffic received by the router by tinte That is, at
any timet, {(t) denotes the ratio of the total amount of traffic received by the router in the previous
sampling interval over the amount of traffic that was identified in the previous sampling interval.

Note that we always have

(Hy>1.

The cas€/(t) = 1 is an extreme case where all flows pass the filter during the previous sampling
interval. As an example, far=5.5s, ando =15, if {(t) = 1.1, we know that 90.9 % of all traffic
received by the router in the time interndl s 5 s) has been identified. At any timethe prediction

of the input curve for the traffic aggregat%’,‘ is set equal to the sum of the prediction of the input

curves of the flows inC,, multiplied by the correction factdj(t), that is

RIt+1) =21 Y RM(t+1).

IEL2

Remark: We note that the selection of the parameteiand 0 presents a trade-off between com-
putational overhead and accuracy of the algorithm. With a larger sampling intertred updates

to main memory/,, are performed less frequently, at the expense of using possibly obsolete data.
With a larger value foB, the number of recorded flowg;, remains small, but the accuracy of the
predictions may be poor. Thus, we infer that b6tando should be tuned according to the com-
putational power available. In particular, routers at high-speed access points, and a large number of

flows, should be configured with relatively large values@@ndo.
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Figure 7.2:Linear interpolation. In the heuristic, only the valuB(t + max{t;}) is computed,
and is used to determine the excess traffic that will arrive at the router.

7.2.2 Linear Interpolation

Flow filtering limits the amount of state information recorded at the router, but does not improve
the computational overhead of the construction of the predicted input curve. We next describe a
technique that reduces the complexity of the prediction of Eqgn. (7.9).

First, instead of using individual values of the congestion windows of all recorded flows in the
construction of the predicted input curve, we consider that all recorded flows have a congestion

window size (in bytes) equal to the mean congestion window size (in bﬁegjyen by

This approximation is justified by the fact that we use flow filtering and ignore flows with small
congestion windows.

Second, we use linear interpolation to reduce the complexity of the construction of the predicted
input curve and illustrate our method in Figure 7.2. Rather than constructing the whole predicted

input curve, only the valu&"(t + max; {t'}) is computed. Intermediary valud®"(t + 1) for



Chapter 7. Extending JoBS to TCP Traffic 135

0 <1 < max {1/} are approximated using a linear interpolation, based on the value obtained for
RM(t +max {tl}). The reason for selecting mgx!} as the basis for the linear interpolation,
instead of, for instance, mjil{lrj}, is that the prediction can take into account all recorded flows.

Next, Egn. (7.7) tells us that
(1) = RY(t+ max{tl}) —R¥(t) ~C-max{t/} - B

is the amount by which the traffic must be reduced to prevent buffer overflows. &tgrand

ﬁ(t), the algorithm can infer the number of flows that have to be marked, and only update the
predicted input curve once, which reduces the worst-case complexity of the prediction operations
to O(1). If £(t) > 0, the marking process performs at mGgY ) operations wher¥ is the number

of backlogged packets. The worst-case occurs when all packets backlogged have to be marked at
the same time. In practice, we only expect at most a couple of flows to be marked upon each packet

arrival, since predictions are performed over short time intervals.

7.3 Traffic Regulation with ECN Marking in Class-Based Service Ar-

chitectures

In this section, we build on the algorithm we described in Sections 7.1 and the approximations of
7.2 to describe how ECN marking can be used to extend JoBS to TCP traffic.

Recall Egn. (5.4) is a sufficient condition for all Clagsaffic to meet its delay and throughput
guarantees at any timavhen Class is backlogged. To be able to satisfy Eqn. (5.4) for each class,
at any timet, we need to have

R"(t) —RM(t)
,Zmax{di—[)i(t)’“' “Xeit)>0 ¢ <C. (7.11)
If the condition of Eqn. (7.11) is violated, one can red&®¥t) by dropping traffic, as we did in

the previous chapters. Since our objective here is to avoid any traffic drops, we use the predictions

described earlier to ensure that fHé(t)’s always satisfy Eqn. (7.11).
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Assuming the throughput guarantees are appropriately chosen, that is,

dH<C,

we propose the following approach. At tinhein addition to the predictions on the input curve of
all flows j in Classi, Qr}’ (t+71), which is given by Eqn. (7.6), and the clagsredicted input curve,
given by
Rit+1) =Y RY(t+1),
]

we also predict the Classautput curveﬁﬁt‘“(T) by
R (t+T) = RPU() +T-mi(t)

wheret > 0. Note that the prediction of the output curve is the same as originally proposed in
Eqgn. (3.8).

