
Computer Organization
and Levels of Abstraction

1

Announcements

¤ Today:
¤  PS 7 (due now)

¤  Lab 8: Sound Lab tonight – bring machines and
headphones!

¤  PA 7

¤ Tomorrow: Lab 9

¤ Friday: PS8

2

Today

¤  (Short) Floating point review

¤  Boolean logic

¤  Combinational Circuits

¤  Levels of Abstraction

3

Floating point

1.0011101 x 201001011

__ ________________ ______________________________________
+/- Exponent Mantissa
1 bit 8 bits 23 bits

¤  Sign is a 0 or 1

¤  Exponent is an binary integer

¤  Mantissa is a binary fraction

4

Floating point Sign

1.0011101 x 201001011

0_ ________________ ______________________________________
+/- Exponent Mantissa
1 bit 8 bits 23 bits

¤  Sign is a 0 or 1

5

Exponent

1.0011101 x 201001011

¤ Exponent 01001011

¤ Is an unsigned integer

¤ But exponent can be negative – how to distinguish?

¤ IEEE-754 specifies a bias: 127

¤ This gives us a range of -126 to +127

¤ Makes comparison easier (for large and small values)

6

Floating point Mantissa

1.0011101 x 201001011

0_ 11001010 0011101_____________

+/- Exponent Mantissa
1 bit 8 bits 23 bits

¤  Pad the mantissa

7

Floating point Mantissa

1.0011101 x 201001011

0_ 11001010 00111010000000000000000

+/- Exponent Mantissa
1 bit 8 bits 23 bits

¤  Pad the mantissa

8

Floating point Mantissa

1.0011101 x 201001011

011001010 00111010000000000000000

9

Boolean Logic

10

Conceptualizing bits and circuits

¤  ON or 1: true

¤  OFF or 0: false

¤  circuit behavior: expressed in Boolean logic or Boolean
algebra

11

Boolean Logic (Algebra)
¤  Computer circuitry works based on Boolean Logic

(Boolean Algebra) : operations on True (1) and False (0)
values.

12

A B A Λ B
(A AND B)
(conjunction)

A V B
(A OR B)
(disjunction)

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1

A ¬A
(NOT A)
(negation)

0 1

1 0

•  A and B in the table are Boolean variables, AND
and OR are operations (also called functions).

Logic Gates

13

A
B

A
B

A ∨ B
“OR”

¬ A
“NOT”

A ∧ B
“AND”

¤ A gate is a physical device that implements a
Boolean operator by performing basic
operations on electrical signals.

Combinational Circuits

14

A ∧ B

B ∨ C

C ∧ B

(B ∨ C) ∧ (C ∧ B)

What is Q? (A ∧ B) ∨ ((B ∨ C) ∧ (C ∧ B))

AND

AND

AND

OR

OR

The logic states of inputs at any given time determine the state of the outputs.

Truth Table of a Circuit

15

A	 B	 C	 Q	

0	 0	 0	 0	

0	 0	 1	 0	

0	 1	 0	 0	

0	 1	 1	 1	

1	 0	 0	 0	

1	 0	 1	 0	

1	 1	 0	 1	

1	 1	 1	 1	

http://www.allaboutcircuits.com/vol_4/chpt_7/6.html

Q = (A ∧ B) ∨ ((B ∨ C) ∧ (C ∧ B))

AND

AND

AND

OR

OR

Describes the relationship between
inputs and outputs of a device

Describing Behavior of Circuits

¤  Boolean expressions

¤  Circuit diagrams

¤  Truth tables

16

Equivalent notations

Continued…

17

Manipulating circuits
Boolean algebra and logical equivalence

18

Why manipulate circuits?

¤ The design process
¤ simplify a complex design for easier

manufacturing, faster or cooler
operation, …

¤ Boolean algebra helps us find another
design guaranteed to have same
behavior

19

Logical Equivalence

20

A B C Q

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Q = (A ∧ B) ∨ ((B ∨ C) ∧ (C ∧ B))

AND

AND

AND

OR

OR

Can we come up with a simpler circuit implementing the same truth table?
Simpler circuits are typically cheaper to produce, consume less energy etc.

