
Continuous Simulation

Announcements

¤ Tonight:
¤ PA 9

¤ Tomorrow:
¤ Exam 2 Review Session
¤ Reading

¤ Thursday: Exam 2
¤ Lab 11 (moved)

2

Example: Flu Virus Simulation

¤ Goal: Develop a simple simulation that shows how
disease spreads through a population; provide graphic
visualization.

3

Modeling the Spread of Flu Virus
¤ Every person is either healthy, infected, contagious or immune.

We assume that “infected” means infected but not contagious.

¤ Each day, a healthy person comes in contact with 4 random
people. If any of those random people is contagious, then the
healthy person becomes infected.

¤ It takes one day for the infected person to become contagious.

¤ After a person has been contagious for 4 days, then the person is
non-contagious and cannot spread the virus nor can the person
get the virus again due to immunity.

4

Representing the Population

Each person
uniquely
identified by
a row and
column

Person
identified
by row = 5,
column = 7

Displaying the Population

6

Color od each
cell indicates
the health state
of the person
corresponding to
that cell

Graphics

7

200 pixels

200 pixels

+y

+x

Coordinates of each cell

8

200 pixels

200 pixels

+y

+x

Top left:
(col*10,

row*10)

Bottom right:
(col*10 + 10,

row*10 + 10)

Graphical Simulation

9

Simulation captures the evolution of the health state of the population over time.
It evolves in discrete steps: change occurs instantaneously as a new day begins.

Overview of the code

¤ Constants used for representing health states of
individuals

¤ Update function: Given the state of the population on
some day (input matrix), calculates the state of the
population for the next day (output newmatrix)

¤ Since we have a 2-dimensional input (matrix) a natural
way to traverse the input structure for creating an output
structure is a nested loop. We go over the input row by
row, for each row column by column

Health States

0 white healthy

1 pink infected

2 red contagious (day 1)

3 red contagious (day 2)

4 red contagious (day 3)

5 red contagious (day 4)

6 purple immune (non-contagious)

11

HEALTHY = 0
INFECTED = 1
DAY1 = 2
DAY2 = 3
DAY3 = 4
DAY4 = 5
IMMUNE = 6

The health state of the population will be represented using
a 20 by 20 matrix where each entry has one of the values above.

Checking Health State

def immune(matrix, i, j):

return matrix[i][j] == IMMUNE

def contagious(matrix, i, j):

return matrix[i][j] >= DAY1 and matrix[i][j] <= DAY4

def infected(matrix, i, j):

return matrix[i][j] == INFECTED

def healthy(matrix, i, j):

return matrix[i][j] == HEALTHY

12

def update(matrix):
create new matrix, initialized to all zeroes
newmatrix = []
for i in range(20):

newmatrix.append([0] * 20)
create next day
for i in range(20):

for j in range(20):
if immune(matrix, i, j):

newmatrix[i][j] = IMMUNE
elif infected(matrix, i, j) or

contagious(matrix, i, j):
newmatrix[i][j] = matrix[i][j] + 1

elif healthy(matrix, i, j):
for k in range(4): # repeat 4 times

if contagious(matrix,
randrange(20),randrange(20)):

newmatrix[i][j] = INFECTED
return newmatrix

Updating the matrix

13

def update(matrix):
create new matrix, initialized to all zeroes
newmatrix = []
for i in range(20):

newmatrix.append([0] * 20)
create next day
for i in range(20):

for j in range(20):
if immune(matrix, i, j):

newmatrix[i][j] = IMMUNE
elif infected(matrix, i, j) or

contagious(matrix, i, j):
newmatrix[i][j] = matrix[i][j] + 1

elif healthy(matrix, i, j):
for k in range(4): # repeat 4 times

if contagious(matrix,
randrange(20),randrange(20)):

newmatrix[i][j] = INFECTED
return newmatrix

Updating the matrix

14

Note the programming idiom.
We use an expression
that already has a Boolean value
instead of
immune(matrix, i, j) == True

Displaying the matrix

15

Create_rectangle (topleft_x, topleft_y, bottomright_x, bottomright_y,
optional params)

def display(matrix,c):
for row in range(len(matrix)):

for col in range(len(matrix[0])):
person = matrix[row][col]
if person == HEALTHY:

color = "white"
elif person == INFECTED:

color = "pink"
elif person >= DAY1 and person <= DAY4:

color = "red"
else: # non-contagious or wrong input

color = "purple"
c.create_rectangle(col*10, row*10, col*10 + 10,

row*10 + 10, fill = color)

Testing display

def test_display():
window = tkinter.Tk()
create a canvas of size 200 X 200
c = Canvas(window,width=200,height=200)
c.pack()
matrix = []
create a randomly filled matrix
for i in range(20):

row = []
for j in range(20):

row.append(randrange(7))
matrix.append(row)

display the matrix using your display function
display(matrix,c)

16

17

def test_update():
window = tkinter.Tk()
create a canvas of size 200 X 200
c = Canvas(window,width=200,height=200)
c.pack()
initialize matrix to all healthy individuals
matrix= []
for i in range(20):

matrix.append([0] * 20)
infect one random person
matrix[randrange(20)][randrange(20)] = INFECTED
display(matrix,c)
Canvas.delay = 3
sleep(0.3)
run the simulation for 10 "days
for day in range(0, 10):

c.delete(tkinter.ALL)
matrix = update(matrix)
display(matrix,c)
sleep(0.3)
c.update() #force new pixels to display

Running the Code

18

import tkinter
from tkinter import Canvas
from random import randrange
from time import sleep

Constants for health states of an individual

HEALTHY = 0
INFECTED = 1
DAY1 = 2
DAY2 = 3
DAY3 = 4
DAY4 = 5
IMMUNE = 6

What if Our Model Changes?

