
Computer Organization 
and Levels of Abstraction 
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Announcements 

¤ Today: 
¤  PS 7 (due now) 

¤  Lab 8: Sound Lab tonight – bring machines and 
headphones! 

¤  PA 7 

¤ Tomorrow: Lab 9 

¤ Friday: PS8 

2 



Today 

¤  (Short) Floating point review 

¤  Boolean logic  

¤  Combinational Circuits 

¤  Levels of Abstraction 

3 



Floating point 

1.0011101 x 201001011 

 

__   ________________ ______________________________________ 
+/-            Exponent              Mantissa 
1 bit          8 bits                      23 bits 

¤  Sign is a 0 or 1 

¤  Exponent is an binary integer 

¤  Mantissa is a binary fraction      
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Floating point Sign 

1.0011101 x 201001011 

 

0_   ________________ ______________________________________ 
+/-            Exponent              Mantissa 
1 bit          8 bits                      23 bits 

¤  Sign is a 0 or 1 
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Exponent 

1.0011101 x 201001011 

¤ Exponent 01001011 

¤ Is an unsigned integer 

¤ But exponent can be negative – how to distinguish? 

¤ IEEE-754 specifies a bias:  127 

¤ This gives us a range of -126 to +127  

¤ Makes comparison easier (for large and small values) 
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Floating point Mantissa 

1.0011101 x 201001011 

 

0_            11001010              0011101_____________    

+/-            Exponent              Mantissa 
1 bit          8 bits                      23 bits 

¤  Pad the mantissa 
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Floating point Mantissa 

1.0011101 x 201001011 

 

0_            11001010              00111010000000000000000   

+/-            Exponent              Mantissa 
1 bit          8 bits                      23 bits 

¤  Pad the mantissa 
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Floating point Mantissa 

1.0011101 x 201001011 

 

011001010 00111010000000000000000   
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Boolean Logic 

10 



Conceptualizing bits and circuits 

¤  ON or 1: true 

¤  OFF or 0: false 

¤  circuit behavior: expressed in Boolean logic or Boolean 
algebra 
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Boolean Logic (Algebra) 
¤  Computer circuitry  works based on Boolean Logic 

(Boolean Algebra) : operations on True (1) and False (0) 
values.  
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A B A Λ B 
(A AND B) 
(conjunction) 

A V B 
(A OR B) 
(disjunction) 

0 0 0 0 

0 1 0 1 

1 0 0 1 

1 1 1 1 

A ¬A 
(NOT A) 
(negation) 

0 1 

1 0 

•  A and B in the table are Boolean variables, AND 
and OR are operations (also called functions).                                                          



Logic Gates 

13 

A 
B 

A 
B 

A ∨ B 
“OR” 

¬ A 
“NOT” 

A  ∧ B 
“AND” 

¤ A gate is a physical device that implements a 
Boolean operator by performing basic 
operations on electrical signals. 



Combinational Circuits 
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A ∧ B 

B ∨ C 

C ∧ B 

(B ∨ C) ∧ (C ∧ B) 

What is Q?    (A ∧ B) ∨ ((B ∨ C) ∧ (C ∧ B)) 

AND 

AND 

AND 

OR 

OR 

The logic states of inputs at any given time determine the state of the outputs. 



Truth Table of a Circuit 
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A	 B	 C	 Q	

0	 0	 0	 0	

0	 0	 1	 0	

0	 1	 0	 0	

0	 1	 1	 1	

1	 0	 0	 0	

1	 0	 1	 0	

1	 1	 0	 1	

1	 1	 1	 1	

http://www.allaboutcircuits.com/vol_4/chpt_7/6.html 

Q = (A ∧ B) ∨ ((B ∨ C) ∧ (C ∧ B)) 

AND 

AND 

AND 

OR 

OR 

Describes the relationship between  
inputs and outputs of a device 



Describing Behavior of Circuits 

¤  Boolean expressions 

¤  Circuit diagrams 

¤  Truth tables 
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Equivalent notations 



Continued… 
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Manipulating circuits 
Boolean algebra and logical equivalence 
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Why manipulate circuits? 