Logical Equivalence

21

A B C Q

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Q = (A ∧ B) ∨ ((B ∨ C) ∧ (C ∧ B))

Q = B ∧ (A ∨ C)

AND

AND

AND

OR

OR

OR
AND

This smaller circuit is logically equivalent
to the one above: they have the same truth table.
By using laws of Boolean Algebra we convert a
circuit to another equivalent circuit.

Laws for the Logical Operators ∧ and ∨
(Similar to × and +)

¤  Commutative: A ∧ B = B ∧ A A ∨ B = B ∨ A

¤  Associative: A ∧ B ∧ C = (A ∧ B) ∧ C = A ∧ (B ∧ C)
 A ∨ B ∨ C = (A ∨ B) ∨ C = A ∨ (B ∨ C)

¤  Distributive: A ∧ (B ∨ B) = (A ∧ B) ∨ (A ∧ C)
 A ∨ (B ∧ C) = (A ∨ B) ∧ (A ∨ C)

¤  Identity: A ∧ 1 = A A ∨ 0 = A

¤  Dominance: A ∧ 0 = 0 A ∨ 1 = 1

¤  Idempotence: A ∧ A = A A ∨ A = A

¤  Complementation: A ∧ ¬A = 0 A ∨ ¬A = 1

¤  Double Negation: ¬ ¬ A = A

22

¤  Commutative: A ∧ B = B ∧ A A ∨ B = B ∨ A

¤  Associative: A ∧ B ∧ C = (A ∧ B) ∧ C = A ∧ (B ∧ C)
 A ∨ B ∨ C = (A ∨ B) ∨ C = A ∨ (B ∨ C)

¤  Distributive: A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C)
 A ∨ (B ∧ C) = (A ∨ B) ∧ (A ∨ C)

¤  Identity: A ∧ 1 = A A ∨ 0 = A

…… The	A’s	and	B’s	here	are	schematic	variables!	You	can	instantiate	them	
with	any	expression	that	has	a	Boolean	value:	
	
															(x	∨	y)	∧	z	=	z	∧		(x	∨	y)		(by	commutativity)		
	
																			A					∧	B	=	B	∧							A	

Not true for
 + and ×

Laws for the Logical Operators ∧ and ∨
(Similar to × and +)

23

Applying Properties for ∧ and ∨
Showing	à (x	∧	y)	∨	((y	∨	z)	∧	(z	∧	y))	=	y	∧	(x	∨	z)	

Commutativity		
A	∧	B	=	B	∧	A	

(x	∧	y)	∨	((z	∧	y)	∧	(y	∨	z))		

Distributivity		
A	∧	(B	∨	C)	=	(A	∧	B)	∨	(A	∧	C)						

	(x	∧		y)	∨		(z	∧	y	∧	y)	∨(z	∧	y	∧		z)	

Associativity,		Commutativity,	Idempotence					 	(x	∧		y)	∨	((z	∧	y)	∨	(y	∧	z))
Commutativity,		idempotence			
A	∧	A	=	A	

	(y	∧	x)	∨	(y		∧	z)

Distributivity	(backwards)		
(A	∧	B)	∨	(A	∧	C)	=	A	∧	(B	∨	C)	

y	∧	(x	∨	z)	

Conclusion:	
																(x	∧	y)	∨	((y	∨	z)	∧	(z	∧	y))	=	y	∧	(x	∨	z)	

24

Extending	the	system	
more	gates	and	DeMorgan’s	laws	

25

More	gates	(NAND,	NOR,	XOR)	

26

A B A nand B A nor B A xor B

0 0 1 1 0

0 1 1 0 1

1 0 1 0 1

1 1 0 0 0

¤  nand	(“not	and”):	A	nand	B	=	not	(A	and	B)	
	

¤  nor	(“not	or”):	A	nor	B	=	not	(A	or	B)	
	

¤  xor	(“exclusive	or”):		
A	xor	B	=	(A	and	not	B)	or	(B	and	not	A)	

A
B

A
B

A
B

¬(A ∧ B)

¬(A ∨ B)

A ⊕ B

DeMorgan’s	Law	

Nand:				¬(A	∧	B)	=	¬A	∨	¬B	
	

	

	

Nor:							¬	(A	∨	B)	=	¬A	∧		¬B	
	

	

27

DeMorgan’s	Law	

Nand:				¬(A	∧	B)	=	¬A	∨	¬B	
	

if not (x > 15 and x < 110): ...
is	logically	equivalent	to	
if (not x > 15) or (not x < 110): ...

