The Internet: Protocols and Security

Announcements

Monday: Lab Exam 2 PS 10 due Mon 9:00AM

Friday: Exam 3

Lab Exam Monday

- Bring your laptops
- 4 questions + Reference Sheet
- tkinter
 - Graphics
 - Including geometry
- 2 dimensional data collections
- Recursive functions
- Random functions

Review from Wednesday:

- Computer Networks
 - Protocols
 - Addressing
 - Packet switching
- Some history
- End-to-end principle
- Net neutrality

Computer Networks

A computer network is a set of independent computer systems connected by telecommunication links for the purpose of sharing information and resources

- a global system of interconnected computer networks
- the biggest computer network of all: the network of networks

With higher-level protocols

IP Addresses

• Each computer on the Internet is assigned an IP Address consisting of four numbers between 0 and 255 inclusive

____ • ____ • ___

Example: 128. 2. 13. 163

Data sent on the Internet must always be sent to some IP address

- How many bits per address?
- How many computers can be on the Internet at the same time?

Packet Switching

- Two network nodes (e.g. computers) communicate by breaking the message up into small packets
 - each packet sent separately
 - with a serial number and a destination address.
- Routers forward packets toward destination
 - table stored in router tells it which neighbor to send packet to, based on IP address of destination

- Packets may be received at the destination in any order
 - may get lost (and retransmitted)
 - serial numbers used to put packets back into order at the destination

Packet Switching

15110 Principles of Computing, Carnegie Mellon University

Routing and Internet structure

\square Core \rightarrow provides transport services to edges

- Routers forward packets
- Internet Service Providers (ISPs) provide data transmission media (fiber optic etc.)
- domain name servers (DNS) provide directory of host names (more on this next time)

Edges \rightarrow provide the services we humans use

- □ individual users, "hosts"
- private networks (corporate, educational, government...)
- business, government, nonprofit services

End-to-end principle Core architectural guideline

- Idea: routers should stick to getting data quickly from its source to its destination!
 - they can be fast and stupid
- Everything else is responsibility of edges, e.g.
 - error detection and recovery
 - confidentiality via encryption
 - •

Benefits of End-to-end

Speed and flexibility

Support for innovation: routers need know nothing about apps using their services

Equality of uses: routers can't discriminate based on type of communication (net neutrality)

Net neutrality principle

All communications are treated equally

regardless of source, destination, or type

Higher Protocols

"Higher" and "lower" level protocols

Network protocols are organized in *layers*

"Higher" layers use services provided by "lower" layers

Each layer is responsible for a type of service

Layers of the Internet ("higher" to "lower")

- Application Layer provides services to human beings
 - e.g. browser, email client, Skype
- Transport Layer provides services to applications
 - converts between application messages and IP packets
 - figures out which application to deliver a message to
 - possibly detects and corrects delivery errors
- Internet Layer provides services to transport layer
 - determines next "hop" for a packet and sends it there
- Link Layer provides services to internet layer
 - physically converts between signals and bits

From: https://medium.com/@james_aka_yale/the-4-layer-internet-model-network-engineers-need-to-know-e78432614a4f

Example: Layering the Web

Transport Layer

from IP packets to application messages

Transport Layer

- Splits application messages into IP packets and maps applications to port number
 - IP address identifies machine, but port number identifies an application operating on that machine (web, email, etc.)
- Transport Control Protocol (TCP)
 - Creates a reliable bi-directional stream (source address/port and destination address/port)
- User Datagram Protocol (UDP)
 - Creates a single one-way message to a remote application (destination address/port)
 - □ used for voice, video, DNS lookup, ...