¤ If a healthy person contacts a contagious person, she gets sick 40% of
the time.

if contagious(matrix,randrange(20),randrange(20))

and randrange(100) <40:

newmatrix[i][j] = INFECTED

19

What if Our Model Changes?(cont’d)

¤ The current model does not capture neighbor
relationship. The adjacency of 2 cells does not indicate
that they are neighbors.

¤ What if we used to grid to capture neighbor relationship
and assumed that a healthy person gets infected if they
have at least one contagious neighbor.

20

Neighbors

cell = matrix[i][j]

north = matrix[i-1][j] NO!

if i == 0: YES!

north = None

else:

north = matrix[i-1][j]

21

Continuous Simulation
N-Body Problem

Continuous-Time Simulations

¤ Often used to model physical phenomena involving
forces acting on objects.

¤ Is “time” really continuous?
¤ Philosophical question. No one knows.
¤ Just pretend it is.

¤ Is simulated time continuous?
¤ No. It’s divided into discrete time steps.
¤ But they can be as small as we like.

23

N-Body Problem

¤ Newton’s theory: Planets and other bodies move according
to the gravitational effects of the objects around them

¤ N-body problem: Predicting the individual motions of a
group of objects interacting with each other gravitationally

¤ With just two bodies, we can write a simple formula to
calculate their positions at any future time, given their
starting positions.

¤ But with 3 or more bodies, no formula exists for this, because
the system is highly nonlinear, and potentially chaotic.

¤ Our only recourse is simulation.

24

N-Body Simulation

¤ Using simulation to predict future locations of bodies
¤ Astronomers use simulations to predict locations of

satellites, plan space travel, track dangerous asteroids
etc.

¤ Main idea of the simulation: Start with the current
location and heading of each planet. Then
repeatedly
¤ Determine where the planets would be a short time later

if they move according to a straight line
¤ Calculate adjustments to headings

25

Simulating Gravitational Attraction

Newton’s law of universal gravitation:

F = G · m1 · m2 / d2

where G = gravitational constant,
m1 and m2 are the masses, and
d is the distance between them.

26

Force and Acceleration
¤ Newton’s second law: if some external force is applied to a

body then the body accelerates (its velocity changes)

F = ma

27

mass acceleration

Moving A Single Body

¤ Calculate the force and acceleration influencing the
body at a given time

¤ Suppose that acceleration is constant for a given interval
of time and calculate the velocity and distance moved

28

Velocity versus Time graph

Source: Wikipedia

a lines represent the values for acceleration at different points along
the curve and the yellow area under the curve represents displacement s

Integrating Acceleration

¤ When an object accelerates, its velocity v(t) changes.
How can we model this?

¤ Divide time into tiny steps Δt.

¤ Re-calculate the velocity at each time step.
v(t + Δt) = v(t) + a(t) · Δt

¤ Smaller Δt brings greater accuracy. Why?

30

Velocity Is Rate of Change of
Position

¤ If an object has non-zero velocity, its position is changing.

¤ We can use the same integration trick to update the
body’s position based on velocity.

x(t + Δt) = x(t) + v(t) · Δt

31

Force Vectors
¤ We can use vectors to keep track of positions,

velocities, and accelerations: (x, y, z) coordinates

¤ Forces are additive and vector addition performs
ordinary addition on each component:

(x1, y1, z1) + (x2, y2, z2) = (x1+x2, y1+y2, z1+z2)

32

The vectors in this
example has 0 for the z coordinate.

The north and south vectors cancel
out each other

The east vectors add up

Force Action on a Single Body

¤ Calculate all the force vectors influencing the body

¤ Add the vectors together to determine the cumulative
force

33

Moving Multiple Bodies

¤ At each time step move each body by calculating the force
vectors in each direction

¤ Suppose we are given a method interaction(a,b) that
calculates the gravitational force between the bodies a and
b

¤ We need to compute all pairwise interactions.

¤ How many force calculations are there?
¤ For the first body interactions with each of the remaining N-1

bodies, for the second one interactions with each of the
remaining N-2 bodies because we already took into account its
interaction with the first one etc.

¤ N-1 + N-2 + … 1 = N × (N-1)/2 => O(N2)

34

Paths of Voyager 1 and 2

35

frankie0701.wordpress.com

Neptune (Voyager 2, NASA)

Satellite 1989N1,
(Voyager 2,

NASA)

Triton,
(Voyager 2,

NASA)

Simulation At Extreme Scales

¤ Cosmologists use simulations to study the formation of
galaxies (clusters of stars), and even clusters of galaxies.

¤ At the other extreme, physicists simulate individual atoms
and molecules, e.g., to model chemical reactions.

36