¤ The design process 
¤ simplify a complex design for easier 

manufacturing, faster or cooler 
operation, … 

¤ Boolean algebra helps us find another 
design guaranteed to have same 
behavior 
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Logical Equivalence 
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A B C Q 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 0 

1 1 0 1 

1 1 1 1 

Q = (A ∧ B) ∨ ((B ∨ C) ∧ (C ∧ B)) 

AND 

AND 

AND 

OR 

OR 

Can we come up with a simpler circuit implementing the same truth table? 
Simpler circuits are typically cheaper to produce, consume less energy etc. 



Logical Equivalence 
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A B C Q 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 0 

1 1 0 1 

1 1 1 1 

Q = (A ∧ B) ∨ ((B ∨ C) ∧ (C ∧ B)) 

Q = B ∧ (A ∨ C) 

AND 

AND 

AND 

OR 

OR 

OR 
AND 

This smaller circuit is logically equivalent 
to the one above: they have the same truth table. 
By using laws of Boolean Algebra we convert a  
circuit to another equivalent circuit. 



Laws for the Logical Operators ∧ and ∨  
(Similar to × and +) 

¤  Commutative:   A ∧ B = B ∧ A   A ∨ B = B ∨ A 

¤  Associative:               A ∧ B ∧ C = (A ∧ B) ∧ C = A ∧ (B ∧ C) 
    A ∨ B ∨ C = (A ∨ B) ∨ C = A ∨ (B ∨ C) 

¤  Distributive:   A ∧ (B ∨ B) = (A ∧ B) ∨ (A ∧ C) 
    A ∨ (B ∧ C) = (A ∨ B) ∧ (A ∨ C) 

¤  Identity:    A ∧ 1 = A   A ∨ 0 = A 

¤  Dominance:   A ∧ 0 = 0   A ∨ 1 = 1 

¤  Idempotence:   A ∧ A = A   A ∨ A = A 

¤  Complementation:  A ∧ ¬A = 0   A ∨ ¬A = 1 

¤  Double Negation:    ¬ ¬ A = A 
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¤  Commutative:  A ∧ B = B ∧ A   A ∨ B = B ∨ A 

¤  Associative:              A ∧ B ∧ C = (A ∧ B) ∧ C = A ∧ (B ∧ C) 
   A ∨ B ∨ C = (A ∨ B) ∨ C = A ∨ (B ∨ C) 

¤  Distributive:  A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C) 
   A ∨ (B ∧ C) = (A ∨ B) ∧ (A ∨ C) 

¤  Identity:   A ∧ 1 = A   A ∨ 0 = A 

…… The	A’s	and	B’s	here	are	schematic	variables!	You	can	instantiate	them	
with	any	expression	that	has	a	Boolean	value:	
	
															(x	∨	y)	∧	z	=	z	∧		(x	∨	y)		(by	commutativity)		
	
																			A					∧	B	=	B	∧							A	

Not true for 
 + and × 

Laws for the Logical Operators ∧ and ∨  
(Similar to × and +) 
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Applying Properties for ∧ and ∨  
Showing	à (x	∧	y)	∨	((y	∨	z)	∧	(z	∧	y))	=	y	∧	(x	∨	z)	

 

Commutativity		
A	∧	B	=	B	∧	A	

(x	∧	y)	∨	((z	∧	y)	∧	(y	∨	z))		
 

Distributivity		
A	∧	(B	∨	C)	=	(A	∧	B)	∨	(A	∧	C)						

	(x	∧		y)	∨		(z	∧	y	∧	y)	∨(z	∧	y	∧		z)	
 

Associativity,		Commutativity,	Idempotence					 	(x	∧		y)	∨	((z	∧	y)	∨	(y	∧	z)) 
Commutativity,		idempotence			
A	∧	A	=	A	

	(	y	∧	x)	∨	(y		∧	z) 

Distributivity	(backwards)		
(A	∧	B)	∨	(A	∧	C)	=	A	∧	(B	∨	C)	
 

y	∧	(x	∨	z)	
 

Conclusion:	
																(x	∧	y)	∨	((y	∨	z)	∧	(z	∧	y))	=	y	∧	(x	∨	z)	
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Extending	the	system	
more	gates	and	DeMorgan’s	laws	
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More	gates	(NAND,	NOR,	XOR)	
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A B A nand B A nor B A xor B 

