
Organizing Data:
Arrays, Linked Lists

Announcements

2

¤ Exam information

¤Thursday
¤Exam coverage on Piazza
¤Review Session on Wednesday

¤ Questions?

From Yesterday

Example 2: Merge

list a list b list c

0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7

58 67 74 90 19 26 31 44 19

0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7

58 67 74 90 19 26 31 44 19 26

0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7

58 67 74 90 19 26 31 44 19 26 31

0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7

58 67 74 90 19 26 31 44 19 26 31 44

0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7

58 67 74 90 19 26 31 44 19 26 31 44 58 67 74 90

Analyzing Efficiency
• Constant time operations: comparing values and appending

elements to the output.

• If you merge two lists of size i/2 into one new list of size i, what is the
maximum number of appends that you must do? maximum number
of comparisons?

• Example: say we are merging two pairs of 2-element lists:

with and with

8 appends for 8 elements

• If you have a group of lists to be merged pairwise, and the total
number of elements in the whole group is n, the total number of
appends will be n.

• Worse case number comparisons? n/2 or less, but still O(n)

How many merges?
• We saw that each group of merges of n elements takes O(n)

operations.

• How many times do we have to merge n elements to go from
n groups of size 1 to 1 group of size n?

• Example: Merge sort on 32 elements.
– Break down to groups of size 1 (base case).
– Merge 32 lists of size 1 into 16 lists of size 2.
– Merge 16 lists of size 2 into 8 lists of size 4.
– Merge 8 lists of size 4 into 4 lists of size 8.
– Merge 4 lists of size 8 into 2 lists of size 16.
– Merge 2 lists of size 16 into 1 list of size 32.

• In general: log2n merges of n elements.

5 = log232

Putting it all together

20

It takes n appends to merge all pairs to the next higher level.
Multiply the number of levels by the number of appends per level.

It
ta

ke
s l

og
2
n

m
er

ge
s t

o
go

 fr
om

 n
 g

ro
up

s o
f s

ize
 1

 to
a

sin
gl

e
gr

ou
p

of
 si

ze
 n

.

Total number
of elements
per level is
always n.

Big O

• In the worst case, merge sort requires
O(n log2n) time to sort an array with n elements.

Number of operations Order of Complexity
n log2n O(n log n)
(n + n/2) log2n O(n log n)
4n log10n O(n log n)
n log2n + 2n O(n log n)

O(N log N)

n
(amount of data)

Number of
Operations

16 32 64

64
160

384

96

224

n log2n = O(n log n)

(not drawn to
scale)

For an n log2 n algorithm,
the performance is better
than a quadratic algorithm
but just a little worse than
a linear algorithm.

Merge vs. Insertion Sort

n isort (n(n+1)/2) msort (n log2n) Ratio

8 36 24 0.67

16 136 64 0.47

32 528 160 0.3

210 524, 800 10,240 0.02

220 549, 756, 338, 176 20,971,520 0.00004

Sorting and Searching

• Recall that if we wanted to use binary search, the list
must be sorted.

¤ What if we sort the array first using merge sort?
¤ Merge sort O(n log n) (worst case)
¤ Binary search O(log n) (worst case)
¤ Total time: O(n log n) + O(log n) = O(n log n)

(worst case)

Comparing Big O Functions

n
(amount of data)

Number of
Operations

O(2n)

O(1)

O(n log n)

O(log n)

O(n2)

O(n)

From PS5

13

¤ 3b

¤Budget of 5 comparisons
¤How many items can we search?

Analyzing Binary Search

¤ Suppose we search for a key larger than anything in the list.

¤ Example sequences of range sizes:
8, 4, 2, 1 (4 key comparisons)
16, 8, 4, 2, 1 (5 key comparisons)
17, 8, 4, 2, 1 (5 key comparisons)
18, 9, 4, 2, 1 (5 key comparisons)
...
31, 15, 7, 3, 1 (still 5 key comparisons)
32, 16, 8, 4, 2, 1 (at last, 6 key comparisons)

¤ Notice: 8 = 23, 16 = 24, 32 = 25

¤ Therefore: log 8 = 3, log 16 = 4, log 32 = 5

Generalizing the Analysis
• Some notation: ⎣x⎦ means round x down, so ⎣2.5⎦=2

• Binary search of n elements will do at most
1 + ⎣log2 n⎦ comparisons
1 + ⎣log2 8⎦ = 1 + ⎣log2 9⎦ = ... 1 + ⎣log2 15⎦ = 4
1 + ⎣log2 16⎦ = 1 + ⎣log2 17⎦ = ... 1 + ⎣log2 31⎦ = 5

• Why? We can split search region in half
1 + ⎣log2 n⎦ times before it becomes empty.

