
Recursion: Introduction 
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Announcements 

¤  Deadlines 
¤  Exam on Thursday: Units 1 – 5 (inclusive) 

¤  PA 4 due tonight 

¤  PS 4 due now! 

¤  Monday:  
¤  PA5 is due Mon night 

¤  OLI Recursion over the weekend 

¤  Lab 6 
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Today 

¤  Review of Big-O 

¤  Recursion: 
¤  Introduction to recursion 

¤  What it is 

¤  Recursion and the stack 

¤  Recursion and iteration 

¤  Examples of simple recursive functions 

¤  Geometric recursion: fractals 
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Big-O Review 
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Asymptotic Analysis 
¤  Goal: understanding behavior of program over the long run, 

with increasingly large inputs 
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Asymptotic Analysis 
¤  Goal: understanding behavior of program over the long run, 

with increasingly large inputs 

¤  Assumptions: 
¤  Input (also known as n) changes 

¤  All the other factors/operations are constant 

¤  As a result: We are not concerned with constants factors:  
¤  How many iterations? 

¤  Not operations in each iteration 
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Asymptotic Analysis 
¤  Goal: understanding behavior of program over the long run, 

with increasingly large inputs 

¤  Assumptions: 
¤  Input (also known as n) changes 

¤  All the other factors/operations are constant 

¤  As a result: We are not concerned with constants factors:  
¤  How many iterations? 

¤  Not operations in each iteration 

¤  Gives a useful approximation, suppresses details 

¤  Worst-case 
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Order of Complexity 

¤  We express this as the (time) order of complexity 

¤  Normally expressed using Big-O notation. 

¤  Big-O ignores constants, focuses on highest power of n 
 
Number of iterations   Order of Complexity 

¤  n     O(n) 

¤  3n+3     O(n) 

¤  2n+8     O(n) 
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Why don’t constants matter? 

n2    
 
10000*10000 =  
100000000 = 108 

For n = 10000 

45*n2  

   
45*10000*10000 =  
4500000000 = 45*108 

n3    
 
10000*10000*10000 =  
1000000000000 = 1012 
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Why don’t constants matter? 

n2    
 
10000*10000 =  
100000000 = 108 

For n = 10000 

45*n2  

   
45*10000*10000 =  
4500000000 = 45*108 

n3    
 
10000*10000*10000 =  
1000000000000 = 1012 
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Why don’t constants matter? 

n2    
 
10000*10000 =  
100000000 = 108 

For n = 10000 

45*n2  

   
45*10000*10000 =  
4500000000 = 45*108 

n3    
 
10000*10000*10000 =  
1000000000000 = 1012 

<< ≈ 

11 



Order of Complexity 
¤  Big-O is ignores constants, focuses on highest power of n 

 
Number of iterations    Order of Complexity 

o  n      O(n) 
o  5n      O(n) 
o  4n+2      O(n) 
o  n2         O(n2) 

o  4n2          O(n2) 

o  3+n2         O(n2)    

o  5n2 + 3n +1     O(n2) 

o  n3  + n2 + n + 1    O(n3) 
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Quick Examples 
def complex_1(n):  
    i = 0  
    while  i < n:  
        # do something   
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Quick Examples 
def complex_1(n):  
    i = 0  
    while  i < n:  
        # do something   

 

n times = O(n) 
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Quick Examples 
def complex_1(n):  
    i = 0  
    while  i < n:  
        # do something   

 

n times = O(n) 

 

def complex_2(n):  
for i in range(n):  
  for j in range(n):  
     # do something 
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Quick Examples 
def complex_1(n):  
    i = 0  
    while  i < n:  
        # do something   

 

n times = O(n) 

 

def complex_2(n):  
for i in range(n):  
  for j in range(n):  
     # do something 

n times * n times = O(n2) 
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Quick Examples 
def complex_1(n):  
    i = 0  
    while  i < n:  
        # do something   

 

n times = O(n) 