0 0 1 1 0 

0 1 1 0 1 

1 0 1 0 1 

1 1 0 0 0 

¤  nand	(“not	and”):	A	nand	B	=	not	(A	and	B)	
	

¤  nor	(“not	or”):	A	nor	B	=	not	(A	or	B)	
	

¤  xor	(“exclusive	or”):		
A	xor	B	=	(A	and	not	B)	or	(B	and	not	A)	

A 
B 

A 
B 

A 
B 

¬(A ∧ B) 

¬(A ∨ B) 

A ⊕ B 



DeMorgan’s	Law	

Nand:				¬(A	∧	B)	=	¬A	∨	¬B	
	

 

	

 

	

Nor:							¬	(A	∨	B)	=	¬A	∧		¬B	
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DeMorgan’s	Law	

Nand:				¬(A	∧	B)	=	¬A	∨	¬B	
	

if not (x > 15 and x < 110):  ... 
is	logically	equivalent	to	
if (not x > 15) or (not x < 110): ... 

 
	

Nor:							¬	(A	∨	B)	=	¬A	∧		¬B	
	

if not (x < 15 or x > 110): ... 
is	logically	equivalent	to	
if (not x < 15) and (not x > 110): ... 
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A	circuit	for	parity	checking	
Boolean	expressions	and	circuits	
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A	Boolean	expression	that	checks	parity	

¤  3-bit	odd	parity	checker	F:	an	expression	that	should	be	true	when	the	
count	of	1	bits	is	odd:	when	1	or	3	of	the	bits	are	1s.		
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A B C P 

0 0 0 

0 0 1 

0 1 0 

0 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

P = 



A	Boolean	expression	that	checks	parity	

¤  3-bit	odd	parity	checker	F:	an	expression	that	should	be	true	when	the	
count	of	1	bits	is	odd:	when	1	or	3	of	the	bits	are	1s.		
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A B C P 

0 0 0 0 

0 0 1 1 

0 1 0 1 

0 1 1 0 

1 0 0 1 

1 0 1 0 

1 1 0 0 

1 1 1 1 

P = (¬A ∧ ¬B ∧ C) ∨ (¬A ∧ B ∧ ¬C) ∨ (A ∧ ¬B∧ ¬C) ∨ (A ∧ B ∧ C) 
 

There are specific methods for obtaining  
canonical Boolean expressions from a  
truth table, such as writing it as a disjunction of  
conjunctions or as a conjunction of  
disjunctions.   
 
Note we have four subexpressions above  
each of them corresponding to exactly one  
row of the truth table where P is 1. 



The	circuit	

3-bit	odd	parity	checker	
P	=	(¬A	∧	¬B∧	C)	∨	(¬A	∧	B	∧	¬C)	∨	(A	∧	¬B∧	¬C)	∨	(A	∧	B	∧	C)	
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A B C P 

0 0 0 0 

0 0 1 1 

0 1 0 1 

0 1 1 0 

1 0 0 1 

1 0 1 0 

1 1 0 0 

1 1 1 1 

A 

B 

C 
P 

P = (A ⊕ B) ⊕ C 

logically 
equivalent 

logically 
equivalent 



Summary	

You should be able to: 

¤  Identify basic gates  

¤  Describe the behavior of a gate or circuit using Boolean 
expressions, truth tables, and logic diagrams  

¤  Transform one Boolean expression into another given the 
laws of Boolean algebra 
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Circuits for arithmetic 
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Adding Binary Numbers: 
1 bit 

A:  0    0      1       1 

B:   0    1             0       1 

            ---   ---     ---      --- 

  0    1              1     1 0 
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+ 0 1 

0 0 1 

1 1 10 



Adding Binary Numbers: 
1 bit 

A:  0    0      1       1 

B:   0    1             0       1 

            ---   ---     ---      --- 

  0    1              1     1 0 
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+ 0 1 

0 0 1 

1 1 10 

A B Cout S 

0 0 0 0 

0 1 0 1 

1 0 0 1 

1 1 1 0 



Adding Binary Numbers: 
1 bit 

A:  0    0      1       1 

B:   0    1             0       1 

            ---   ---     ---      --- 

  0    1              1     1 0 
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Adding two 1-bit numbers  
without taking the carry into  
account  

