
Continuous Simulation



Announcements

¤ Tonight:
¤ PA 9

¤ Tomorrow:
¤ Exam 2 Review Session
¤ Reading

¤ Thursday: Exam 2
¤ Lab 11 (moved)
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Example: Flu Virus Simulation

¤ Goal: Develop a simple simulation that shows how 
disease spreads through a population; provide graphic 
visualization. 
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Modeling the Spread of Flu Virus
¤ Every person is either healthy, infected, contagious or immune. 

We assume that “infected” means infected but not contagious.

¤ Each day, a healthy person comes in contact with 4 random 
people. If any of those random people is contagious, then the 
healthy person becomes infected. 

¤ It takes one day for the infected person to become contagious.

¤ After a person has been contagious for 4 days, then the person is 
non-contagious and cannot spread the virus nor can the person 
get the virus again due to immunity. 
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Representing the Population

Each person 
uniquely 
identified by 
a row and 
column 

Person 
identified 
by row = 5,
column = 7



Displaying the Population
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Color od each
cell indicates
the health state
of the person 
corresponding to
that cell  



Graphics
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200 pixels

200 pixels

+y

+x



Coordinates of each cell
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200 pixels

200 pixels

+y

+x

Top left:
(col*10, 

row*10) 

Bottom right:
(col*10 + 10, 

row*10 + 10) 



Graphical Simulation
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Simulation captures the evolution of the health state of the population over time.  
It evolves in discrete steps: change occurs instantaneously as a new day begins. 



Overview of the code

¤ Constants used for representing health states of 
individuals

¤ Update function: Given the state of the population on 
some day (input  matrix), calculates the state of the 
population for the next day (output newmatrix)

¤ Since we have a 2-dimensional input (matrix) a natural 
way to traverse the input structure for creating an output 
structure is a nested loop. We go over the input row by 
row, for each row column by column



Health States

0 white healthy

1 pink infected

2 red contagious (day 1)

3 red contagious (day 2)

4 red contagious (day 3)

5 red contagious (day 4)

6 purple immune (non-contagious)
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HEALTHY = 0
INFECTED = 1
DAY1 = 2
DAY2 = 3
DAY3 = 4
DAY4 = 5
IMMUNE = 6

The health state of the population will be represented using 
a 20 by 20 matrix where each entry has one of the values above.



Checking Health State

def immune(matrix, i, j):

return matrix[i][j] == IMMUNE

def contagious(matrix, i, j):

return matrix[i][j] >= DAY1 and matrix[i][j] <= DAY4

def infected(matrix, i, j):

return matrix[i][j] == INFECTED

def healthy(matrix, i, j):

return matrix[i][j] == HEALTHY 

12



def update(matrix):
# create new matrix, initialized to all zeroes
newmatrix = []
for i in range(20): 

newmatrix.append([0] * 20)
# create next day
for i in range(20):

for j in range(20):
if immune(matrix, i, j):

newmatrix[i][j] = IMMUNE 
elif infected(matrix, i, j) or 

contagious(matrix, i, j): 
newmatrix[i][j] = matrix[i][j] + 1

elif healthy(matrix, i, j):
for k in range(4):  # repeat 4 times

if contagious(matrix, 
randrange(20),randrange(20)):

newmatrix[i][j] = INFECTED
return newmatrix

Updating the matrix
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def update(matrix):
# create new matrix, initialized to all zeroes
newmatrix = []
for i in range(20): 

newmatrix.append([0] * 20)
# create next day
for i in range(20):

for j in range(20):
if immune(matrix, i, j):

newmatrix[i][j] = IMMUNE 
elif infected(matrix, i, j) or 

contagious(matrix, i, j): 
newmatrix[i][j] = matrix[i][j] + 1

elif healthy(matrix, i, j):
for k in range(4):  # repeat 4 times

if contagious(matrix, 
randrange(20),randrange(20)):

newmatrix[i][j] = INFECTED
return newmatrix

Updating the matrix
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Note the programming idiom. 
We use an expression 
that already has a Boolean value  
instead of 
immune(matrix, i, j) == True



Displaying the matrix
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Create_rectangle (topleft_x, topleft_y, bottomright_x, bottomright_y, 
optional params)

def display(matrix,c):
for row in range(len(matrix)):

for col in range(len(matrix[0])):
person = matrix[row][col]
if person == HEALTHY:

color = "white"  
elif person == INFECTED:

color = "pink"
elif person >= DAY1 and person <= DAY4:

color = "red"
else: # non-contagious or wrong input

color = "purple"
c.create_rectangle(col*10, row*10, col*10 + 10,   

row*10 + 10, fill = color) 



Testing display

def test_display():
window = tkinter.Tk()
# create a canvas of size 200 X 200
c = Canvas(window,width=200,height=200)
c.pack()  
matrix  = []
# create a randomly filled matrix
for i in range(20):

row = []
for j in range(20):

row.append(randrange(7))
matrix.append(row)

# display the matrix using your display function
display(matrix,c)
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def test_update():
window = tkinter.Tk()
# create a canvas of size 200 X 200
c = Canvas(window,width=200,height=200)
c.pack()   
# initialize matrix to all healthy individuals
matrix= []
for i in range(20):

matrix.append([0] * 20)
# infect one random person
matrix[randrange(20)][randrange(20)] = INFECTED
display(matrix,c)
# Canvas.delay = 3
sleep(0.3)
# run the simulation for 10 "days
for day in range(0, 10):

c.delete(tkinter.ALL)
matrix = update(matrix)
display(matrix,c)
sleep(0.3)
c.update() #force new pixels to display 



Running the Code
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import tkinter
from tkinter import Canvas
from random import randrange
from time import sleep

# Constants for health states of an individual

HEALTHY = 0
INFECTED = 1
DAY1 = 2
DAY2 = 3
DAY3 = 4
DAY4 = 5
IMMUNE  = 6



What if Our Model Changes?

