
Iteration:
Searching

Announcements

¤ Questions?
¤ Lab 3
¤ PA 3
¤ OLI
¤ PS 3

¤ Tonight
¤ Lab 4

¤ Autograding…

Today

¤ Sieve of Erotosthenes (lists) review?

¤ Coding: Unicode

¤ Algorithm: linear (sequential) search

¤ Thinking about efficiency

¤ Algorithm: insertion sort

Lists and Loops

i= 1

while i < len(myList):
print(i)
print(myList[i])
i = i + 1

4

myList =[‘pizza’, ‘tacos’, ‘burgers’, ‘kale’, ‘lentils’]

i= 1

for i in
range(len(myList)):

print(i)
print(myList[i])

i= 1

for i in myList:
print(i)
print(myList[i])

Algorithmic Thinking:
Sieve of Erathosthenes

Do we need to review?

Prime Numbers

¤ An integer is “prime” if it is not divisible by any smaller integers
except 1.

¤ 10 is not prime because 10 = 2 × 5

¤ 11 is prime

¤ 12 is not prime because 12 = 2 × 6 = 2 × 2 × 3

¤ 13 is prime

¤ 15 is not prime because 15 = 3 × 5

6

The Sieve of Eratosthenes

7

Start with a table of
integers from 2 to N.

Cross out all the
entries that are
divisible by the primes
known so far.

The first value
remaining is the next
prime.

What’s the point?

¤From algorithm to
code…!
¤Problem Solving

8

Finding Primes Between 2 and 50

2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

9

2 is the first prime

Finding Primes Between 2 and 50

2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

10

Filter out everything divisible by 2.
Now we see that 3 is the next prime.

Finding Primes Between 2 and 50

2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

11

Filter out everything divisible by 3.
Now we see that 5 is the next prime.

Finding Primes Between 2 and 50

2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

12

Filter out everything divisible by 5.
Now we see that 7 is the next prime.

Finding Primes Between 2 and 50

2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

13

Filter out everything divisible by 7.
Now we see that11 is the next prime.

Finding Primes Between 2 and 50

2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

14

Since 11 x 11 > 50, all remaining numbers must
be primes. Why?

An Algorithm for Sieve of Eratosthenes

Input: A number n:

1. Create a list numlist with every integer from 2 to n, in order.
(Assume n > 1.)

2. Create an empty list primes.

3. For each element in numlist

a. If element is not marked, copy it to the end of primes.

b. Mark every number that is a multiple of the most recently
discovered prime number.

Output: The list of all prime numbers less than or equal to n

15

Automating the Sieve

Use two lists: candidates, and confirmed primes.

16

numlist primes

2 3 4 5
6 7 8 9
10 11 12 13
…

Steps 1 and 2

17

numlist primes

2 3 4 5
6 7 8 9
10 11 12 13
…

Step 3a

18

numlist primes

2 3 4 5
6 7 8 9
10 11 12 13
…

2

Append the current number in numlist to the end of primes.

Step 3b

19

numlist primes

2 3 4 5
6 7 8 9
10 11 12 13
…

2

Cross out all the multiples of the last number in primes.

Iterations

20

numlist primes

2 3 4 5
6 7 8 9
10 11 12 13
…

2 3

Append the current number in numlist to the end of primes.

21

numlist primes

2 3 4 5
6 7 8 9
10 11 12 13
…

2 3

Cross out all the multiples of the last number in primes.

Iterations

Iterations

22

numlist primes

2 3 4 5
6 7 8 9
10 11 12 13
…

2 3 5

Append the current number in numlist to the end of primes.

Iterations

23

numlist primes

2 3 4 5
6 7 8 9
10 11 12 13
…

2 3 5

Cross out all the multiples of the last number in primes.

An Algorithm for Sieve of Eratosthenes

Input: A number n:

1. Create a list numlist with every integer from 2 to n, in order.
(Assume n > 1.)

2. Create an empty list primes.

3. For each element in numlist

a. If element is not marked, copy it to the end of primes.

b. Mark every number that is a multiple of the most recently
discovered prime number.

Output: The list of all prime numbers less than or equal to n

24

Implementation Decisions

¤ How to implement numlist and primes?
¤ For numlistwe will use a list in which crossed out

elements are marked with the special value None.
For example,

[None, 3, None, 5, None, 7, None]

¤ Use a helper function to mark the multiples,
step 3.b. We will call it sift.