 

def complex_2(n):  
for i in range(n):  
  for j in range(n):  
     # do something 

n times * n times = O(n2) 

def complex_3(n):  
i = 0  
while  i < n:  
    # do something  
    complex_2(n)   
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Quick Examples 
def complex_1(n):  
    i = 0  
    while  i < n:  
        # do something   

 

n times = O(n) 

 

def complex_2(n):  
for i in range(n):  
  for j in range(n):  
     # do something 

n times * n times = O(n2) 

def complex_3(n):  
i = 0  
while  i < n:  
    # do something  
    complex_2(n)   

 
n times * n2 times = O(n3) 
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Quick Examples 
def complex_1(n):  
    i = 0  
    while  i < n:  
        # do something   

 

n times = O(n) 

 

def complex_2(n):  
for i in range(n):  
  for j in range(n):  
     # do something 

n times * n times = O(n2) 

def complex_3(n):  
i = 0  
while  i < n:  
    # do something  
    complex_2(n)   

 
n times * n2 times = O(n3) 

 

def complex_2(n):  
for i in range(n):  
  for j in range(n):  
     for k in range(n):                
        # do something 
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Quick Examples 
def complex_1(n):  
    i = 0  
    while  i < n:  
        # do something   

 

n times = O(n) 

 

def complex_2(n):  
for i in range(n):  
  for j in range(n):  
     # do something 

n times * n times = O(n2) 

def complex_3(n):  
i = 0  
while  i < n:  
    # do something  
    complex_2(n)   

 
n times * n2 times = O(n3) 

 

def complex_2(n):  
for i in range(n):  
  for j in range(n):  
     for k in range(n):                
        # do something 

 
n times * n times * n times = O(n3) 
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Linear Search O(n) 

21 



Linear Search: Worst Case 

# let n = the length of list.	
def search(list, key):	
 index = 0       1	
 while index < len(list):    n+1	
  if list[index] == key:    n	
   return index	
  index = index + 1     n	
 return None       1  	
       Total:  3n+3 
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Linear Search: Worst Case 
Simplified 

# let n = the length of list.	
def search(list, key):	
 index = 0       	
 while index < len(list):  n iterations O(n)	
  if list[index] == key:    	
   return index	
  index = index + 1     	
 return None       	
        

 

23 



O(n)	(“Linear”)	

n 
(amount of data) 

Number of 
Operations 

n 3n+3 
2n + 8 
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O(n) 

n 
(amount of data) 

Number of 
Operations n 

10 20 30 

10 

20 

30 For a linear algorithm, 
if you double the amount 
of data, the amount of work 
you do doubles 
(approximately). 
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O(1)	(“Constant-Time”)	

n 
(amount of data) 

Number of 
Operations 

4 
4 = O(1) 

1 
1 = O(1) 

For a constant-time algorithm, 
if you double the amount 
of data, the amount of work 
you do stays the same. 
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Insertion Sort O(n2) 
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Insertion Sort: worst case 
# let n = the length of list.  

def isort(list):    	
 i = 1	
 while i != len(list):          	
  move_left(list,i)	
  i = i + 1	
 return list 
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Insertion Sort: worst case 
# let n = the length of list.  

def isort(list):    	
 i = 1	
 while i != len(list):    #n-1 iterations      	
  move_left(list,i)	
  i = i + 1	
 return list 
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Insertion Sort: worst case 
# let n = the length of list.  

def isort(list):    	
 i = 1	
 while i != len(list):    #n-1	
  move_left(list,i)	
  i = i + 1	
 return list 

What is the cost of move_left? 
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Insertion Sort: cost of move left 

# let n = the length of list.	
def move_left(a, i):	

 x = a.pop(i)                	
 j = i - 1	
 while j >= 0 and a[j] > x:  	
  j = j – 1	
 a.insert(j + 1, x)           
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Insertion Sort: worst case 

