
Randomness in Computing:
Applying Random Numbers

Yesterday:

¤ Randomness is hard to define

¤ Randomness is harder to achieve

¤ Define tests for acceptable randomness

¤ Often Pseudo Random is random enough:

Yesterday

¤ Linear Congruential Generators (LCGs)

¤ We can generate a series of numbers, all different, that
looks random even though it isn’t

¤ If we choose appropriate constants for our LCG, then we
can generate a very long sequence before numbers
begin to repeat. The length of the sequence is its period

¤ To generate random numbers in Python we can use
randint(x,y), which generates a random integer between
x and y.

Picking the constants a, c, m

¤Example: prng_fn (a = 1, c = 7, m = 12)
¤ Factors of 7: 1, 7 Factors of 12: 1, 2, 3, 4, 6, 12
¤ 0 is divisible by all prime factors of 12 à true
¤ if 12 is a multiple of 4 , then 0 is also a multiple of 4 à

true

¤prng_fn will have a period of 12
4

xi+1 = (a xi + c) % m

Today: Monte Carlo Methods

Idea: run many experiments with random inputs
to approximate an answer to a question.

We might be unable to answer the question any
other way, or an analytical (logical,
mathematical, exact) solution might be too
expensive.

Some Applications

6

US Food and Drug Administration

http://marcoagd.usuarios.rdc.puc-
rio.br/quasi_mc.html

Dr.-Ing. Matthias Westhäuser. Statistical Analysis of Fiber
Optical Systems using Multicanonical Monte Carlo
Methods (http://www.hft.e-technik.tu-
dortmund.de/forschung/projekt.php?id=18&lang=en)

Monte Carlo methods

¤ The hungry dice player

¤ The clueless student*

¤ The umbrella quandary*

¤ A survey of applications

7

What is a Monte Carlo method?

¤ An algorithm that uses a source of (pseudo) random
numbers

¤ Repeats an “experiment” many times and calculates a
statistic, often an average

¤ Estimates a value (often a probability)

¤ … usually a value that is hard or impossible to calculate
analytically

A simple Monte Carlo method
(no computer needed!)

9

Simple example: dice statistics

¤ We can analyze throwing a pair of dice and get the
following probabilities for the sum of the two dice:

10

image source: http://hyperphysics.phy-
astr.gsu.edu/hbase/math/dice.html via
http://www.goldsim.com/Web/Introduction/Probabilistic/MonteCarlo/

http://hyperphysics.phy-astr.gsu.edu/hbase/math/dice.html

Simple example: dice statistics
¤ … or we can throw a pair of dice

100 times and record what
happens,

¤ or 10000 times for a more
accurate estimate.

11

image source: http://www.goldsim.com/Web/Introduction/Probabilistic/MonteCarlo/

Simple example: dice statistics
¤ … or we can throw a pair of dice

100 times and record what
happens,

¤ or 10000 times for a more
accurate estimate.

12

image source:
http://www.goldsim.com/Web/Introduction/Probabilistic/MonteCarlo/

The Hungry Dice Player
estimating the expected value of a simple game

13

A game of dice

def dice_game():
strikes = 0
winnings = 0
while strikes < 3: # 3 strikes and you’re out

get 2 random numbers (1..6)
die1 = roll()
die2 = roll()
strike or win?
if die1 == die2:

strikes = strikes + 1
else:

winnings = winnings + die1 + die2
return winnings # in cents

14

The Hungry Dice Player

¤ In our simple game of dice:
Can I expect to make enough money playing it to buy
lunch?

¤ That is, what is the expected (average) value won in the
game?

¤ We could figure it out by applying laws of probability

…or use a Monte Carlo method

15

Monte Carlo method for the hungry dice player

>>> [round(average_winnings(10),2) for i in range(5)]

[85.8, 94.8, 120.7, 123.3, 90.0]

>>> [round(average_winnings(100),2) for i in range(5)]

[105.97, 102.95, 107.74, 134.4, 114.54]

>>> [round(average_winnings(1000),2) for i in range(5)]

[106.84, 107.11, 105.59, 104.28, 106.41]

>>> [round(average_winnings(10000),2) for i in range(5)]

[104.94, 105.71, 105.81, 105.74, 104.62]

16

def average_winnings(samples) :
samples is the number of experiments to run
total = 0
for n in range(samples) :

total = total + dice_game()
return total / samples

The Clueless Student
a famous matching problem

17

The Clueless Student

A clueless student faced a pop quiz:

a list of the 24 Presidents of the 19th century and

another list of their terms in office, but scrambled.