If the rate allocatiorr; remains unchanged betweeandt + 1, this prediction oﬂ:?’t“t(t +1)
is exact. Since we only use the prediction for small values (@ the order of a round-trip time)
we can assume that the prediction is reasonably accurate, eyerhdnges betweenandt + T.
Furthermore, let us assume that the delay of Alasmains roughly constant durirfigt + t]. With
these predictions defined, we can predict the minimum serviceﬁ{?ﬂﬂés+r) needed at time+T,

so that all service guarantees on throughputs and delays are met:

- Ri(t+1) —RY(t+1)
Mt -+ 1) = maxy{ W, — : .
It ( ) di _ Di (t)
To ensure that the set of service rates required for meeting service guarantees is always feasible, we
must enforce

Srnt+d) <c, (7.12)
|

for all Tij'S defined by Eqgn. (7.8) for each class If Eqn. (7.12) does not hold, the incoming

traffic needs to be reduced. To that effect, we propose to first identify the set of classes where
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F{j@‘”(t +1) > W, which are the classes where decreasing the traffic arrivals has an effect on the

minimum service rate required. Sin§ey < C, we know that there is at least one class in that set.
Once the classes whose traffic need to be throttled have been identified, the marking process is

carried out in the same manner as in the case of an impending buffer overflow, by merely replacing

the condition given in Eqgn. (7.7) by the condition given in Egn. (7.12).

7.4 Evaluation

In this section, we evaluate our proposed marking algorithm via simulation, using{keetwork
simulator. The evaluation has three objectives. First, we compare the performance of the refer-
ence algorithm and of the algorithm with the heuristic approximations. Second, we compare the
performance of our proposed algorithm to state-of-the-art active queue management algorithms.
Third, we illustrate how JoBS performance is improved with the marking algorithm presented in
this chapter. We present two simulation experiments. The first experiment evaluates the efficiency
of the proposed approach with respect to buffer management, while the second experiment eval-
uates the performance of a combination of the heuristic approximations of the marking algorithm
and the closed-loop algorithm for rate allocation and buffer management of Chapter 5 to provide

service guarantees.

7.4.1 Experiment 1: Active Queue Management

In the first simulation experiment, we consider a bottleneck link with capé&cityl0 Mbps, and

buffer size ofB = 150,000 bytes. All traffic at this single bottleneck link is TCP (NewReno), and is
generated by 60 greedy FTP flows, and 180 on-off flows, aiming at emulating HTTP connections.
The sources of the on-off flows send on average 300 packets during an “on” period, and pause
on average for one second between two “on” periods. The actual number of packets sent and the
wait time between two transmissions are exponentially distributed. All packets have a size of 500
bytes. In the absence of queueing and transmission delays in the network, the RTTs of all flows

are independent identically distributed random variables uniformly distributed betweas&d
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180ms and to avoid synchronization effects, sources start transmitting at different times, uniformly
distributed between 8and 5s. The experiment lasts for 70 seconds of simulated time, and ECN
is available in the entire network. The load is roughly constant and equal to the link capacity. We

compare the performance of six different algorithms at the router governing the bottleneck link:

e Drop-Tail. We use Drop-Tail to have an estimate of the loss rates encountered without active
gueue management. With Drop-Tail, incoming packets are discarded only when the buffer is

full.

e RED [68]. We use RED with thegentle_ variant [67], with a minimum threshold
minry = 37,500 bytes, and a maximum threshaldygy = 75,000 bytes. The parameter
maxp is set to 0.1, and the weight used in the computation of the average queue size is set to
Wq = 0.002. Whileminry andmax-y are chosen so that traffic is dropped with a probability
of one only if the buffer is full, other parameters are the default RED parametassdrand
are therefore expected to cover a large range of operating conditions. RED is set to use ECN

marking instead of packet dropping whenever possible.