Reliable Communication with TCP

- Suppose A and B are the TCP programs of two computers.
 - An application asks A to send a message to an application at B.
 - A breaks the message into several packets.
 - Each packet includes parity information, so B can check it for accuracy.
 - Packets are sent via IP.
 - B receives the packets.
 - If B is missing a packet or receives a corrupt packet, it can request retransmission.
 - □ If the packet is OK, B sends an acknowledgement.
 - If A doesn't get an acknowledgement, it will retransmit.
 - B assembles the incoming packets in order and provides the message to the appropriate application.

Domain names

from 98.139.183.24 to yahoo.com

From names to IP addresses

- URL: http://www.andrew.cmu.edu/user/nbier/15110/ index.html
- Email address: nbier@andrew.cmu.edu

We don't want IP addresses in our URLs or email addresses why not?

Domain Name Service (DNS) translates names to addresses

DNS design

- Problem: so many names! How to make lookup fast?
- Solution: hierarchy of name servers
 - Each machine knows a name server, which knows how to find a root name server
 - root name servers know DNS servers for each top-level domain (e.g., "edu", "com", "net", "uk", "ru")
 - top-level domain servers know DNS servers for each second-level domain (e.g., "cmu.edu", "co.uk")
 - second-level domain servers know each host directly in their domain (e.g., "www.cmu.edu") and DNS servers for each third-level domain (e.g., "andrew.cmu.edu")

DNS Hierarchy (fragment)

DNS Lookup

Client-server architectures

web, mail, streaming video, and more

Client-server Architectures

Client-server Architectures

- Architecture: an organizing principle for a computing system
- Most common architecture for Internet applications: client-server
- Server is always on, waiting for requests
 - server software (e.g. Apache) tells TCP (transport layer software) on its own machine "please listen for messages with port number 80"
 - client software (e.g. Chrome) tells TCP "please send this message to machine xxx.xxx.xxx with port number 80"
 - TCP gives message to IP, which sends it through internet to server machine; IP at server machine delivers to TCP at server machine
 - TCP at the server machine delivers the message to Apache

The Web

World Wide Web = html + http

- html = HyperText Markup Language, an encoding
 - tells what a page should look like and
 - what other pages it links to
- http = HyperText Transfer Protocol
 - agreement on how client and server interact

HTML: an encoding

Example: using your favorite plain-text editor create the following text file:

<html><head> <title>15110, Summer '17, Example web page</title> </head> <body> <h1>Hello World!</h1> </body></html>

In a browser type its name in the address bar, e.g. file:///Users/pennyanderson/CMU/110/week11/example1.html

HTML: networked hypertext

Now add

HTTP: hypertext transfer protocol

Protocol for communication between web client application (e.g. Chrome, Safare, IE, Firefox) and web server application (e.g. Apache)

Agreement on how to ask for a web page, how to send data entered into a form, how to report errors (codes like 404 not found), etc.

Uniform Resource Locators

 A Web page is identified by a Uniform Resource Locator (URL)

protocol://host address/page

• A URL

http://www.cs.cmu.edu/~15110/index.html

Overview of web page delivery

- 1. Web browser (client) translates name of the server to an IP address (e.g. 128.2.217.13) (using DNS)
- 2. Establishes a TCP connection to 128.2.217.13 port 80
- 3. Constructs a message

GET /~15110/index.html HTTP/1.1

- 4. Sends the message using TCP/IP
- 5. Web server locates the page and sends it using services of TCP/IP
- 6. The connection is terminated

Layers and Encapsulation

Message:"GET /~15110/index.html HTTP/1.1"

Request/get web page

 TCP segment: control information including sequence number, so-called port number for web server; + message

Connect client and server reliably

IP packet:

control info including source address, destination address, fragment sequencing information + TCP segment

Best-effort packet switching

Summary

- Applications communicate on the Internet via application protocols like
 - HTTP for the web
 - SMTP for email
 - RTSP for streaming media
- Application protocols rely on
 - Domain Name Servers for name translation, and
 - transport protocols like
 - TCP for reliable two-way connections
 - UDP for one-way "datagrams"
- □ Transport protocols rely on IP for packet delivery