Relational Operators

¤ If we want to compare two integers to determine their relationship,
we can use these relational operators:

< less than <= less than or equal to
> greater than >= greater than or equal to
== equal to != not equal to

¤ We can also write compound expressions using the Boolean
operators and and or.

x >= 1 and x <= 1

26

Sifting: Removing Multiples of a
Number

Filters out the multiples of the number k from list by marking
them with the special value None (greyed out ones).

def sift(lst,k):
marks multiples of k with None
i = 0
while i < len(lst):

if lst[i] != None and lst[i] % k == 0:
lst[i] = None

i = i + 1
return lst

Sifting: Removing Multiples of a
Number (Alternative version)

def sift2(lst,k):
i = 0
while i < len(lst):

if lst[i] % k == 0:
lst.remove(lst[i])

else:
i = i + 1

return lst

Filters out the multiples of the number k from list
by modifying the list. Be careful in handling indices.

def sieve(n):
numlist = list(range(2, n+1))
primes = []
for i in range(0, len(numlist)):

if numlist[i] != None:
primes.append(numlist[i])
sift(numlist, numlist[i])

return primes

A Working Sieve

Helper function that we defined before

We could have used
primes[len(primes)-1] instead.

Use the first version of sift
in this function, which does
the filtering using Nones.

Observation for a Better Sieve

30

We stopped at 11 because all the
remaining entries must be prime since
11 × 11 > 50.

2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

A Better Sieve

def sieve(n):
numlist = list(range(2, n + 1))
primes = []
i = 0 # index 0 contains number 2
while (i+2) <= math.sqrt(n):

if numlist[i] != None:
primes.append(numlist[i])
sift(numlist, numlist[i])

i = i + 1
return primes + numlist

Strings and Unicode

Strings and Unicode

¤ You can use relational operators to compare strings: <, <=, >,
>=, ==, !=

¤ How can that be? Characters are coded as numbers.

¤ Strings of characters are coded as sequences of numbers

¤ Sequences are compared using rules of alphabetical order
(“lexicographical order”)

33

String comparisons

34

>>> 'A' < 'a’
True
>>> '1' < 'A'
True
>>> '1' < '2'
True
>>> '11' < '2'
True
>>> '12' < '112'
False
>>> 'abc' < 'b'
True
>>> 'alpha' < 'alphabet'
True
>>> 'awkward' < 'able'
False
>>>

Unicode

¤ Codes 48…57: digits 0 through 9

¤ Codes 65…91: A through Z

¤ Codes 97…122: a through z

¤ Other numbers: various special characters

35

Unicode in hexadecimal: 00 – 7F16

36

Some non-printing characters:

08 – back space
09 – horizontal tab
0A – newline character (in Python)

These are only the first 128 codes in
the Unicode standard.

Chosen to correspond to the
entire set of codes in the older
ASCII standard.

from ascii-table.com

37

Roman alphabet …but many others!

38

a unicode video: http://vimeo.com/48858289 109, 242
characters/codes in 2 hours, 31 mintes, and 25 seconds
Amazingly, everything after around 14:00 seems to be

(Chinese) ideographs!

http://vimeo.com/48858289

Onward to search
more later on encodings, now

39

Searching, we use it

40

Built-in Search in Python
>>> movies = ["The Wolf of Wall Street", "American Hustle",

"Frozen", "Her", "Lone Survivor", "12 Years a Slave",
"Nosferatu”, "Arnacoeur", "Sullivan's Travels", "Last Jedi"]

>>> "American Hustle" in movies

True

>>> "American" in movies

False

>>> movies.index("Frozen")

2

>>> movies.index("Lone")

ValueError: 'Lone' is not in list

41

Let’s Write Our Own Search

¤ Method contains(items, key)

¤ Input: items to be searched (could be strings or numbers
or …)

¤ Input: key to search for

¤ Output: True or False

¤ Approach: think linearly

42

Not thinking linearly…

43

?

Not thinking linearly…

44

!

Thinking linearly…

45

?

Thinking linearly…

46

?

Thinking linearly…

47

!

def contains(items, key):

for index in range(len(items)):

if items[index] == key:

return True

return False

A contains() method

48

def contains(items, key):

for item in items:

if item == key:

return True

return False

Another contains() method

49

Getting More Information

¤ Method search(items, key)

¤ Input: list to be searched (could be strings or numbers or
…)

¤ Input: key to search for

¤ Output: index of the first member of the list that matches
the key, or None if the key isn’t in the list (instead of True or
False)

50

Search using a for-loop

def search(items, key):

for index in range(len(items)) :

if items[index] == key:

return index

return None

51

Alternatively?

def search(items, key):

for item in items:

if item == key:

return index

return None

52

Why can’t we
do this?