	

Nor:							¬	(A	∨	B)	=	¬A	∧		¬B	
	

if not (x < 15 or x > 110): ...
is	logically	equivalent	to	
if (not x < 15) and (not x > 110): ...

28

A	circuit	for	parity	checking	
Boolean	expressions	and	circuits	
	

29

A	Boolean	expression	that	checks	parity	

¤  3-bit	odd	parity	checker	F:	an	expression	that	should	be	true	when	the	
count	of	1	bits	is	odd:	when	1	or	3	of	the	bits	are	1s.		

30

A B C P

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

P =

A	Boolean	expression	that	checks	parity	

¤  3-bit	odd	parity	checker	F:	an	expression	that	should	be	true	when	the	
count	of	1	bits	is	odd:	when	1	or	3	of	the	bits	are	1s.		

31

A B C P

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

P = (¬A ∧ ¬B ∧ C) ∨ (¬A ∧ B ∧ ¬C) ∨ (A ∧ ¬B∧ ¬C) ∨ (A ∧ B ∧ C)

There are specific methods for obtaining
canonical Boolean expressions from a
truth table, such as writing it as a disjunction of
conjunctions or as a conjunction of
disjunctions.

Note we have four subexpressions above
each of them corresponding to exactly one
row of the truth table where P is 1.

The	circuit	

3-bit	odd	parity	checker	
P	=	(¬A	∧	¬B∧	C)	∨	(¬A	∧	B	∧	¬C)	∨	(A	∧	¬B∧	¬C)	∨	(A	∧	B	∧	C)	

32

A B C P

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

A

B

C
P

P = (A ⊕ B) ⊕ C

logically
equivalent

logically
equivalent

Summary	

You should be able to:

¤  Identify basic gates

¤  Describe the behavior of a gate or circuit using Boolean
expressions, truth tables, and logic diagrams

¤  Transform one Boolean expression into another given the
laws of Boolean algebra

33

Circuits for arithmetic

34

Adding Binary Numbers:
1 bit

A: 0 0 1 1

B: 0 1 0 1

 --- --- --- ---

 0 1 1 1 0

35

+ 0 1

0 0 1

1 1 10

Adding Binary Numbers:
1 bit

A: 0 0 1 1

B: 0 1 0 1

 --- --- --- ---

 0 1 1 1 0

36

+ 0 1

0 0 1

1 1 10

A B Cout S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Adding Binary Numbers:
1 bit

A: 0 0 1 1

B: 0 1 0 1

 --- --- --- ---

 0 1 1 1 0

37

Adding two 1-bit numbers
without taking the carry into
account

+ 0 1

0 0 1

1 1 10

A B Cout S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Adding Binary Numbers:
1 bit

A: 0 0 1 1

B: 0 1 0 1

 --- --- --- ---

 0 1 1 1 0

38

Adding two 1-bit numbers
without taking the carry into
account

+ 0 1

0 0 1

1 1 10

A B Cout S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

What is a logical gate or
boolean operation that does this?

Adding Binary Numbers:
1 bit

A: 0 0 1 1

B: 0 1 0 1

 --- --- --- ---

 0 1 1 1 0

39

A
B Sum

Adding two 1-bit numbers
without taking the carry into
account

Sum = A ⊕ B

+ 0 1

0 0 1

1 1 10

A B Cout S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Adding Binary Numbers:
1 bit

A: 0 0 1 1

B: 0 1 0 1

 --- --- --- ---

 0 1 1 1 0

40

A
B Sum

Adding two 1-bit numbers
without taking the carry into
account

How can we handle the carry (out)?

Sum = A ⊕ B

+ 0 1

0 0 1

1 1 10

A B Cout S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Adding Binary Numbers:
1 bit

A: 0 0 1 1

B: 0 1 0 1

 --- --- --- ---

 0 1 1 1 0

41

+ 0 1

0 0 1

1 1 10

A B Cout S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Adding Binary Numbers:
1 bit

A: 0 0 1 1

B: 0 1 0 1

 --- --- --- ---

 0 1 1 1 0

42

+ 0 1

0 0 1

1 1 10

A B Cout S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

What is a logical gate or
boolean operation that does this?