• "Big O" notation: we ignore the “1 +” and the floor
function. We say Binary Search has complexity
O(log n).

22

“floor”

PS5

¤ Q5b

¤ For the best performance of Quicksort, would we rather
have the two sublists of equal length, or would we rather
have one be very short and the other very long? Explain
briefly.

Organizing Data

Computer Memory

18

CPU: Central
Processing

Unit

Main
Memory

Memory
Address

(an integer)

Memory Content
(usually 32, 64 bits)

Recall Lists

¤ Ordered collection of data

¤ Our mental model is based on indexed data slots

¤ But how are lists actually stored in computer’s memory?

A B C D E F G H

0 1 2 3 4 5 6 7

I

8

Organizing Data in Memory

¤ We are going to see in future lectures how data types
such as integers, strings are represented in computer
memory as sequence of bits (0s, 1s).

¤ Today we will work at a higher-level of abstraction, and
discuss organizing collections of data in memory.

¤ For example, how are Python lists organized in memory?

¤ How could we organize our data to capture hierarchical
relationships between data?

Data Structure

¤ The organization of data is a very important
issue for computation.

¤ A data structure is a way of storing data in a
computer so that it can be used efficiently.
¤ Choosing the right data structure will

allow us to develop certain algorithms for
that data that are more efficient.

21

Today’s Lecture

¤Two basic structures for ordered
sequences:
¤ arrays
¤linked lists

Arrays in Memory

¤ An array is a very simple data structure for holding a sequence of
data. They have a direct correspondence with memory system in
most computers.

¤ Typically, array elements are stored in adjacent memory cells. The
subscript (or index) is used to calculate an offset to find the desired
element.

23

Content
50
42
85
71
99

104:
108:

100:

112:
116:

Address Example: data = [50, 42, 85, 71, 99]
Assume we have a byte-addressable
computer, integers are stored using
4 bytes (32 bits) and the first element is
stored at address 100. Nothing special
about 100, just an example. The array
could start at any address.

Arrays in Memory

¤ Example: data = [50, 42, 85, 71, 99]
Assume we have a byte-addressable computer, integers are stored
using 4 bytes (32 bits) and our array starts at address 100.

¤ If we want data[3], the computer takes the
address of the start of the array (100 in our example)
and adds the index * the size of an array element
(4 bytes in our example) to find the element we
want.

Location of data[3] is 100 + 3*4 = 112

¤ Do you see why it makes sense for the first
index of an array to be 0?

Content
50
42
85
71
99

104:
108:

100:

112:
116:

Arrays: Pros and Cons

¤ Pros:
¤ Access to an array element is fast since we can compute its

location quickly (constant time).

¤ Cons:
¤ If we want to insert or delete an element, we have to shift

subsequent elements which slows our computation down.
¤ We need a large enough block of memory to hold our array.

25

Arrays in Python
• Array module

• Arrays are sequence types and behave very
much like lists, except that the type of
objects stored in them is constrained.

• We only use Python lists in 15-110. Python lists
are akin to structures called dynamic arrays.

26

Linked Lists

¤ Another data structure that stores a
sequence of data values is the linked list.

¤ Data values in a linked list do not have to be
stored in adjacent memory cells.

¤ To accommodate this feature, each data
value has an additional “pointer” that
indicates where the next data value is in
computer memory.

¤ In order to use the linked list, we only need to
know where the first data value is stored.

27

Linked List Example

¤ Linked list to store the sequence: data = [50, 42, 85, 71, 99]

28

Starting
Location of
List (head)
124

Assume each integer and each
pointer requires 4 bytes.

data next

42 148

99 0 (null)

50 100

71 108

85 132

108:
116:

100:

124:
132:
140:
148:
156:

Linked List Example
• To insert a new element, we only need to change a

few pointers.