e PI [77] with approximate parameter tuning. To account for the uncertainty on estimates
of the RTTs and of the number of flows at router configuration time, we configure here the
PI algorithm with crude estimates of the RTTs and of the number of flows. That is, we
use a lower bound on the number of flowshf= 50, and a maximum RTR" = 300ms
with a sampling frequency of 160 Hz, yielding parameter valuea €f0.239% — 4 and

b= 0.238&— 4. The target queue length is setQp 1=100,000 bytes.

e Pl with exact parameter tuning. We configure the PI algorithm with the exact RTTs and
number of flows we use in our simulation. That is, we use a lower bourid -6f60 on
the number of flows, and a tight upper bound on the round-trip tiRfes- 180 ms with
a sampling frequency of 160 Hz, and get 1.643— 4 andb = 1.628 — 4. The target
queue lengtl¢; is set to 100,000 bytes. Note that such an exact parameter imposes a priori
knowledge of the number of flows and of the round-trip times of the flows that will traverse

the router at router configuration time, which may be difficult to obtain in practice.
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e Reference algorithm. This is the reference marking algorithm described in Section 7.1.
Results are obtained fer= 10,0 = 0.9. We achieved similar results with parameter settings
in the range 16< K < 100 and 07 < a < 1, which tends to show that our proposed marking

algorithm is relatively insensitive to the selection of these parameters.

e Heuristic approximations. This is the marking algorithm using the heuristic approximations
described in Section 7.2. The multistage filter consists of 3 stages of 8 buckets. The admission

threshold is set t& =200,000 bits and = 1 s.

For each algorithm, we monitor the loss rates over a sliding window of sizesPa2 present our
results in Figure 7.3. We start monitoring at titne 10 s to ignore transient effects linked to the
initial empty state of the network. Figure 7.3(a) tells us that, without active queue management,
one can expect loss rates in the order of 12 %. Figure 7.3(b) and (c) show that RED with the default
parameters, which turn out to be unsuitable for the traffic mix at hand, and a crudely configured
Pl algorithm, drop almost as much traffic as Drop-Tail. Conversely, a perfectly tuned Pl algorithm
manages to avoid most packet drops. The reference algorithm completely avoids packet losses, and
the heuristic rarely drops any packets, delivering results close to those of the reference algorithm.
Next, we monitor the aggregate throughput and goodput observed at the receivers, averaged over
a moving window of size 0.25and present our results in Figure 7.4. The throughput characterizes
the total amount of traffic received by the transport layer at the destination, while the goodput
characterizes the amount of traffic that is passed by the transport layer to the application layer. The
main observation is that all schemes manage to achieve an aggregate throughput roughly equal to
the capacity of the bottleneck link. Furthermore, we note that, by avoiding packet losses, an exactly
tuned PI, and both the reference algorithm and the heuristic approximations manage to achieve a
goodput close to the throughput.
Last, we monitor the queue size, averaged over a moving window of size,@@8 we present
our results in Figure 7.5. Not surprisingly, the Drop-Tail queue is almost always full, which explains
the relatively high loss rates. RED manages to stabilize the queue length anaung = 75,000

bytes. (This observation coupled with the result presented in Figure 7.3 indicates that RED drops
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Figure 7.4:Measured throughput and goodput at the receiversThe figures compare the aggre-

gate throughput and goodput seen at the receivers with all six algorithms. All schemes are efficient
at maximizing the utilization of the bottleneck link (10 Mbps). A perfectly tuned PI, and both the
reference algorithm and its heuristic approximations have a goodput (amount of traffic passed to the
application layer at the destinations) almost equal to the throughput (total amount of traffic received
at the destinations) by avoiding packet drops.
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Figure 7.5:Queue lengths. The figures compare the queue lengths at the router for all six algo-

rithms.