+ 0 1 

0 0 1 

1 1 10 

A B Cout S 

0 0 0 0 

0 1 0 1 

1 0 0 1 

1 1 1 0 



Adding Binary Numbers: 
1 bit 

A:  0    0      1       1 

B:   0    1             0       1 

            ---   ---     ---      --- 

  0    1              1     1 0 
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Adding two 1-bit numbers  
without taking the carry into  
account  

+ 0 1 

0 0 1 

1 1 10 

A B Cout S 

0 0 0 0 

0 1 0 1 

1 0 0 1 

1 1 1 0 

What is a logical gate or  
boolean operation that does this? 



Adding Binary Numbers: 
1 bit 

A:  0    0      1       1 

B:   0    1             0       1 

            ---   ---     ---      --- 

  0    1              1     1 0 
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A 
B Sum 

Adding two 1-bit numbers  
without taking the carry into  
account  

Sum = A ⊕ B 

+ 0 1 

0 0 1 

1 1 10 

A B Cout S 

0 0 0 0 

0 1 0 1 

1 0 0 1 

1 1 1 0 



Adding Binary Numbers: 
1 bit 

A:  0    0      1       1 

B:   0    1             0       1 

            ---   ---     ---      --- 

  0    1              1     1 0 

40 

A 
B Sum 

Adding two 1-bit numbers  
without taking the carry into  
account  

How can we handle the carry (out)? 

Sum = A ⊕ B 

+ 0 1 

0 0 1 

1 1 10 

A B Cout S 

0 0 0 0 

0 1 0 1 

1 0 0 1 

1 1 1 0 



Adding Binary Numbers: 
1 bit 

A:  0    0      1       1 

B:   0    1             0       1 

            ---   ---     ---      --- 

  0    1              1     1 0 
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+ 0 1 

0 0 1 

1 1 10 

A B Cout S 

0 0 0 0 

0 1 0 1 

1 0 0 1 

1 1 1 0 



Adding Binary Numbers: 
1 bit 

A:  0    0      1       1 

B:   0    1             0       1 

            ---   ---     ---      --- 

  0    1              1     1 0 
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+ 0 1 

0 0 1 

1 1 10 

A B Cout S 

0 0 0 0 

0 1 0 1 

1 0 0 1 

1 1 1 0 

What is a logical gate or  
boolean operation that does this? 



Adding Binary Numbers: 
1 bit 

A:  0    0      1       1 

B:   0    1             0       1 

            ---   ---     ---      --- 

  0    1              1     1 0 
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+ 0 1 

0 0 1 

1 1 10 

A B Cout S 

0 0 0 0 

0 1 0 1 

1 0 0 1 

1 1 1 0 

A 
B Sum 

Carry 



Adding Binary Numbers: 
1 bit 

A:  0    0      1       1 

B:   0    1             0       1 

            ---   ---     ---      --- 

  0    1              1     1 0 
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+ 0 1 

0 0 1 

1 1 10 

A B Cout S 

0 0 0 0 

0 1 0 1 

1 0 0 1 

1 1 1 0 

A 
B Sum 

Carry 

Half Adder:  
à adds two single    
 binary digits (1 bit each) 



A Full Adder 

A 

B 

S Cout 

Cin 
A B Cin Cout S 

0 0 0 

0 0 1 

0 1 0 

0 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

… 

… 
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A Full Adder 

A B Cin Cout S 

0 0 0 0 0 

0 0 1 0 1 

0 1 0 0 1 

0 1 1 1 0 

1 0 0 0 1 

1 0 1 1 0 

1 1 0 1 0 

1 1 1 1 1 

A 

B 

S Cout 

Cin 
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A Full Adder 

A B Cin Cout S 

0 0 0 0 0 

0 0 1 0 1 

0 1 0 0 1 

0 1 1 1 0 

1 0 0 0 1 

1 0 1 1 0 

1 1 0 1 0 

1 1 1 1 1 

A 

B 

S Cout 

S = A ⊕ B ⊕ Cin 
Cout = ((A ⊕ B) ∧ Cin) ∨ (A ∧ B)  

Cin 
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A Full Adder 
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A 

B 

S Cout 

S = A ⊕ B ⊕ Cin 
Cout = ((A ⊕ B) ∧ Cin) ∨ (A ∧ B)  

S: 1 when there is an odd 
number of  bits that are 1 
 
C out : 1 if  both A and B are 1 or, 
one of  the bits and the carry in 
are 1. 