32 

# let n = the length of list.  

def isort(list):    	
 i = 1	
 while i != len(list):     n-1 iterations          	
  x = list.pop(i)    	
  j = i – 1     	
  while j >= 0 and a[j] > x:	
   j = j – 1        
  list.insert(j + 1, x)   	
  i = i + 1        
  	
 return list 



Insertion Sort: worst case 
# let n = the length of list.  

def isort(list):    	
 i = 1	
 while i != len(list):     n-1 iterations          	
  x = list.pop(i)      n iterations	
  j = i – 1     	
  while j >= 0 and a[j] > x:	
   j = j – 1        
  list.insert(j + 1, x)     n iterations	
  i = i + 1        
  	
 return list 
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Insertion Sort: worst case 
# let n = the length of list.  

def isort(list):    	
 i = 1	
 while i != len(list):     n-1 iterations          	
  x = list.pop(i)      n iterations	
  j = i – 1     	
  while j >= 0 and a[j] > x:	
   j = j – 1        
  list.insert(j + 1, x)     n iterations	
  i = i + 1        
  	
 return list Total cost (at most):  

(n-1)*(2n) 
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Insertion Sort: worst case 
# let n = the length of list.  

def isort(list):    	
 i = 1	
 while i != len(list):     n-1 iterations          	
  x = list.pop(i)      n iterations	
  j = i – 1     	
  while j >= 0 and a[j] > x:      1,2,3..n-1 iter	
   j = j – 1        
  list.insert(j + 1, x)     n iterations	
  i = i + 1        
  	
 return list Total cost (at most):  

(n-1)*(2n)+ 
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Insertion Sort: worst case 
# let n = the length of list.  

def isort(list):    	
 i = 1	
 while i != len(list):     n-1 iterations          	
  x = list.pop(i)      n iterations	
  j = i – 1     	
  while j >= 0 and a[j] > x:      1,2,3..n-1 iter	
   j = j – 1        
  list.insert(j + 1, x)     n iterations	
  i = i + 1        
  	
 return list Total cost (at most):  

(n-1)*(2n)+(1+2+3+..+n-1) 
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Generalizing… 

 

 

	

¤ How	to	find	(1+2+3+..+n-1)	?	
																																	

Total cost (at most):  
(n-1)*(2n)+(1+2+3+..+n-1) 
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Test for n = 7.   

1+2+3+4+5+6 
1+2+3…n-1 
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Our equation … 

(n-1)*n/2 
1+2+3…n-1 

(6) * (7) / 2 blue circles 

(n-1) * (n) / 2 blue circles 
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Generalizing… 

 

 

	

¤ (1+2+3+..+n-1)	à	n*(n-1)/2	

Total cost (at most):  
(n-1)*(2n)+(1+2+3+..+n-1) 
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Generalizing… 

 

 

	

¤ (1+2+3+..+n-1)	à	n*(n-1)/2	

¤ (n-1)*(2n)+(1+2+3+..+n-1) 
¤ =2n2	-	2n	+	(n2	-	n)	/	2	

¤ =	(5n2	-	5n)	/	2		

¤ =	(5/2)n2	-	(5/2)n																																	

Total cost (at most):  
(n-1)*(2n)+(1+2+3+..+n-1) 
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Generalizing… 

 

 

	

¤ (1+2+3+..+n-1)	à	n*(n-1)/2	

¤ (n-1)*(2n)+(1+2+3+..+n-1) 
¤ =2n2	-	2n	+	(n2	-	n)	/	2	

¤ =	(5n2	-	5n)	/	2		

¤ =	(5/2)n2	-	(5/2)n																																	

Total cost (at most):  
(n-1)*(2n)+(1+2+3+..+n-1) 
 

n2
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O(n2)	(“Quadratic”)	

n 
(amount of data) 

Number of 
Operations 

n2/2 + 3n/2 – 1  2n2 + 7 
n2 
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O(n2) 

N 
(amount of data) 