Chapter 7. Extending JoBS to TCP Traffic 143

Number of | Number of QoS Guarantees
Class| on-off greedy Delay Loss | Throughput
flows flows Rate
1 5 3 <10ms| <1% | >5Mbps
2 10 3 ~ %Dg ~ ;leg, -
3 15 3 ~7Ds | =3pa -
4 20 3 - - -

Table 7.1:Traffic mix and service guarantees.The second column indicates the number of on-off
flows, the third column the number of greedy flows, and in the third and fourth rows, as in previous
chaptersp; denotes the loss rate of Classver a busy period, and; denotes the delay of Class

some packets proactively even when ECN is available.) With an approximate tuning of the con-
figuration parameters, Pl does not manage to track the desired queueQgngth100,000 bytes,

and instead, the queue is almost always full. Conversely, a properly tuned PI algorithm manages
to achieve the targed.¢, albeit with some oscillations around the target value. While stabilizing

the queue length is not the primary objective of our algorithm, the reference algorithm manages to
keep the queue length almost constant around 120,000 bytes. The heuristic approximations keep
the queue length in the vicinity of 50,000 bytes, with oscillations of a magnitude comparable to
those of a well-configured PI controller. These oscillations are mostly due to the choice of a one
second sampling interval, and are reduced for higher sampling frequencies, at the expense of a

higher computational overhead.

7.4.2 Experiment 2: Providing Service Guarantees

Next, we assess the effectiveness of our algorithms at regulating traffic in the context of our pro-
posed service architecture. To that effect, we run a second experiment, with a bottleneck link with
capacityC = 45 Mbps, and a buffer size @& = 250,000 bytes. All traffic at the bottleneck link

is TCP (NewReno), and consists of 12 greedy TCP flows, and 50 on-off TCP flows, following the
same on-off pattern as in the first experiment. The RTTs of all greedy TCP flows are equal to
44 ms and the RTTs of the on-off flows, in the absence of propagation and transmission delays, are
uniformly distributed between 4dhsand 80ms All sources start transmitting at tinte= 0 for 70

seconds of simulated time, and ECN is available.
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Figure 7.6:Class-1 packet delaysNote that the violations are much smaller in magnitude with
the marking algorithm.

We consider four classes of traffic, with the service guarantees and traffic mix described in Ta-
ble 7.1. In addition to the on-off flows, each class contains three greedy TCP flows. We compare the
performance of two algorithms in this experiment. The first algorithm is the closed loop algorithm
for buffer management and rate allocation described in Chapter 5, without any ECN marking. The
second algorithm combines the closed-loop algorithm of Chapter 5 with the marking algorithm de-
scribed in Section 7.3 and the heuristic approximations described in Section 7.2, using a multistage
filter of 3 stages of 8 buckets,= 0.1 s, 8 = 200 000 bits.

We plot the delays encountered by each Class-1 packet at the bottleneck link in Figure 7.6.
Figure 7.6(a) shows that, given the traffic mix considered, about 11 % of all Class-1 packets exceed
the delay bound of 1éns with queueing delays going as high as 108 This is due to the order
chosen for relaxing service guarantees, which gives precedence to the loss guarantee and relaxes
the delay bound. Clearly, in this experimental setup, traffic regulation is urgently needed, because
the buffer size at the transmission queue (250 KB) is small compared to the output link capacity
(45 Mbps), and stringent loss rate bounds (1%) and delay boundsgHoe offered to a same class
of traffic, often resulting in an infeasible set of service guarantees. Conversely, Figure 7.6(b) shows
that when the marking algorithm we described in this chapter is used, violations rarely happen
(< 2 %), and the delay does not exceedi2®

Next, in Figure 7.7, we plot the loss rates averaged over the length of the current busy period.
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Figure 7.7:Loss rates. The marking algorithm prevents any traffic from being dropped.
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Figure 7.8:Per-class throughputs. Without the marking algorithm, we observe oscillations and
sporadic violations of the Class-1 throughput guarantee. The marking algorithm stabilizes these
oscillations and ensures the throughput guarantees are respected.

