
Randomness in Computing:
Applying Random Numbers



Yesterday:

¤ Randomness is hard to define

¤ Randomness is harder to achieve

¤ Define tests for acceptable randomness

¤ Often Pseudo Random is random enough:



Yesterday

¤ Linear Congruential Generators (LCGs)

¤ We can generate a series of numbers, all different, that 
looks random even though it isn’t

¤ If we choose appropriate constants for our LCG, then we 
can generate a very long sequence before numbers 
begin to repeat. The length of the sequence is its period

¤ To generate random numbers in Python we can use 
randint(x,y), which generates a random integer between 
x and y.



Picking the constants a, c, m

¤Example: prng_fn (a = 1, c = 7, m = 12)
¤ Factors of 7: 1, 7    Factors of 12: 1, 2, 3, 4, 6, 12
¤ 0 is divisible by all prime factors of 12 à true
¤ if 12 is a multiple of 4 , then 0 is also a multiple of 4 à

true

¤prng_fn will have a period of 12
4

xi+1 = (a xi + c) % m



Today: Monte Carlo Methods

Idea: run many experiments with random inputs 
to approximate an answer to a question.

We might be unable to answer the question any 
other way, or an analytical (logical, 
mathematical, exact) solution might be too 
expensive.



Some Applications
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US Food and Drug Administration

http://marcoagd.usuarios.rdc.puc-
rio.br/quasi_mc.html

Dr.-Ing. Matthias Westhäuser. Statistical Analysis of Fiber 
Optical Systems using Multicanonical Monte Carlo 
Methods (http://www.hft.e-technik.tu-
dortmund.de/forschung/projekt.php?id=18&lang=en)



Monte Carlo methods

¤ The hungry dice player

¤ The clueless student*

¤ The umbrella quandary*

¤ A survey of applications
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What is a Monte Carlo method?

¤ An algorithm that uses a source of (pseudo) random 
numbers

¤ Repeats an “experiment” many times and calculates a 
statistic, often an average

¤ Estimates a value (often a probability)

¤ … usually a value that is hard or impossible to calculate 
analytically



A simple Monte Carlo method
(no computer needed!)
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Simple example: dice statistics

¤ We can analyze throwing a pair of dice and get the 
following probabilities for the sum of the two dice:
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image source: http://hyperphysics.phy-
astr.gsu.edu/hbase/math/dice.html via 
http://www.goldsim.com/Web/Introduction/Probabilistic/MonteCarlo/

http://hyperphysics.phy-astr.gsu.edu/hbase/math/dice.html


Simple example: dice statistics
¤ … or we can throw a pair of dice 

100 times and record what 
happens, 

¤ or 10000 times for a more 
accurate estimate.
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image source:  http://www.goldsim.com/Web/Introduction/Probabilistic/MonteCarlo/



Simple example: dice statistics
¤ … or we can throw a pair of dice 

100 times and record what 
happens, 

¤ or 10000 times for a more 
accurate estimate.
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image source:  
http://www.goldsim.com/Web/Introduction/Probabilistic/MonteCarlo/



The Hungry Dice Player
estimating the expected value of a simple game
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A game of dice

def dice_game():
strikes = 0
winnings = 0
while strikes < 3: # 3 strikes and you’re out

# get 2 random numbers (1..6)
die1 = roll()
die2 = roll()
# strike or win?
if die1 == die2:

strikes = strikes + 1
else:

winnings = winnings + die1 + die2
return winnings # in cents
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The Hungry Dice Player

¤ In our simple game of dice:
Can I expect to make enough money playing it to buy 
lunch?

¤ That is, what is the expected (average) value won in the 
game?

¤ We could figure it out by applying laws of probability

…or use a Monte Carlo method
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Monte Carlo method for the hungry dice player

>>> [round(average_winnings(10),2) for i in range(5)]

[85.8, 94.8, 120.7, 123.3, 90.0]

>>> [round(average_winnings(100),2) for i in range(5)]

[105.97, 102.95, 107.74, 134.4, 114.54]

>>> [round(average_winnings(1000),2) for i in range(5)]

[106.84, 107.11, 105.59, 104.28, 106.41]

>>> [round(average_winnings(10000),2) for i in range(5)]

[104.94, 105.71, 105.81, 105.74, 104.62]
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def average_winnings(samples) :
# samples is the number of experiments to run
total = 0
for n in range(samples) :

total = total + dice_game()
return total / samples



The Clueless Student
a famous matching problem
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The Clueless Student

A clueless student faced a pop quiz: 

a list of the 24 Presidents of the 19th century and 

another list of their terms in office, but scrambled. 