Adding Binary Numbers:
1 bit

A: 0 0 1 1

B: 0 1 0 1

 --- --- --- ---

 0 1 1 1 0

43

+ 0 1

0 0 1

1 1 10

A B Cout S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

A
B Sum

Carry

Adding Binary Numbers:
1 bit

A: 0 0 1 1

B: 0 1 0 1

 --- --- --- ---

 0 1 1 1 0

44

+ 0 1

0 0 1

1 1 10

A B Cout S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

A
B Sum

Carry

Half Adder:
à adds two single
 binary digits (1 bit each)

A Full Adder

A

B

S Cout

Cin
A B Cin Cout S

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

…

…

45

A Full Adder

A B Cin Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

A

B

S Cout

Cin

46

A Full Adder

A B Cin Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

A

B

S Cout

S = A ⊕ B ⊕ Cin
Cout = ((A ⊕ B) ∧ Cin) ∨ (A ∧ B)

Cin

47

A Full Adder

48

A

B

S Cout

S = A ⊕ B ⊕ Cin
Cout = ((A ⊕ B) ∧ Cin) ∨ (A ∧ B)

S: 1 when there is an odd
number of bits that are 1

C out : 1 if both A and B are 1 or,
one of the bits and the carry in
are 1.

Cin
A B Cin Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Full Adder (FA)

S = A ⊕ B ⊕ Cin
Cout = ((A ⊕ B) ∧ Cin) ∨ (A ∧ B)

49

Full Adder (FA)

1-bit
Full

Adder

A B

Cin Cout

S

S = A ⊕ B ⊕ Cin
Cout = ((A ⊕ B) ∧ Cin) ∨ (A ∧ B)

More abstract
representation
of the above circuit.
Hides details of the
circuit above.

50

8-bit Full Adder

1-bit
Full

Adder

A0 B0

Cin

S0

1-bit
Full

Adder

A1

B1

S1

1-bit
Full

Adder

A7

B7

Cout

S7

1-bit
Full

Adder

A2

B2

S2

...

8-bit
FA

A B

Cin Cout

S

8 ⁄ ⁄ 8

 ⁄ 8

More abstract
representation
of the above circuit.
Hides details of the
circuit above.

51

Control Circuits

¤ In addition to circuits for basic logical and
arithmetic operations, there are also circuits
that determine the order in which
operations are carried out and to select
the correct data values to be processed.

52

Multiplexer (MUX)

53

http://www.cise.ufl.edu/~mssz/CompOrg/CDAintro.html

¤ A multiplexer chooses one of its inputs.

 2n input lines, n selector lines, and 1 output line

A B F

0 0 D1

0 1 D2

1 0 D3

1 1 D4

D3
MUX

A B

F

D1
D2

D4

hides details of the
circuit on the left

Arithmetic Logic Unit (ALU)

54

OP1OP0

OP0 OP1 F

0 0 A ∧ B

0 1 A ∨ B

1 0 A

1 1 A + B

Carry In & OP

Depending on the OP code Mux chooses
the result of one of the functions (and, or, identity, addition)

Building A Complete Computer
from Parts

55

Computing Machines

¤ An instruction is a single arithmetic or logical
operation.

¤ A program is a sequence of instructions that causes
the desired function to be calculated.

¤ A computing system is a combination of programs
and machine (computer).

¤ How can we build a computing system that calculates
the desired function specified by a program?

56

Stored Program Computer

57

http://cse.iitkgp.ac.in/pds/notes/intro.html

A stored program computer is electronic hardware
that implements an instruction set.

Von Neumann Architecture

¤ Big idea: Data and instructions to manipulate
the data are both bit sequences

¤ Modern computers built according to the Von
Neumann Architecture include separate units
¤ To process information (CPU): reads and executes

instructions of a program in the order prescribed by
the program

¤ To store information (memory)

58

Stored Program Computer

59

http://cse.iitkgp.ac.in/pds/notes/intro.html

adder, multiplier,
multiplexor, etc.

small amount
of memory in
the CPU

instruction fetch,
decode,
execute

Central Processing Unit (CPU)

¤ A CPU contains:
¤ Arithmetic Logic Unit to perform computation

¤  The brain of the computer; performs all computations

¤ Registers to hold information
¤  Instruction register (current instruction being executed)

¤  Program counter (PC) (to hold location of next instruction in memory)

¤  Accumulator (to hold computation result from ALU)

¤  Data register(s) (to hold other important data for future use)

¤ Control unit to regulate flow of information and operations
that are performed at each instruction step

60

Stored Program Computer

adder, multiplier,
multiplexor, Etc.

instruction fetch,
decode,
execute

program counter,
instruction register,

Etc.