Number of 
Operations 

10 20 30 

100 

400 

900 

N2 

For a quadratic algorithm, 
if you double the amount 
of data, the amount of work 
you do quadruples 
(approximately). 
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Big O 

¤  O(1)   constant 

¤  O(log n)  logarithmic 

¤  O(n)   linear 

¤  O(n log n)  log linear 

¤  O(n2)  quadratic 

¤  O(n3)  cubic 

¤  O(2n)  exponential 
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How work increases 
Input	Size	 O(n)	 O(n2)	 O(n3)	 O(2n)		

2	 2	 4	 8	 4	
4	 4	 16	 64	 16	
8	 8	 64	 512	 256	
16	 16	 256	 4096	 65536	
32	 32	 1024	 32768	 4294967296	

1000	 1000	 1000000	 1000000000	

10715086071862673209484
25049060001810561404811
70553360744375038837035
10511249361224931983788
15695858127594672917553
14682518714528569231404
35984577574698574803934
56777482423098542107460
50623711418779541821530
46474983581941267398767
55916554394607706291457
11964776865421676604298
31652624386837205668069
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Recursion 

The Loopless Loop
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Recursion 
¤  Algorithmically:  

¤  Take a problem and solve it by reducing it to a simpler/smaller 
version of the same problem 

¤  In programming: 
¤  A technique where a function calls itself 

¤  A recursive	function is one that calls itself. 
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Recursion 
¤  Algorithmically:  

¤  Take a problem and reduce it to a simpler/smaller version of the same 
problem 

¤  In programming: 
¤  A technique where a function calls itself 

¤  A recursive	function is one that calls itself. 
 

¤  def i_am_recursive(x):  
    maybe do some work  
    if there is more work to do:  
        i_am_recursive(next(x))  
    return the desired result  
 

¤  Infinite loop? Not necessarily, not if next(x) needs less work than x. 
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Make 4 layer cake 
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Make 4 layer cake 

Make 3 layer cake 
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Make 4 layer cake 

Make 3 layer cake 

Make 2 layer cake 
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Make 4 layer cake 

Make 3 layer cake 

Make 2 layer cake 

Make 1 layer cake 
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Make 4 layer cake 

Make 3 layer cake 

Make 2 layer cake 

Make 1 layer cake 
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Make 4 layer cake 

Make 3 layer cake 

Make 2 layer cake 

Make 1 layer cake 
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Make 4 layer cake 

Make 3 layer cake 

Make 2 layer cake 
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Make 4 layer cake 

Make 3 layer cake 
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Make 4 layer cake 
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Recursive Definitions 

¤  Every recursive function definition includes two parts: 
 
¤  Base case(s) (non-recursive) 

One or more simple cases that can be done directly or 
immediately 
 

¤  Recursive case(s) 
One or more cases that require solving “simpler” version(s) of 
the original problem. 

¤  By “simpler”, we mean “smaller” or “shorter” or “closer to 
the base case”. 
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Make 4 layer cake 

Make 3 layer cake 

Make 2 layer cake 

Make 1 layer cake 

Recursive case Base case 
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Example: Factorial 

•  n! = n × (n-1) × (n-2) × … × 1 
2! =    2 × 1 
3! =    3 × 2 × 1 
4! =    4 × 3 × 2 × 1 

¤ alternatively:	
0! = 1  (Base	case)	
n! = n × (n-1)!  	

So 4! = 4 × 3! è 3! = 3 × 2! è 2! = 2 × 1! è 
              1! = 1 × 0! è  0! = 1 

(Recursive	case) 

  9! = 362,880 
10! =  ? 10! = 3,628,800 
10! = 10 × 9!  
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Recursion conceptually 

6 

 

4!	=	4(3!)	 																																																							
												3!	=	3(2!) 																																			
																								2!	=	2(1!) 															
																																				1!	=	1	(0!)	  