Ok, but...

def search(items, key):

for item in items:

if item == key:

return items.index(key)

return None

53

What’s undesirable
about this?

Be aware of the cost of the things Python does for
you “behind the scenes”!

Problems, Algorithms and Programs

¤ One problem : potentially many algorithms

¤ One algorithm : potentially many programs

¤ We can compare how efficient different programs are
both analytically and empirically

54

Analytically: Which One is Faster?

def contains1(items, key):

index = 0

while index < len(items):

if items[index] == key:

return True

index = index + 1

return False

def contains2(items, key):

ln = len(items)

index = 0

while index < ln:

if items[index] == key:

return True

index = index + 1

return False

55

¤ len(items) is executed each
time loop condition is checked len(items) is executed only

once and its value is stored in ln

Is a for-loop faster than a while-loop?

56

•Add the following function to our collection of
contains functions from the previous page:

def contains3(items, key):
for index in range(len(items)):

if items[index] == key:
return True

return False

Empirical Measurement
¤ Three programs for the same algorithm; let’s measure which is faster:

¤ Define time2 and time3 similarly to call contains2 and contains

57

import time
def time1(items, key) :

start = time.time()
contains1(items, key)
runtime = time.time() - start
print("contains1:", runtime)

Doing the measurement
>>> items = [None] * 1000000

>>> time1(items1, 1)

contains1: 0.1731700897216797

>>> time2(items1, 1)

contains2: 0.1145467758178711

>>> time3(items1, 1)

contains3: 0.07184195518493652

Conclusion: using for and range() is faster than using
while and addition when doing an unsuccessful
search Why?

58

A Different Measurement
¤ What if we want to know how the different loops perform when the

key matches the first element?

>>> time1(items1, None)

contains1: 4.0531158447265625e-06

>>> time2(items1, None)

contains2: 4.291534423828125e-06

>>> time3(items1, None)

contains3: 1.0013580322265625e-05

Now the relationship is different; contains3 is
slowest! Why?

59

Sorting

60

In-place Insertion Sort

¤ Idea: during sorting, a prefix of the list is already sorted. (This
prefix might contain one, two, or more elements.)

¤ Each element that we process is inserted into the correct
place in the sorted prefix of the list.

¤ Result: sorted part of the list gets bigger until the whole
thing is sorted.

In-place Insertion Sort

sorted part

sorted part

In-place Insertion Sort

6
4

In-place Insertion Sort

sorted part

15110 Principles of Computing
Carnegie Mellon University

In-place Insertion Sort

sorted part

In-place Insertion Sort

sorted part

6
7

In-place Insertion Sort

sorted part

15110 Principles of Computing
Carnegie Mellon University

6
8

In-place Insertion Sort

sorted part

15110 Principles of Computing
Carnegie Mellon University

In-place Insertion Sort

sorted part

In-place Insertion Sort

sorted part

In-place Insertion Sort

sorted part

In-place Insertion Sort

sorted part

7
3

In-place Insertion Sort

sorted part

15110 Principles of Computing
Carnegie Mellon University

In-place Insertion Sort

sorted part

In-place Insertion Sort

sorted part

In-place Insertion Sort

sorted part

In-place Insertion Sort Algorithm
Given a list a of length n, n > 0.

1. Set i = 1.

2. While i is not equal to n, do the following:

a. Insert a[i] into its correct position in a[0] to a[i] (inclusive).

b. Add 1 to i.

3. Return the list a (which is now sorted).

Example

a = [53, 26, 76, 30, 14, 91, 68, 42]

i = 1

Insert a[1] into its correct position in a[0..1]
and then add 1 to i:

53 moves to the right,

26 is inserted into the list at position 0

a = [26, 53, 76, 30, 14, 91, 68, 42]

i = 2

Writing the Python code

def isort(items):

i = 1

while i < len(items):

move_left(items, i)

i = i + 1

return items

insert a[i] into a[0..i]
in its correct sorted
position

But now we have to write the
move_left function!
.

Moving left using search

To move the element x at index i “left” to its
correct position, remove it, start at position i-
1, and search from right to left until we find the
first element that is less than or equal to x.

Then insert x back into the list to the right of
that element.

(The Python insert operation does not
overwrite. Think of it as “squeezing into the
list”.)

move_left via linear search

sorted part

move_left via linear search

sorted part

move_left via linear search

sorted part

move_left via linear search

sorted part

In-place Insertion Sort

sorted part

76:

a = [26, 53, 76, 30, 14, 91, 68, 42]

Searching from right to left starting with 53, the first element less than 76 is 53.
Insert 76 to the right of 53 (where it was before).