• Example: Insert 20 between
42 and 85

29

Starting
Location of
List (head)
124

Assume each
integer and pointer
requires 4 bytes.

data next

42 156

99 0 (null)

50 100

71 108

85 132

20 148

108:
116:

100:

124:
132:
140:
148:
156:

Drawing Linked Lists Abstractly
• [50, 42, 85, 71, 99]

• Inserting 20 after 42:

30

50 42 85 71 null99

head

50 42 85 71 null99

head
20

step 1step 2

We link the new node
to the list before breaking
the existing link. Why?

Linked Lists: Pros and Cons

¤Pros:
¤ Inserting and deleting data does not require

us to move/shift subsequent data elements.

¤Cons:
¤ If we want to access a specific element, we

need to traverse the list from the head of the
list to find it, which can take longer than an
array access.

¤ Linked lists require more memory. (Why?)

31

Two-dimensional arrays

• Some data can be organized
efficiently in a table (also called a
matrix or 2-dimensional array)

• Each cell is denoted
with two subscripts,
a row and column
indicator

32

B 0 1 2 3 4
0 3 18 43 49 65
1 14 30 32 53 75
2 9 28 38 50 73
3 10 24 37 58 62
4 7 19 40 46 66

B[2][3] = 50

2D Lists in Python

data = [[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12]

]
>>> data[0]
[1, 2, 3, 4]
>>> data[1][2]
7
>>> data[2][5] index error

33

0 1 2 3
0 1 2 3 4
1 5 6 7 8
2 9 10 11 12

2D List Example in Python

¤ Find the sum of all elements in a 2D array

def matrix_summation(table):

sum_so_far = 0

for row in range(0, len(table)):

for col in range(0, len(table[row])):

sum_so_far = sum_so_far + table[row][col]

return sum_so_far

34

number of rows in the table

Number of columns in the given row of the table

In a rectangular matrix, this number will be fixed
so we could use a fixed number for row
such as len(table[0])

Trace the Nested Loop
row col sum

0 0 1

…

35

0 1 2 3
0 1 2 3 4
1 5 6 7 8
2 9 10 11 12

len(table) = 3
len(table[row])= 4 for every row

def matrix_summation(table):
sum_so_far = 0
for row in range(0, len(table)):

for col in range(0, len(table[row])):
sum_so_far += table[row][col]

return sum_so_far

data = [[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12]

]
matrix_summation(data)

Tracing the Nested Loop
row col sum

0 0 1
0 1 3
0 2 6
0 3 10
1 0 15
1 1 21
1 2 28
1 3 36
2 0 45
2 1 55
2 2 66
2 3 78

36

0 1 2 3
0 1 2 3 4
1 5 6 7 8
2 9 10 11 12

len(table) = 3
len(table[row])= 4 for every row

def matrix_summation(table):
sum_so_far = 0
for row in range(0, len(table)):

for col in range(0, len(table[row])):
sum_so_far += table[row][col]

return sum_so_far

Recall Arrays and Linked Lists

Advantages Disadvantages

Arrays
Constant-time lookup
(search) if you know the
index

Requires a contiguous
block of memory

Linked Lists
Flexible memory usage Linear-time lookup

(search)

How can we exploit the advantages of arrays and linked
lists to improve search time in dynamic data sets?

Hash Tables

Key-Value Pairs
¤ Many applications require a flexible way to look up

information. For example, we may want to retrieve
information (value) about employees based on
their SSN (key).

¤ Associative arrays: collection of (key, value pairs)
¤ Key-value pair examples: name-phone number, username-

password pairs, zipcode-shipping costs

¤ If we could represent the key as an integer and
store all data in an array we would have constant
look up time. Can we always do that?

39

No, memory is a bounded resource.

Hashing
• A “hash function” h(key)that maps a key to an array index in 0..k-1.
• To search the array table for that key, look in table[h(key)]

key1

key2
key3

Universe of keys
h(key1) = 0:

h(key2) = 5:

h(key3) = 4:

1:

2:

3:

A hash function h is used to map keys to hash-table (array) slots.
Table is an array bounded in size. The size of the universe for keys
may be larger than the array size. We call the table slots buckets.

Example: Hash function

¤ Suppose we have (key,value) pairs where the key
is a string such as (name, phone number) pairs
and we want to store these key value pairs in an
array.