Cin 
A B Cin Cout S 

0 0 0 0 0 

0 0 1 0 1 

0 1 0 0 1 

0 1 1 1 0 

1 0 0 0 1 

1 0 1 1 0 

1 1 0 1 0 

1 1 1 1 1 



Full Adder (FA) 

S = A ⊕ B ⊕ Cin 
Cout = ((A ⊕ B) ∧ Cin) ∨ (A ∧ B)  
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Full Adder (FA) 

1-bit 
Full 

Adder 

A B 

Cin Cout 

S 

S = A ⊕ B ⊕ Cin 
Cout = ((A ⊕ B) ∧ Cin) ∨ (A ∧ B)  

More abstract  
representation  
of the above circuit.  
Hides details of the  
circuit above. 
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8-bit Full Adder 

1-bit 
Full 

Adder 

A0 B0 

Cin 

S0 

1-bit 
Full 

Adder 

A1 
 

B1 

S1 

1-bit 
Full 

Adder 

A7 
 

B7 

Cout 

S7 

1-bit 
Full 

Adder 

A2 
 

B2 

S2 

... 

8-bit 
FA 

A B 

Cin Cout 

S 

8  ⁄  ⁄  8 

 ⁄  8 

More abstract  
representation  
of the above circuit.  
Hides details of the  
circuit above. 
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Control Circuits 

¤ In addition to circuits for basic logical and 
arithmetic operations, there are also circuits 
that determine the order in which 
operations are carried out and to select 
the correct data values to be processed. 
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Multiplexer (MUX) 
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http://www.cise.ufl.edu/~mssz/CompOrg/CDAintro.html 

¤ A multiplexer chooses one of  its inputs. 

    2n input lines, n selector lines,  and 1 output line  

 

A B F 

0 0 D1 

0 1 D2 

1 0 D3 

1 1 D4 

D3 
MUX 

A B 

F 

D1 
D2 

D4 

hides details of the 
circuit on the left 



Arithmetic Logic Unit (ALU) 
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OP1OP0 

OP0 OP1 F 

0 0 A ∧ B 

0 1 A ∨ B 

1 0 A 

1 1 A + B 

Carry In & OP 

Depending on the OP code Mux chooses  
the result of  one of  the functions (and, or, identity, addition) 



Building A Complete Computer 
from Parts 
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Computing Machines 

¤ An instruction is a single arithmetic or logical 
operation.  

¤ A program is a sequence of  instructions that causes 
the desired function to be calculated. 

¤ A computing system is a combination of  programs 
and machine (computer).  

¤ How can we build a computing system that calculates 
the desired function specified by a program? 
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Stored Program Computer 
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http://cse.iitkgp.ac.in/pds/notes/intro.html 

A stored program computer is electronic hardware  
that implements an instruction set.    



Von Neumann Architecture 

¤ Big idea: Data and instructions to manipulate 
the data are both bit sequences 

¤ Modern computers built according to the Von 
Neumann Architecture include separate units 
¤ To process information (CPU): reads and executes 

instructions of  a program in the order prescribed by 
the program 

¤ To store information (memory)   
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Stored Program Computer 
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http://cse.iitkgp.ac.in/pds/notes/intro.html 

adder, multiplier, 
multiplexor, etc. 

small amount  
of memory in  
the CPU 

instruction fetch, 
decode, 
execute 



Central Processing Unit (CPU) 

¤ A CPU contains: 
¤ Arithmetic Logic Unit to perform computation 

¤  The brain of  the computer; performs all computations 

¤ Registers to hold information 
¤  Instruction register (current instruction being executed) 

¤  Program counter (PC) (to hold location of  next instruction in memory) 

¤  Accumulator (to hold computation result from ALU) 

¤  Data register(s) (to hold other important data for future use) 

¤ Control unit to regulate flow of  information and operations 
that are performed at each instruction step 
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Stored Program Computer 

adder, multiplier, 
multiplexor, Etc. 

instruction fetch, 
decode, 
execute 

program counter, 
instruction register, 

Etc. 