Base case 
make smaller instances  
of the same problem 
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Recursion conceptually 
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4!	=	4(3!)	 																																																	
												3!	=	3(2!) 																																				
																								2!	=	2(1!) 			
																																				1!	=	1	(0!)	=	1(1)	=	1	
  

Compute the base case 

make smaller instances  
of the same problem 
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Recursion conceptually 
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4!	=	4(3!)	 																																																										
												3!	=	3(2!) 																																										
																								2!	=	2(1!) 																							=	2		
																																				1!	=	1	(0!)	=	1(1)	=	1	
  

Compute the base case 

make smaller instances  
of the same problem 

build up   
the result  
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Recursion conceptually 
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4!	=	4(3!)	 																																																												
												3!	=	3(2!) 																																									=	6	
																								2!	=	2(1!) 																							=	2		
																																				1!	=	1	(0!)	=	1(1)	=	1	
  

Compute the base case 

make smaller instances  
of the same problem 

build up   
the result  
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Recursion conceptually 
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4!	=	4(3!)	 																																																											=	24	
												3!	=	3(2!) 																																									=	6	
																								2!	=	2(1!) 																							=	2		
																																				1!	=	1	(0!)	=	1(1)	=	1	
  

Compute the base case 

make smaller instances  
of the same problem 

build up   
the result  
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Recipe for Writing Recursive Functions 
(by Dave Feinberg) 

1.  Write if. (Why?) 
 There must be at least 2 cases: base and recursive 

2.  Handle simplest case(s).  
 No recursive call needed (base case). 

3.  Write recursive calls(s).  
  Input is slightly simpler to get closer to base case. 

4.  Assume the recursive call works!   
      Ask yourself: What does it do? 

      Ask yourself: How does it help?  

14 
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Recursion in Python 
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Recursive Factorial in Python 
¤ For	what	n	do	we	know	the	factorial?	
n = 0     à   if n == 0:

            return 1

11 
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Recursive Factorial in Python 
¤ For	what	n	do	we	know	the	factorial?	
n = 0     à   if n == 0:

            return 1

¤ How	do	we	reduce	the	problem?	Rewrite	in	terms	of	something	
simpler	each	time	

  n*(n-1)!  à   else:

                   return n * factorial(n-1)  

11 
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Recursive Factorial in Python 
¤ For	what	n	do	we	know	the	factorial?	
n = 0     à   if n == 0:    # base case       

            return 1

¤ How	do	we	reduce	the	problem?	Rewrite	in	terms	of	something	
simpler	each	time	

  n*(n-1)!  à   else:         # recursive case

                   return n * factorial(n-1)  

11 
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Recursive Factorial in Python 

# Assumes n >= 0
def factorial(n):
    if n == 0:    # base case       
        return 1
    else:         # recursive case
        return n * factorial(n-1)  

11 

0!	=	1 	(Base	case)	
n!	=	n	×	(n-1)! 	(Recursive	case)	
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factorial(4)?S 
T 
A 
C 
K 

n=4 

def factorial(n):

    if n == 0:    # base case       

        return 1

    else:         # recursive case

        return n * factorial(n-1)  



factorial(4)? = 4 * factorial(3)S 
T 
A 
C 
K 

n=4 

def factorial(n):

    if n == 0:    # base case       

        return 1

    else:         # recursive case

        return n * factorial(n-1)  



factorial(4)? = 4 * factorial(3)S 
T 
A 
C 
K 

factorial(3)? 

n=4 

n=3 

def factorial(n):

    if n == 0:    # base case       

        return 1

    else:         # recursive case

        return n * factorial(n-1)  



factorial(4)? = 4 * factorial(3)S 
T 
A 
C 
K 

factorial(3)? = 3 * factorial(2)

n=4 

n=3 

def factorial(n):

    if n == 0:    # base case       

        return 1

    else:         # recursive case

        return n * factorial(n-1)  

78 



factorial(4)? = 4 * factorial(3)S 
T 
A 
C 
K 

factorial(3)? = 3 * factorial(2)

factorial(2)?