Two specialized registers: the instruction register holds the current instruction to
be executed and the program counter contains the address of the next
instruction to be executed.

61

Stored Program Computer

62

http://cse.iitkgp.ac.in/pds/notes/intro.html

Memory

¤ The simplest unit of storage is a bit (1 or 0). Bits are
grouped into bytes (8 bits).

¤ Memory is a collection of cells each with a unique
physical address.
¤ We use the generic term cell rather than byte or word because

the number of bits in each addressable location varies from
machine one machine to another.

¤ A machine that can generate, for example, 32-bit addresses,
can utilize a memory that contains up to 232 memory cells.

63

Memory Layout

64

Content

50

42

85

71

99

104:

108:

100:

112:

116:

Address

We saw this picture in Unit 6.
It hid the bit representation
for readability. Assumes that
memory is byte addressable
and each integer occupies 4
bytes.

Content	
…	01100100	
…	01010100	
…	01010101	
…	01000111	
…	01100011	

01101000:

01101100:

01100100:

01110000:

01110100:

Address

In this picture and in reality,
addresses and memory
contents are sequences of bits.

Memory
¤ Main (or primary) memory:

¤  high-speed memory close to the CPU
¤  programs are first loaded in the main memory and then executed

¤  volatile, i.e., its contents are lost after power-down

¤  Secondary memory:

¤  relatively inexpensive, bigger and low-speed memory
¤  for off-line storage, i.e., storage of programs and data for future

processing

¤  permanent, i.e., its contents last even after shut-down
¤  examples of secondary storage include floppy disks, hard disks and

CDROM disks

65

http://cse.iitkgp.ac.in/pds/notes/intro.html

Processing Instructions

¤ Both data and instructions are stored in memory as bit
patterns
¤ Instructions stored in contiguous memory locations
¤ Data stored in a different part of memory

¤ The address of the first instruction is loaded into
the program counter and and the processing cycle
starts.

66

Fetch-Decode-Execute Cycle

¤ Modern computers include control logic that
implements the fetch-decode-execute cycle
introduced by John von Neumann:
¤ Fetch next instruction from memory into the instruction

register.
¤ Decode instruction to a control signal and get any data it

needs (possibly from memory).
¤ Execute instruction with data in ALU and store results

(possibly into memory).
¤ Repeat.

67

Note that all of these steps are implemented with circuits of the kind we have seen in this unit.

Power of abstraction

68

Using Abstraction in Computer Design

¤ We can use layers of abstraction to hide details of the computer
design.

¤ We can work in any layer, not needing to know how the lower
layers work or how the current layer fits into the larger system.

 transistors
 gates
 circuits (adders, multiplexors …)
 central processing units (ALU, registers …)
 computer

¤ A component at a higher abstraction layer uses components from a
lower abstraction layer without having to know the details of how it is
built.
¤  It only needs to know what it does.

69

Low

High

Abstraction in Programming

¤ The set of all operations that can be executed by a processor is
called its instruction set.

¤  Instructions are built into hardware: electronics of the CPU
recognize binary representations of the specific instructions. That
means each CPU has its own machine language that it understands.

¤ But we can write programs without thinking about on what
machine our program will run. This is because we can write
programs in high-level languages that are abstractions of machine
level instructions.

70

A High-Level Program

This programs displays “Hello,
World!”

print(“Hello world!”)

71

A Low-Level Program

72

Obtaining Machine Language
Instructions

¤ Programs are typically written in higher-level
languages and then translated into machine
language (executable code).

¤ A compiler is a program that translates code
written in one language into another language.

¤ An interpreter translates the instructions one line
at a time into something that can be executed by
the computer’s hardware.

73

Summary

¤ A computing system is a combination of
program and machine (computer).

¤ In this lecture, we focused on how a machine
can be designed using levels of abstraction:
 gates à circuits for elementary operations à
 basic processing units à computer

 74