¤ We could pick the array position where each
string is stored based on the first letter of the string
using this hash function:

def h(str):

return (ord(str[0]) – 65) % 6

41

Note ord(‘A’) = 65

An Empty Hash Table

42

0:

1:

2:

3:

4:

5:

Add Element “Andy”

43

0:

1:

2:

3:

4:

5:

Andy

h(“Andy") is 0 because
ord(“A") = 65 and (65-65) % 6 = 0.

Suppose we use the function h from the previous slide.

Add Element “Emma”

44

0:

1:

2:

3:

4:

5:

h(“Emma") is 4 because ord(“E") = 69 and
(69 – 65) % 6 = 4.

Emma

Andy

Add Element “Graham”

45

0:

1:

2:

3:

4:

5:

h(“Emma") is 4Emma

Andy

h(”Graham") is also 0
because ord(“G”) is 71.

Graham

In order to add Graham’s information to the table we had to form a
link list for bucket 0.

Collisions

¤“Andy” and “Graham” end up in the
same bucket.

¤These are collisions in a hash table.

¤Why do we want to minimize collisions?

46

Minimizing Collisions

¤ The more collisions you have in a bucket,
the more you have to search in the bucket
to find the desired element.

¤We want to try to minimize the collisions by
creating a hash function that distribute the
keys (strings) into different buckets as evenly
as possible.

47

Requirements for the
Hash Function h(x)

¤Must be fast: O(1)

¤Must distribute items roughly uniformly
throughout the array, so everything doesn’t
end up in the same bucket.

48

What’s A Good Hash Function?

¤ For strings:
¤ Treat the characters in the string like digits in

a base-256 number.
¤ Divide this quantity by the number of

buckets, k.
¤ Take the remainder, which will be an integer

in the range 0..k-1.

49

Fancier Hash Functions

¤ How would you hash an integer i?
¤ Perhaps i % k would work well.

¤ How would you hash a list?
¤ Sum the hashes of the list elements.

¤ How would you hash a floating point number?
¤ Maybe look at its binary representation and treat that

as an integer?

50

Efficiency

¤ If the keys (strings) are distributed well throughout
the table, then each bucket will only have a few
keys and the search should take O(1) time.

¤Example:
If we have a table of size 1000 and we hash 4000
keys into the table and each bucket has
approximately the same number of keys
(approx. 4), then a search will only require us to
look at approx. 4 keys => O(1)
¤ But, the distribution of keys is dependent on the

keys and the hash function we use!

51

Summary of Search Techniques

Technique Setup Cost Search Cost
Linear search 0, since we’re

given the list
O(n)

Binary search O(n log n)
to sort the list

O(log n)

Hash table O(n) to fill the
buckets

O(1)

52

Associative Arrays

¤ Hashing is a method for implementing associative
arrays. Some languages such as Python have
associate arrays (mapping between keys and
values) as a built-in data type.

¤ Examples:
¤ Name in contacts list => Phone number
¤ User name => Password
¤ Product => Price

53

Dictionary Type in Python

>>> cars = {"Mercedes": 55000,

"Bentley": 120000,

"BMW":90000}

>>> cars["Mercedes"]

55000

54

Keys can be of any immutable data type.

Dictionaries are implemented using hashing.

This example maps car brands (keys) to prices (values).

Iteration over a Dictionary
>>> for i in cars:

print(i)

BMW
Mercedes
Bentley

>>> for i in cars.items():
print(i)

("BMW", 90000)
("Mercedes", 55000)

("Bentley", 120000)

>>> for k,v in cars.items():
print(k, ":", v)

BMW : 90000
Mercedes 55000
Bentley : 120000

Think what the loop variables are
bound to in each case.

Note also that there is no notion of
ordering in dictionaries. There is no such
thing as the first element, second element
of a dictionary.

Some Dictionary Operations

¤ d[key] = value -- Set d[key] to value.

¤ del d[key] -- Remove d[key] from d. Raises a an error if key is
not in the map.

¤ key in d -- Return True if d has a key key, else False.

¤ items() -- Return a new view of the dictionary’s items ((key,
value) pairs).

¤ keys() -- Return a new view of the dictionary’s keys.

¤ pop(key[, default]) If key is in the dictionary, remove it and
return its value, else return default. If default is not given and key
is not in the dictionary, an error is raised.

Source: https://docs.python.org/