n=4 

n=3 

n=2 

def factorial(n):

    if n == 0:    # base case       

        return 1

    else:         # recursive case

        return n * factorial(n-1)  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factorial(4)? = 4 * factorial(3)S 
T 
A 
C 
K 

factorial(3)? = 3 * factorial(2)

factorial(2)? = 2 * factorial(1)

n=4 

n=3 

n=2 

def factorial(n):

    if n == 0:    # base case       

        return 1

    else:         # recursive case

        return n * factorial(n-1)  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factorial(4)? = 4 * factorial(3)S 
T 
A 
C 
K 

factorial(3)? = 3 * factorial(2)

factorial(2)? = 2 * factorial(1)

factorial(1)? 

n=4 

n=3 

n=2 

n=1 

def factorial(n):

    if n == 0:    # base case       

        return 1

    else:         # recursive case

        return n * factorial(n-1)  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factorial(4)? = 4 * factorial(3)S 
T 
A 
C 
K 

factorial(3)? = 3 * factorial(2)

factorial(2)? = 2 * factorial(1)

factorial(1)? = 1 * factorial(0)

n=4 

n=3 

n=2 

n=1 

def factorial(n):

    if n == 0:    # base case       

        return 1

    else:         # recursive case

        return n * factorial(n-1)  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factorial(4)? = 4 * factorial(3)S 
T 
A 
C 
K 

factorial(3)? = 3 * factorial(2)

factorial(2)? = 2 * factorial(1)

factorial(1)? = 1 * factorial(0)

factorial(0) = 1

n=4 

n=3 

n=2 

n=1 

n=0 

def factorial(n):

    if n == 0:    # base case       

        return 1

    else:         # recursive case

        return n * factorial(n-1)  

83 



factorial(4)? = 4 * factorial(3)S 
T 
A 
C 
K 

factorial(3)? = 3 * factorial(2)

factorial(2)? = 2 * factorial(1)

factorial(1) = 1 * 1 = 1

n=4 

n=3 

n=2 

n=1 

def factorial(n):

    if n == 0:    # base case       

        return 1

    else:         # recursive case

        return n * factorial(n-1)  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factorial(4)? = 4 * factorial(3)S 
T 
A 
C 
K 

factorial(3)? = 3 * factorial(2)

factorial(2) = 2 * 1 = 2

n=4 

n=3 

n=2 

def factorial(n):

    if n == 0:    # base case       

        return 1

    else:         # recursive case

        return n * factorial(n-1)  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factorial(4)? = 4 * factorial(3)S 
T 
A 
C 
K 

factorial(3) = 3 * 2 = 6

n=4 

n=3 

def factorial(n):

    if n == 0:    # base case       

        return 1

    else:         # recursive case

        return n * factorial(n-1)  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factorial(4) = 4 * 6 = 24S 
T 
A 
C 
K 

n=4 

def factorial(n):

    if n == 0:    # base case       

        return 1

    else:         # recursive case

        return n * factorial(n-1)  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Recursion vs Iteration 
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Recursive vs. Iterative Solutions 

¤  For every recursive function,  

 there is an equivalent iterative solution. 

¤  For every iterative function,  

 there is an equivalent recursive solution. 

¤  But some problems are easier to solve one way than the other way. 

¤  And be aware that most	recursive programs need space for the 
stack, behind the scenes 

calls itself 

for loop, 
while loop 



Factorial Function two ways 

# Iterative version of factorial 
def factorial(n):  
    result = 1   # initialize accumulator var  
    for i in range(1, n+1):  
        result = result * i  
    return result

# Recursive version of factorial 
def factorial(n):  
  if n == 0:    # base case  
      return 1  
  else:         # recursive case  
      return n * factorial(n-1)  



A Strategy for Recursive Problem Solving  
(hat tip to Dave Evans) 

¤ Think of the smallest size of the problem and write 
down the solution (base case) 