Two specialized registers: the instruction register holds the current instruction to 
be executed and the program counter contains the address of the next 
instruction to be executed. 
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Stored Program Computer 
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http://cse.iitkgp.ac.in/pds/notes/intro.html 



Memory 

¤ The simplest unit of  storage is a bit (1 or 0). Bits are 
grouped into bytes (8 bits). 

¤ Memory is a collection of  cells each with a unique 
physical address. 
¤ We use the generic term cell rather than byte or word because 

the number of  bits in each addressable location varies from 
machine one machine to another.   

¤ A machine that can generate, for example, 32-bit addresses, 
can utilize a memory that contains up to 232 memory cells. 
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Memory Layout 
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Content 

50 

42 

85 

71 

99 

104: 

108: 

100: 

112: 

116: 

Address 

We saw this picture in Unit 6.  
It hid the bit representation  
for readability. Assumes that  
memory is  byte addressable  
and each integer occupies 4 
bytes. 

Content	
…	01100100	
…	01010100	
…	01010101	
…	01000111	
…	01100011	

01101000: 

01101100: 

01100100: 

01110000: 

01110100: 

Address 

In this picture and in reality, 
addresses and memory 
contents are sequences of bits.    



Memory 
¤ Main (or primary) memory:  

¤  high-speed memory close to the CPU 
¤  programs are first loaded in the main memory and then executed  

¤  volatile, i.e., its contents are lost after power-down 

¤  Secondary memory:  

¤  relatively inexpensive, bigger and low-speed memory  
¤  for off-line storage, i.e., storage of  programs and data for future 

processing 

¤  permanent, i.e., its contents last even after shut-down  
¤  examples of  secondary storage include floppy disks, hard disks and 

CDROM disks 
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Processing Instructions 

¤ Both data and instructions are stored in memory as bit 
patterns 
¤ Instructions stored in contiguous memory locations 
¤ Data stored in a different part of  memory 
 

¤ The address of  the first instruction is loaded into 
the program counter and and the processing cycle 
starts. 
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Fetch-Decode-Execute Cycle 

¤ Modern computers include control logic that 
implements the fetch-decode-execute cycle 
introduced by John von Neumann: 
¤ Fetch next instruction from memory into the instruction 

register. 
¤ Decode instruction to a control signal and get any data it 

needs (possibly from memory). 
¤ Execute instruction with data in ALU and store results 

(possibly into memory). 
¤ Repeat. 

67 

Note that all of  these steps are implemented with circuits of  the kind we have seen in this unit. 



Power of abstraction 
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Using Abstraction in Computer Design 

¤ We can use layers of  abstraction to hide details of  the computer 
design. 

¤ We can work in any layer, not needing to know how the lower 
layers work or how the current layer fits into the larger system. 

             transistors  
              gates  
              circuits (adders, multiplexors … ) 
              central processing units (ALU, registers …) 
              computer 

¤ A component at a higher abstraction layer uses components from a 
lower abstraction layer without having to know the details of  how it is 
built.  
¤  It only needs to know what it does. 

 

 

69 

Low 

High 



Abstraction in Programming 

¤ The set of  all operations that can be executed by a processor is 
called its instruction set. 

¤  Instructions are built into hardware: electronics of  the CPU 
recognize binary representations of  the specific instructions. That 
means each CPU has its own machine language that it understands. 

¤ But we can write programs without thinking about on what 
machine our program will run.  This is because we can write 
programs in high-level languages that are abstractions of  machine 
level instructions. 
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A High-Level Program 

# This programs displays “Hello, 
World!”

print(“Hello world!”)
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A Low-Level Program 
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Obtaining Machine Language 
Instructions 

¤ Programs are typically written in higher-level 
languages and then translated into machine 
language (executable code).   

¤ A compiler is a program that translates code 
written in one language into another language. 

¤ An interpreter translates the instructions one line 
at a time into something that can be executed by 
the computer’s hardware. 
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Summary 

¤ A computing system is a combination of  
program and machine (computer).   

¤ In this lecture, we focused on how a machine 
can be designed using levels of  abstraction: 
 gates à circuits for elementary operations à  
 basic processing units à computer 
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