The object was to match the President with the
term.

If the student guesses a random one-to-one matching,

how many matches will be right out of the 24, on average?
18

The quiz

19

1. Monroe a. 1801-1809
2. Jackson b. 1869-1877
3. Arthur c. 1885-1889
4. Madison d. 1850-1853
5. Cleveland e. 1889-1893
6. Jefferson f. 1845-1849
7. Lincoln g. 1837-1841
8. Van Buren h. 1853-1857
9. Adams i. 1809-1817
etc. etc.

Solving the problem

¤ The problem (1710, Pierre de Montmort) was important in development of
probability theory

¤ The mathematical analysis is, um, interesting

(see http://www.randomservices.org/random/urn/Matching.html)

¤ But we’re not that smart. Let’s just simulate the situation, randomly selecting
guesses and checking to see how many correct match-ups they contain.

http://www.randomservices.org/random/urn/Matching.html

Representing a guess

0 1 2 3 4 5 6 7 8 …

Jefferson Madison Monroe Adams Jackson Van
Buren

Harrison Tyler Polk …

0 1 2 3 4 5 6 7 8 …

1801-09 1809-17 1817-25 1825-29 1829-37 1837-41 1841-41 1841-45 1845-49 …

6 0 2 3 1 4 5 7 8 …

Representing a guess
¤ What is a guess?

E.g., [0, 1, 2, 3, 4, 5, …, 23] represents a completely correct guess
[1, 0, 2, 3, 4, 5, …, 23] represents a guess that is correct

except that it gets the first two presidents wrong.
¤ A guess is just a permutation (shuffling) of the numbers 0 … 23.

¤ Let’s define a match in a guess to be any number k that occurs in position
k. (E.g., 0 in position 0, 10 in position 10)

¤ With this representation, our question becomes:
if I pick a random shuffling of the numbers 0…23,
how many (on average) matches occur?

22

Randomly permuting a list
To get a random shuffling of the numbers 0 to 23 we use the shuffle function
from module random:

>>> nums = list(range(10))
>>> nums
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> shuffle(nums)
>>> nums
[4, 5, 3, 2, 0, 9, 6, 1, 8, 7]

>>> shuffle(nums)
>>> nums
[3, 6, 1, 4, 5, 8, 2, 9, 0, 7]

23

Algorithm

¤ Input:
¤ pairs (number of things to be matched),
¤ samples (number of experiments to run)

¤ Output: average number of correct matches per sample

¤ Method:

1. Set num_correct = 0

2. Do the following samples times:

a. Set matching to a random permutation of the numbers 0…pairs-1

b. For k in 0…pairs, if matching[k] = k add one to num_correct

3. The result is num_correct / samples

24

Code for the clueless student

from random import shuffle
pairs is the number of pairs to be guessed
samples is the number of experiments to run
def student(pairs, samples):

num_correct = 0
matching = list(range(pairs))
for i in range(samples): # experiment samples

times
shuffle(matching) # generate a guess
count matches
for k in range(pairs):

if matching[k] == k:
num_correct = num_correct + 1

return num_correct / samples # average correct

25

Running the code

>>> student(24, 10000)
0.9924
>>> student(24, 10000)
1.0071
>>> student(10, 10000)
1.0224
>>> student(10, 10000)
0.9999
>>> student(5, 10000)
1.0039
>>> student(5, 10000)
0.9826

¤ The mathematical analysis
says the expected value is
exactly 1 (no matter how
many matches are to be
guessed).

26

More samples – smaller error
>>> 1 - student(5, 1000)

0.03600000000000003

>>> 1 - student(5, 10000)

0.005900000000000016

>>> 1 - student(5, 100000)

0.0014100000000000223

>>> 1 - student(5, 1000000)

-0.0006679999999998909

27

The Umbrella Quandary
simulating a system

28

The Umbrella Quandary

¤ Mr. X walks between home and work every day

¤ He likes to keep an umbrella at each location

¤ But he always forgets to carry one if it’s not raining

¤ If the probability of rain is p, how many trips can he expect to make
before he gets caught in the rain because all his umbrellas are at the
other location?