¤ Be	optimistic.	Assume you magically have a 
working function to solve any size. How could you 
use it on a smaller size and use the answer to 
solve a bigger size? (recursive case) 

¤ Combine the base case and the recursive case 
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Recursion on Lists 
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Recursion on Lists 

Do we know how to use iteration to sum the elements in a 
list? 
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Recursion on Lists 

¤  First we need a way of getting a smaller input from a 
larger one: 
¤  Forming a sub-list of a list: 

>>> a = [1, 11, 111, 1111, 11111, 111111]

>>> a[1:]
[11, 111, 1111, 11111, 111111]

the "tail" of list a
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Recursion on Lists 

¤  First we need a way of getting a smaller input from a 
larger one: 
¤  Forming a sub-list of a list: 

>>> a = [1, 11, 111, 1111, 11111, 111111]

>>> a[1:]
[11, 111, 1111, 11111, 111111]

>>> a[2:]
[111, 1111, 11111, 111111]

the "tail" of list a
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Recursion on Lists 

¤  First we need a way of getting a smaller input from a 
larger one: 
¤  Forming a sub-list of a list: 

>>> a = [1, 11, 111, 1111, 11111, 111111]

>>> a[1:]
[11, 111, 1111, 11111, 111111]

>>> a[2:]
[111, 1111, 11111, 111111]

>>> a[3:]
[1111, 11111, 111111]

the "tail" of list a
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Recursion on Lists 

¤  First we need a way of getting a smaller input from a 
larger one: 
¤  Forming a sub-list of a list: 

>>> a = [1, 11, 111, 1111, 11111, 111111]

>>> a[1:]
[11, 111, 1111, 11111, 111111]

>>> a[2:]
[111, 1111, 11111, 111111]

>>> a[3:]
[1111, 11111, 111111]

>>> a[3:5]
[1111, 11111]

the "tail" of list a
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Tracing sumlist

>>> sumlist([2,5,7]) 

sumlist([2,5,7]) = 2 + sumlist([5,7])

                       5 + sumlist([7])

                           7 + sumlist([])

                                    0                                         
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Tracing sumlist

>>> sumlist([2,5,7]) 

sumlist([2,5,7]) = 2 + sumlist([5,7])

                       5 + sumlist([7])

                           7 + sumlist([])

                                    0                                         

                                                                                     
16 

After	reaching	the	base	case,	the	final	result	is		
built	up	by	the	computer	by	adding	0+7+5+2.	



Recursive sum of a list 
def sumlist(items):

    if           :

 

  

15 

What is the smallest size 
list?  
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Recursive sum of a list 
def sumlist(items):

    if items == []:

        

 

 What is the sum of an empty list? 

The smallest size list is the  
empty list. 
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Recursive sum of a list 

def sumlist(items):

    if items == []:

        return 0

        

 

Base case: 
The sum of an empty list is 0. 
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Recursive sum of a list 

def sumlist(items):

    if items == []:

        return 0

    else:

        

 

Recursive case: 
the list is not empty 
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Recursive sum of a list 
def sumlist(items):

    if items == []:

        return 0

    else:

        ... sumlist(         ) ...

 

What is a simpler/smaller 
case? 

108 



Recursive sum of a list 
def sumlist(items):

    if items == []:

        return 0

    else:

        ... sumlist(items[1:]) ...

 

What if we already know 
the sum of the list's tail? 

“tail” of list 

109 



Recursive sum of a list 

def sumlist(items):

    if items == []:

        return 0

    else:

        return items[0] + sumlist(items[1:])

 

15 

What if we already know 
the sum of the list's tail? 
 
We can just add in the list's 
first element! 
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List Recursion: exercise 

¤  Let's create a recursive function rev(items) 

¤  Input: a list of items 

¤  Output: another list, with all the same items, but in reverse 
order 

¤  Remember: it's usually sensible to break the list down into 
its head	(first element) and its tail (all the rest). The tail is a 
smaller list, and so "closer" to the base case. 