¤ If a healthy person contacts a contagious person, she gets sick 40% of 
the time.

if contagious(matrix,randrange(20),randrange(20))

and randrange(100) <40:

newmatrix[i][j] = INFECTED
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What if Our Model Changes?(cont’d)

¤ The current model does not capture neighbor 
relationship. The adjacency of 2 cells does not indicate 
that they are neighbors. 

¤ What if we used to grid to capture neighbor relationship 
and assumed that a healthy person gets infected if they 
have at least one contagious neighbor.
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Neighbors

cell = matrix[i][j]

north = matrix[i-1][j] NO!

if i == 0: YES!

north = None

else:

north = matrix[i-1][j]
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Continuous Simulation
N-Body Problem



Continuous-Time Simulations

¤ Often used to model physical phenomena involving 
forces acting on objects.

¤ Is “time” really continuous?
¤ Philosophical question. No one knows.
¤ Just pretend it is.

¤ Is simulated time continuous?
¤ No. It’s divided into discrete time steps.
¤ But they can be as small as we like.
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N-Body Problem

¤ Newton’s theory: Planets and other bodies move according 
to the gravitational effects of the objects around them

¤ N-body problem: Predicting the individual motions of a 
group of objects interacting with each other gravitationally

¤ With just two bodies, we can write a simple formula to 
calculate their positions at any future time, given their 
starting positions.

¤ But with 3 or more bodies, no formula exists for this, because 
the system is highly nonlinear, and potentially chaotic.

¤ Our only recourse is simulation.
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N-Body Simulation

¤ Using simulation to predict future locations of bodies
¤ Astronomers use simulations to predict locations of 

satellites, plan space travel, track dangerous asteroids 
etc.

¤ Main idea of the simulation: Start with the current 
location and heading of each planet. Then 
repeatedly
¤ Determine where the planets would be a short time later 

if they move according to a straight line
¤ Calculate adjustments to headings 
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Simulating Gravitational Attraction

Newton’s law of universal gravitation:

F = G · m1 · m2 / d2

where G = gravitational constant,
m1 and m2 are the masses, and
d is the distance between them.
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Force and Acceleration
¤ Newton’s second law:  if some external force is applied to a 

body then the body accelerates (its velocity changes)

F = ma
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mass acceleration



Moving A Single Body

¤ Calculate the force and acceleration influencing the 
body at a given time

¤ Suppose that acceleration is constant for a given interval 
of time and calculate the velocity and distance moved
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Velocity versus Time graph

Source: Wikipedia

a lines represent the values for acceleration at different points along 
the curve and the yellow area  under the curve represents displacement s



Integrating Acceleration

¤ When an object accelerates, its velocity v(t) changes. 
How can we model this?

¤ Divide time into tiny steps Δt.

¤ Re-calculate the velocity at each time step.
v(t + Δt) = v(t) + a(t) · Δt

¤ Smaller Δt brings greater accuracy. Why?
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Velocity Is Rate of Change of 
Position

¤ If an object has non-zero velocity, its position is changing.

¤ We can use the same integration trick to update the 
body’s position based on velocity.

x(t + Δt) = x(t) + v(t) · Δt
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Force Vectors
¤ We can use vectors to keep track of positions, 

velocities, and accelerations: (x, y, z) coordinates

¤ Forces are additive and vector addition performs 
ordinary addition on each component:

(x1, y1, z1) + (x2, y2, z2) = (x1+x2, y1+y2, z1+z2)
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The vectors in this 
example has 0 for the z coordinate.

The north and south vectors cancel 
out each other

The east vectors add up



Force Action on a Single Body

¤ Calculate all the force vectors influencing the body

¤ Add the vectors together to determine the cumulative 
force
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Moving Multiple Bodies

¤ At each time step move each body by calculating the force 
vectors in each direction

¤ Suppose we are given a method interaction(a,b) that 
calculates the gravitational force between the bodies a and 
b

¤ We need to compute all pairwise interactions.

¤ How many force calculations are there?
¤ For the first body interactions with each of the remaining N-1 

bodies, for the second one interactions with each of the 
remaining N-2 bodies because we already took into account its 
interaction with the first one etc.

¤ N-1 + N-2 + … 1 = N × (N-1)/2 => O(N2)
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Paths of Voyager 1 and 2
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frankie0701.wordpress.com

Neptune (Voyager 2, NASA)

Satellite 1989N1, 
(Voyager 2, 

NASA)

Triton, 
(Voyager 2, 

NASA)



Simulation At Extreme Scales

¤ Cosmologists use simulations to study the formation of 
galaxies (clusters of stars), and even clusters of galaxies.

¤ At the other extreme, physicists simulate individual atoms 
and molecules, e.g., to model chemical reactions.
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