The object was to match the President with the 
term. 

If the student guesses a random one-to-one matching, 

how many matches will be right out of the 24, on average?
18



The quiz
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1. Monroe a. 1801-1809
2. Jackson b. 1869-1877
3. Arthur c. 1885-1889
4. Madison d. 1850-1853
5. Cleveland e. 1889-1893
6. Jefferson f. 1845-1849
7. Lincoln g. 1837-1841
8. Van Buren h. 1853-1857
9. Adams i. 1809-1817
etc. etc.



Solving the problem

¤ The problem (1710, Pierre de Montmort) was important in development of 
probability theory

¤ The mathematical analysis is, um, interesting 

(see http://www.randomservices.org/random/urn/Matching.html)

¤ But we’re not that smart. Let’s just simulate the situation, randomly selecting 
guesses and checking to see how many correct match-ups they contain.

http://www.randomservices.org/random/urn/Matching.html


Representing a guess

0 1 2 3 4 5 6 7 8 …

Jefferson Madison Monroe Adams Jackson Van 
Buren

Harrison Tyler Polk …

0 1 2 3 4 5 6 7 8 …

1801-09 1809-17 1817-25 1825-29 1829-37 1837-41 1841-41 1841-45 1845-49 …

6 0 2 3 1 4 5 7 8 …



Representing a guess
¤ What is a guess?

E.g., [ 0, 1, 2, 3, 4, 5, …, 23 ] represents a completely correct guess
[ 1, 0, 2, 3, 4, 5, …, 23 ] represents a guess that is correct

except that it gets the first two presidents wrong.
¤ A guess is just a permutation (shuffling) of the numbers 0 … 23.

¤ Let’s define a match in a guess to be any number k that occurs in position 
k. (E.g., 0 in position 0, 10 in position 10)

¤ With this representation, our question becomes: 
if I pick a random shuffling of the numbers 0…23, 
how many (on average) matches occur? 
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Randomly permuting a list
To get a random shuffling of the numbers 0 to 23 we use the shuffle function 
from module random: 

>>> nums = list(range(10))
>>> nums
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> shuffle(nums)
>>> nums
[4, 5, 3, 2, 0, 9, 6, 1, 8, 7]

>>> shuffle(nums)
>>> nums
[3, 6, 1, 4, 5, 8, 2, 9, 0, 7]
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Algorithm

¤ Input:
¤ pairs (number of things to be matched), 
¤ samples (number of experiments to run)

¤ Output: average number of correct matches per sample

¤ Method:

1. Set num_correct = 0 

2. Do the following samples times:

a. Set matching to a random permutation of the numbers 0…pairs-1

b. For k in 0…pairs, if matching[k] = k add one to num_correct

3. The result is num_correct / samples
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Code for the clueless student

from random import shuffle
# pairs is the number of pairs to be guessed
# samples is the number of experiments to run
def student(pairs, samples):

num_correct = 0
matching = list(range(pairs))
for i in range(samples):     # experiment samples 

times
shuffle(matching)     # generate a guess
# count matches
for k in range(pairs):

if matching[k] == k:
num_correct = num_correct + 1

return num_correct / samples # average correct
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Running the code

>>> student(24, 10000)
0.9924
>>> student(24, 10000)
1.0071
>>> student(10, 10000)
1.0224
>>> student(10, 10000)
0.9999
>>> student(5, 10000)
1.0039
>>> student(5, 10000)
0.9826

¤ The mathematical analysis 
says the expected value is 
exactly 1 (no matter how 
many matches are to be 
guessed).
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More samples – smaller error
>>> 1 - student(5, 1000)

0.03600000000000003

>>> 1 - student(5, 10000)

0.005900000000000016

>>> 1 - student(5, 100000)

0.0014100000000000223

>>> 1 - student(5, 1000000)

-0.0006679999999998909 
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The Umbrella Quandary
simulating a system
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The Umbrella Quandary 

¤ Mr. X walks between home and work every day

¤ He likes to keep an umbrella at each location

¤ But he always forgets to carry one if it’s not raining

¤ If the probability of rain is p, how many trips can he expect to make 
before he gets caught in the rain because all his umbrellas are at the 
other location? 