¤  Soooo… (picture on next slide) 
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Reversing a list: recursive case 
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Fibonacci Numbers 

11
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Multiple Recursive Calls 

¤ So far we've used just one recursive call to build 
up our answer 

¤ The real conceptual power of recursion 
happens when we need more than one! 

¤ Example: Fibonacci numbers 
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Fibonacci Numbers 

¤ A	sequence	of	numbers:	
0		
1		
1		
2	
3	
5	
8	
13	
...	
	

+	
+	

+	

+	
+	

+	
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Fibonacci Numbers in Nature 

¤  0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 
etc. 

¤  Number of branches on a tree, petals on 
a flower, spirals on a pineapple. 

¤  Vi Hart's video on Fibonacci numbers 
(http://www.youtube.com/watch?
v=ahXIMUkSXX0) 
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Recursive Fibonacci 
¤ Let fib(n) = the nth Fibonacci number, n ≥ 0 

    –  fib(0) = 0  (base case) 

    –  fib(1) = 1  (base case) 

    –  fib(n) = fib(n-1) + fib(n-2),  n > 1 

  



Recursive Fibonacci 
¤ Let fib(n) = the nth Fibonacci number, n ≥ 0 

    –  fib(0) = 0  (base case) 

    –  fib(1) = 1  (base case) 

    –  fib(n) = fib(n-1) + fib(n-2),  n > 1 

  
	
def fib(n):  
    if n == 0 or n == 1:  
        return n

    else:  
        return fib(n-1) + fib(n-2)

Two recursive calls! 



Recursive Call Tree 

fib(5) 

fib(4) fib(3) 

fib(3) fib(2) fib(2) fib(1) 

fib(2) fib(1) fib(1) fib(0) 

fib(1) fib(0) 

fib(1) fib(0) 

fib(0) = 0    
fib(1) = 1    
fib(n) = fib(n-1) + fib(n-2), n > 1 



fib(1) 

fib(1) fib(0) 

fib(2) 

fib(3) 

fib(5) 

fib(0) 

fib(1) fib(0) fib(1) 

fib(4) 

fib(1) 

fib(2) 

fib(3) fib(2) 

5 

3 

1 

2 

1 0 

1 1 

2 

1 0 

1 

1 0 

1 

Recursive Call Tree 

fib(0) = 0    
fib(1) = 1    
fib(n) = fib(n-1) + fib(n-2), n > 1 



Iterative Fibonacci 
 

def fib(n):  
    x = 0  
    next_x = 1  
    for i in range(1,n+1):

 old_x = x

          x = next_x

 next_x = old_x + x  
    return x

sequence: 
   0  
   1  
   1  
   2 
   3 
   5 
   8 
  13 
... 
 

+	
+	

+	

+	
+	

+	
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Simultaneous Assignment 

Assign values to multiple variables in a single statement: 

 

sum, diff = x + y, x – y 

x, y = y, x 
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Iterative Fibonacci 
 

def fib(n):  
    x = 0  
    next_x = 1  
    for i in range(1,n+1):  
        x, next_x = next_x, x + next_x  
    return x

Faster than the 
recursive 
version. Why? 

simultaneous 
assignment

123 



Fractals: More on Recursion 

12
4 



Geometric Recursion (Fractals) 

¤  A recursive operation performed on successively smaller 
regions. 

Sierpinski's 
Triangle 

http://fusionanomaly.net/recursion.jpg 
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Sierpinskiʼs Triangle 

126 



Sierpinskiʼs Carpet 
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(the next slide shows an 
animation that could give 
some people headaches) 



Mandelbrot set 

Source: Clint Sprott, http://sprott.physics.wisc.edu/fractals/animated/ 
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Fancier fractals 
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Next Lecture 
recursion for               

search 

image: Matt Roberts, http://people.bath.ac.uk/mir20/blogposts/bst_close_up.php  
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