14:

a = [26, 30, 53, 76, 14, 91, 68, 42]

Searching from right to left starting with 76, all elements left of 14 are greater
than 14. Insert 14 into position 0.

68:

a = [14, 26, 30, 53, 76, 91, 68, 42]

Searching from right to left starting with 91, the first element less than 68 is 53.

Insert 68 to the right of 53.

Moving left (numbers)

The move_left algorithm

Given a list a of length n, n > 0 and a value at

index i to be moved left in the list.

1.Remove a[i] from the list and store in x.

2. Set j = i-1.

3.While j >= 0 and a[j] > x, subtract 1 from j.

4. (At this point, what do we know? Either j is …,
or a[j] is …) Insert x into position a[j+1].

From algorithm to code

¤ Our algorithm says to “remove” and “insert” elements of
a list.

¤ But how do we do that?

¤ Fortunately there are built-in Python operations for that.

Removing a list element: pop
>>> a = ["Wednesday", "Monday", "Tuesday"]
>>> day = a.pop(1)
>>> a
['Wednesday', 'Tuesday']
>>> day
'Monday'
>>> day = a.pop(0)
>>> day
'Wednesday'
>>> a
['Tuesday']

Inserting an element: insert

>> a = [10, 20, 30]
=> [10, 20, 30]
>> a.insert(0, "foo")
=> ["foo", 10, 20, 30]
>> a.insert(2, "bar")
=> ["foo", 10, "bar", 20, 30]
>> a.insert(5, "baz")
=> ["foo", 10, "bar", 20, 30, "baz"]

move_left in Python

def move_left(items, i):

x = items.pop(i)

j = i - 1

while j >= 0 and items[j] > x:

j = j – 1

items.insert(j + 1, x)

Insertion sort with a bug
def move_left(items, i):

Insert the element at items[i] into its
place

x = items.pop(i)
j = i - 1
while j > 0 and items[j] > x:

j = j - 1
items.insert(j + 1, x)

def isort(items):
In-place insertion sort
i = 1
while i < len(items):

move_left(items, i)
i = i + 1

return items

Why should we believe our code
works?

¤ We can test it:

¤ Hmmmm. What went wrong?

>>> data = [13, 78, 18, 25, 100, 89, 12]
>>> isort(data)
[13, 12, 18, 25, 78, 89, 100]
>>>

Using assert to debug

¤What do we know has to be true for
move_left to do the right thing?

¤We have a loop that decreases j and
checks for an element at index j smaller
than or equal to x. When should it stop
looping?
¤ When the value of j is -1,
¤ or when the item at index j is <= x
¤ j == -1 or items[j] <= x

So add an assertion to the code
def move_left(items, i):

Insert the element at items[i] into its
place

x = items.pop(i)
j = i - 1
while j > 0 and items[j] > x:

j = j – 1
assert(j == -1 or items[j] <= x)
items.insert(j + 1, x)

def isort(items):
In-place insertion sort
i = 1
while i < len(items):

move_left(items, i)
i = i + 1

return items

Run the same test again
>>> data = [13, 78, 18, 25, 100, 89, 12]
>>> isort(data)
[13, 12, 18, 25, 78, 89, 100]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "isort.py", line 16, in isort
move_left(items, i)

File "isort.py", line 7, in move_left
assert(j == -1 or items[j] <= x)

AssertionError

This tells us we did something wrong with the loop!

Where’s the bug?
def move_left(items, i):

Insert the element at items[i] into its
place

x = items.pop(i)
j = i - 1
while j > 0 and items[j] > x:

j = j – 1
assert(j == -1 or items[j] <= x)
items.insert(j + 1, x)

def isort(items):
In-place insertion sort
i = 1
while i < len(items):

move_left(items, i)
i = i + 1

return items

FALSE!
Why?????

The fix

def move_left(items, i):
Insert the element at items[i] into its place
x = items.pop(i)
j = i - 1
while j >= 0 and items[j] > x:

j = j – 1
assert(j == -1 or items[j] <= x)
items.insert(j + 1, x)

def isort(items):
In-place insertion sort
i = 1
while i < len(items):

move_left(items, i)
i = i + 1

return items

Run the same test again

>>> data = [13, 78, 18, 25, 100, 89, 12]
>>> isort(data)
[12, 13, 18, 25, 78, 89, 100]

Hurray!

Do we know for sure that the program will always do the right
thing now?