Figure 7.7(a) show that all loss guarantees are respected, notably the 1 % bound on Class-1 losses.
However, as we have seen in Figure 7.6(a), the loss rate bound is respected at the expense of the
delay bound. Figure 7.7(b) shows that, with the addition of the algorithm of Section 7.3, no packets
are lost, and therefore, the objective of completely avoiding packet drops to meet service guarantees
is met.

Finally, in Figure 7.8 we present the throughput obtained by each class at the bottleneck link.
Figure 7.8(a) shows without the marking algorithm, severe oscillations of the throughput can be
observed. These oscillations are due to TCP sources reacting to packet losses. The throughput

bound on Class-1 is sometimes violated, due to the fact that there is not enough Class-1 traffic
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present in the router. Figure 7.8(b) shows that our marking algorithm stabilizes these oscillations
in throughput, and that the throughput guarantee on Class 1 is always respected. We also note that
the aggregate throughput is equal to the capacity of the bottleneck link whether or not the marking
algorithm is used. This means that the stabilization in the throughputs provided by the marking

algorithm algorithm does not come at the expense of under-utilization.

7.5 Summary and Remarks

We investigated whether marking algorithms for ECN can be used for regulating traffic in the con-
text of class-based service architectures, while avoiding packet losses due to buffer overflows. To
that effect, we first described a reference marking algorithm for IP routers, which attempts to elimi-
nate packet losses in TCP flows. The proposed algorithm infers how traffic is sent by TCP sources,
by tracking the window size and RTT of large flows, and accordingly makes the marking decisions.
We then showed how the proposed algorithm can be used for traffic regulation in the context of
QoS architectures, in lieu of traffic policing or admission control. Experimental results illustrated
the potential of the approach.

We note that the techniques used in the algorithms can be further improved by more accurate
and robust estimators of the RTT values, e.g., [89], and of the congestion window sizes. Another
area for improvement resides in the type of filter used in the heuristic approximations. While
the serial multistage filter [54] we use for our algorithm appears to exhibit good performance, a
follow-up work described in [55] indicates that parallel multistage filters typically perform better
than serial multistage filters, and are more amenable to mathematical analysis of their properties,
such as probabilities of false negatives. Using a parallel multistage filter could therefore open the
door for an analytical evaluation of our proposed algorithms, and help quantify the trade-offs in
parameter selection.

Furthermore, our current approach assumes TCP Reno or NewReno; extending it to other fla-

vors of TCP such as SACK [109], or Vegas [25] could be of interest.
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Conclusions and Future Work

8.1 Conclusions

For the past decade, a significant amount of research in data networks and telecommunications
has been devoted to providing different levels of service to applications on the Internet. In this
dissertation, we presented a novel service architecture for the Internet, which reconciles application
demand for strong service guarantees with the need for low computational overhead in network
routers.

The main contribution of this dissertation is the definition and realization of a new service,
called Quantitative Assured Forwarding, which offers absolute and relative differentiation of loss,
service rates, and packet delays to classes of traffic. The Quantitative Assured Forwarding can
be viewed as a generalization of all previous class-based service models. We devised and ana-
lyzed mechanisms that implement the proposed service, and demonstrated the effectiveness of the

approach through analysis, simulation and measurement experiments in a testbed network.

8.1.1 Scheduling and Buffer Management

A key scheme to realize the proposed service architecture is to combine service rate allocation and
buffer management in a single step. This scheme is called JoBS, short for Joint Buffer Management

and Scheduling. Based on JoBS, we first presented a reference algorithm that dynamically solves
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a non-linear optimization to allocate service rates and drop traffic, and we proposed a heuristic
algorithm to approximate the solution to the non-linear optimization.

We then devised a closed-loop algorithm relying on feedback control theory, that provides a
very close match to the non-linear optimization while relying on relatively simple operations.