(Assuming that if it’s not raining when he starts a trip,
it doesn’t rain during the trip.)

29

The trivial cases

¤ What if it always rains?

¤ What if it never rains (ok, that was too easy)

¤ So we only need to think about a probability of rain
greater than zero and less than one

30

Solving the umbrella quandary

¤ Analysis of the problem can be done with Markov chains

¤ But we’re just humble programmers;

we’ll simulate and measure

31

Simulating an event with a given
probability
¤ In contrast to the clueless student problem we’re given a probability

of an event

¤ We want to simulate that the event rain happens, with the given
probability p (where p is a number between 0 and 1)

32

Technique: Get a random float between 0 and 1;
If it’s less than p simulate that the event happened

if random() < p:
raining = True

Representing home, work, and
umbrellas

¤ Use 0 for home,

1 for work

¤ A list for the number of umbrellas at each location (2 locations)

¤ How should we initialize?

33

location = 0 # start at home
umbrellas = [1, 1]

Recall: he likes to keep an umbrella at each location

Figuring out when to stop

¤ We want to count the number of trips before Mr. X gets wet, so we
want to keep simulating trips until he does.

¤ To keep track:

wet = False
trips = 0
while (not wet) :
…

34

Changing locations

Mr. X walks between home (0) and work (1)
¤To keep track of where he is:

location = 0 # start at home

¤To move to the other location:
location = 1 – location

¤To find how many umbrellas at current
location:
umbrellas[location]

35

Putting it together
from random import random

def umbrella(p): # p is the probability of rain
wet = False
trips = 0
location = 0
umbrellas = [1, 1] # index 0 stands for home, 1 stands for work
while (not wet):

if random() < p: # it's raining
if umbrellas[location] == 0: # no umbrella

wet = True
else:

trips = trips + 1
umbrellas[location] -= 1 # take an umbrella
location = 1 - location # switch locations
umbrellas[location] += 1 # put umbrella

else: # it's not raining, leave umbrellas where they are
trips = trips + 1
location = 1 - location

return trips

36

Running simulations
>>> umbrella(.5)

22

>>> umbrella(.5)

4

>>> umbrella(.5)

13

>>> umbrella(.5)

2

>>> umbrella(.5)

2

37

Great, but we want averages

¤ One experiment doesn’t tell us much–we want to know, on average,
if the probability of rain is p, how many trips can Mr. X make without
getting wet?

¤ We add code to run umbrella(p)10,000 times for different
probabilities of rain, from
p = .01 to .99 in increments of .01

¤ We accumulate the results in a list that will show us how the
average number of trips is related to the probability of rain.

38

Running the experiments
10,000 experiments for each probability .01 to .99

Accumulate averages in a list

def test() :

results = [None]*99 # Initialize: 99 probabilities

p = 0.01 # probability starts at .01

for i in range(99) :

trips = 0

find average of 10000 experiments

for k in range(10000) :

trips = trips + umbrellas(p)

results[i] = trips/10000

p = p + .01 # next probability

return results
39

Crude plot of results

40

p=.01 ………………………………………..p=.99

nu
m

be
r o

f t
rip

s
w

ith
ou

t g
et

tin
g

w
et

probability of rain

Applications
many, many, many

41

Finance

¤Investment portfolio analysis

¤Stock option analysis

¤Personal financial planning

42

Engineering

¤ Reliability engineering

¤ Wireless network design

¤ Wind farm yield prediction

¤ Fluid dynamics

¤ Robotics

43

Mathematics and physics

¤Multi-dimensional partial differentiation and
integration

¤Optimization

¤Simulating quantum systems (pioneered by
Fermi in 1930)

44

Many others

¤ Computational biology

¤ Physical chemistry

¤ Applied statistics where data distributions are difficult to
analyze

¤ Game playing

45

Graphics: path tracing

46image: http://2.bp.blogspot.com/-cUQu1ym3krA/UPYw6qhsZPI/AAAAAAAADeU/YnqtyJjBJJc/s1600/cubecity9b.png

image: http://www.graphics.cornell.edu/~eric/thesis/images.html

Summary

¤Monte Carlo methods use random number
generator to “run experiments” in software

¤Operations we used:
¤ get random integer in a given range
¤ get a random permutation of a list
¤ use random float between 0 and 1 to decide if an

event with probability p happens
if random() < p : # event happened

47

Next time:
Simulation

Image: Wikipedia