(Assuming that if it’s not raining when he starts a trip, 
it doesn’t rain during the trip.)
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The trivial cases

¤ What if it always rains?

¤ What if it never rains (ok, that was too easy)

¤ So we only need to think about a probability of rain 
greater than zero and less than one 
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Solving the umbrella quandary

¤ Analysis of the problem can be done with Markov chains

¤ But we’re just humble programmers;

we’ll simulate and measure
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Simulating an event with a given 
probability
¤ In contrast to the clueless student problem we’re given a probability 

of an event

¤ We want to simulate that the event rain happens, with the given 
probability p (where p is a number between 0 and 1)
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Technique: Get a random float between 0 and 1; 
If it’s less than p simulate that the event happened

if random() < p:
raining = True



Representing home, work, and 
umbrellas

¤ Use 0 for home, 

1 for work

¤ A list for the number of umbrellas at each location (2 locations)

¤ How should we initialize?
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location = 0 # start at home
umbrellas = [1, 1]

Recall: he likes to keep an umbrella at each location



Figuring out when to stop

¤ We want to count the number of trips before Mr. X gets wet, so we 
want to keep simulating trips until he does. 

¤ To keep track:

wet = False
trips = 0
while (not wet) :
…
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Changing locations

Mr. X walks between home (0) and work (1)
¤To keep track of where he is:

location = 0 # start at home

¤To move to the other location:
location = 1 – location

¤To find how many umbrellas at current 
location:
umbrellas[location]
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Putting it together
from random import random

def umbrella(p):           # p is the probability of rain
wet = False
trips = 0
location = 0
umbrellas = [1, 1]     # index 0 stands for home, 1 stands for work
while (not wet):

if random() < p:   # it's raining
if umbrellas[location] == 0:  # no umbrella

wet = True
else:

trips = trips + 1
umbrellas[location] -= 1           # take an umbrella
location = 1 - location            # switch locations
umbrellas[location] += 1           # put umbrella

else:    # it's not raining, leave umbrellas where they are
trips = trips + 1
location = 1 - location

return trips
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Running simulations
>>> umbrella(.5)

22

>>> umbrella(.5)

4

>>> umbrella(.5)

13

>>> umbrella(.5)

2

>>> umbrella(.5)

2
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Great, but we want averages

¤ One experiment doesn’t tell us much–we want to know, on average, 
if the probability of rain is p, how many trips can Mr. X make without 
getting wet?

¤ We add code to run umbrella(p)10,000 times for different 
probabilities of rain, from 
p = .01 to .99 in increments of .01

¤ We accumulate the results in a list that will show us how the 
average number of trips is related to the probability of rain.
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Running the experiments
# 10,000 experiments for each probability .01 to .99

# Accumulate averages in a list

def test() :

results = [None]*99 # Initialize: 99 probabilities

p = 0.01            # probability starts at .01

for i in range(99) :

trips = 0

# find average of 10000 experiments

for k in range(10000) :

trips = trips + umbrellas(p)

results[i] = trips/10000

p = p + .01      # next probability

return results
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Crude plot of results
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Applications
many, many, many
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Finance

¤Investment portfolio analysis

¤Stock option analysis

¤Personal financial planning
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Engineering

¤ Reliability engineering

¤ Wireless network design

¤ Wind farm yield prediction

¤ Fluid dynamics

¤ Robotics
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Mathematics and physics

¤Multi-dimensional partial differentiation and 
integration

¤Optimization

¤Simulating quantum systems (pioneered by 
Fermi in 1930)
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Many others

¤ Computational biology

¤ Physical chemistry

¤ Applied statistics where data distributions are difficult to 
analyze

¤ Game playing
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Graphics: path tracing

46image: http://2.bp.blogspot.com/-cUQu1ym3krA/UPYw6qhsZPI/AAAAAAAADeU/YnqtyJjBJJc/s1600/cubecity9b.png

image: http://www.graphics.cornell.edu/~eric/thesis/images.html



Summary

¤Monte Carlo methods use random number 
generator to “run experiments” in software

¤Operations we used:
¤ get random integer in a given range
¤ get a random permutation of a list
¤ use random float between 0 and 1 to decide if an 

event with probability p happens 
if random() < p : # event happened
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Next time: 
Simulation

Image: Wikipedia