We described the design of IP routers, called QoSboxes, that realize the QAF service. We
presented the details of our implementation in PC-routers of the closed-loop algorithm, which is
distributed as part of the recent ALTQ-3.1 package and of the KAME snapkits, and is also available

fromhttp://qosbox.cs.virginia.edu. The outcomes of this research include the following:

e By combining service rate allocation and buffer management in a single algorithm, one can
provide a service architecture that subsumes all other per-hop, per-class service architectures
in terms of service guarantees, without resorting to admission control or traffic policing. We
showed by simulation that our approach matched the performance of algorithms specifically
designed for proportional differentiation, while being able to enforce absolute guarantees at

the same time.

e The non-linear optimization problem that characterizes the service rate allocation and traf-
fic drops can be closely approximated by a closed-loop algorithm based on linear feedback
control theory. We can derive stability conditions on the linearized feedback loops. The ap-
proximations made for linearizing the feedback loops appear to be valid in practice, since the
feedback loops exhibit stability, as we demonstrated through a number of simulations and

testbed experiments.

e The closed-loop algorithm can be implemented at link speeds in the order of a few hundreds
of megabits per second in 1-GHz PC-routers running variants of the 4.4-BSD operating sys-

tem. We described the approximations necessary for an implementation at higher speeds.

8.1.2 Extending JoBS to TCP

We proposed extensions to the JoBS scheme to reconcile the per-hop, per-class guarantees of the

QAF service, with the properties of TCP, which is an end-to-end transport protocol sensitive to
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losses. In particular, we considered the design of a packet marking algorithm that attempts to
avoid losses by using the feedback capabilities of TCP traffic, and of the recently proposed Explicit
Congestion Notification.

Also, even though combining scheduling and buffer management manages to enhance per-class
service differentiation, controlling the amount of traffic to enter the network remains a necessity to
prevent cases where sudden bursts of traffic render a system of service guarantees infeasible. We
showed our marking algorithm was a potential alternative to admission control and traffic policing.

Our research on extending a QoS architecture to take into account TCP traffic indicated that:

e It is possible to design ECN marking algorithms that completely eliminate losses in TCP/IP
networks. Simulation experiments illustrated that a reference algorithm using per-flow infor-
mation was able to completely avoid packet drops, thereby maximizing the goodput of the

TCP flows.

e Because of the asymmetry of Internet traffic, where 90% of the traffic is carried by 10% of
the flows, one can use flow filtering and avoid maintaining per-flow state information for all

flows, while providing a reasonable approximation of the reference algorithm.

¢ In addition to avoiding packet losses, using ECN marking is a possible alternative to admis-

sion control for traffic regulation in the context of class-based service differentiation.

8.2 Future Work

We conclude here by outlining areas which can be of potential interest for future research.

A thorough inspection of the interaction of traffic engineering techniques with our proposed
service model could be of interest. Specifically, path replication techniques, such as one-to-one
protection, are increasingly used in the context of load-balancing (see [151], for instance) and
core provisioning, and can be efficiently implemented using emerging technologies such as MPLS
[128]. One can investigate how service guarantees, and particularly throughput guarantees, should

be selected when path replication and load-balancing are used in a network.
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Another question that can be worth pursuing regards the class selection in our proposed service
architecture. Note that class selection is highly dependent on the type of guarantees offered, and
as such, some assumptions regarding the specific type of service guarantees provided would need
to be made. Partial answers to the class selection problem are already available in the literature.
For instance, Dovrolis and Ramanathan show in [49] that, for a network providing proportional
delay differentiation, having the end applications dynamically select their class of service enables
to obtain end-to-end delay bounds.

Letting the end applications select the class of traffic they want to use requires to enforce collab-
oration between the different applications to avoid cases where each application marks all packets
with the best class of service available. The other option, which is to let the network select the class
of traffic assigned to different flows, requires cooperation between the different domains, so that
different network domains agree on some common semantics for the services offered.

We note that the class selection problem, which requires collaboration between different enti-
ties, is only an instance of a much larger problem, which is to extend QoS architectures such as
proposed in this dissertation to provide economic incentives. As noted in a recent NSF workshop
report, “one of the impediments to the deployment of new services on the Internet is the lack of
market incentives to improve network services and applications and to use them efficiently.” Try-
ing to provide market incentives is likely to foster some additional technological challenges. For
instance, in an economic context, the end applications need to be able to verify with certainty the
guality of the service they receive. Devising good service verification mechanisms is still an open

problem, which may be worth pursuing.
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