
Algorithmic Thinking:
Computing with Lists

Announcements

¤ Tonight (9th):
¤ Lab 3
¤ PA 3
¤ OLI

¤ Tomorrow (10th)
¤ PS3
¤ Lab 4

Any Confusion?

¤ Print vs Return:
def ?????? (a, b): def ?????? (a, b):

result = a + b result = a + b
print (result) return (result)

¤ Between data types:
“3 + 5” vs 3 + 5 “3” * 3 vs 3 * 3 6 * 5 vs 6 * 5.0

¤ Variables:
output = ”hello”

print(output) vs print(”hello”) vs print(hello)

Units of Memory (-ibi vs -ilo)

¤ Byte B 8 bits (8b)

¤ Kilobyte KB 1024 B = 210 Bytes ≈ 103 Bytes

¤ Megabyte MB 1024 KB = 220 Bytes ≈ 106 Bytes

¤ Gigabyte GB 1024 MB = 230 Bytes ≈ 109 Bytes

¤ Terabyte TB 1024 GB = 240 Bytes ≈ 1012 Bytes

¤ Petabyte PB 1024 TB = 250 Bytes ≈ 1015 Bytes

4

256GB Can Hold How Many 2KB?

GB = 230 and KB = 210

256 GB = 28 * 230 = 238.

2 KB = 21 * 210 = 211.

238 / 211 = 227

134,217,728

GB = 109 and KB = 103

256 GB = 256,000,000,000

2KB = 2,000

128,000,000

So Far in Python

¤ Data types: int, float, Boolean, string

¤ Assignments, function definitions

¤ Control structures: For loops, while loops, conditionals

¤ Accumulating output

Otto’s Farm
Putting pieces together…

This Lecture

¤ More algorithmic thinking
¤ Example: Finding the maximum in a list

¤ Composite (structured) data type: lists
¤ Storing and accessing data in lists
¤ Modifying lists
¤ Operations on lists
¤ Iterating over lists

Reviewing while loops

Exercise:
Do the same
thing with a for
loop.

example to illustrate while loops
def print_yes(num):

i = 1
while i < num:

print(“iteration:”, i, i * “Yes”)
i = i +1

return None

Using a for loop

example to illustrate for loops
def print_yes_for(num):

for i in range(num):
print(“iteration:”, i, i * “Yes”)

return None

Example: Finding the maximum

How do we find the maximum in a sequence of integers shown to
us one at a time?

11

175203109158138246146265152222307299
What’s the maximum?

Example: Finding the maximum

Input: a non-empty list of integers.

1. Set max_so_far to the first number in list.
2. For each number n in list:

a. If n is greater than max_so_far,
then set max_so_far to n.

Output: max_so_far as the maximum of the list.

12

Loop

Representing Lists in Python

We will use a list to represent a collection of
data values.

scores = [78, 93, 80, 68, 100, 94, 85]

colors = [‘red’, ‘green’, ‘blue’]

mixed = [‘purple’, 100, 90.5]

A list is an ordered sequence of values and may contain values of any
data type.

In Python lists may be heterogeneous (may contain items of different
data types).

13

Some List Operations

¤ Indexing (think of subscripts in a sequence)

¤ Length (number of items contained in the list)

¤ Slicing

¤ Membership check

¤ Concatenation

¤ …

14

Some List Operations

>>> names = ["Al", "Jane", "Jill","Mark"]

>>> len(names)
4

>>> Al in names
error … Al is not defined

>>> "Al" in names
True

>>> names + names
["Al", "Jane", "Jill", "Mark", "Al", "Jane", "Jill",

"Mark"]

15

Accessing List Elements

"Al" "Jane" "Jill" "Mark"

0 1 2 3 indices

list elements

>>> names[0]
'Al'

>>> names[4]
Traceback (most recent call last):
File "<pyshell#8>", line 1, in
<module> names[4]

IndexError: list index out of range

>>> names[3]
'Mark'

>> names[len(names)-1]
'Mark'

Slicing Lists

0 1 2 3 indices

list elements

>>> names[1:3]
['Jane', 'Jill']
>>> names[0:4:2]
[‘Al', 'Jill']
>>> names[:4]
['Al', 'Jane', 'Jill', 'Mark']

>>> names[:2]
['Al', 'Jane']
>>> names[2:]
[‘Jill', 'Mark’]

slice

incremental slice

"Al" "Jane" "Jill" "Mark"

18

source: docs.python.org

Modifying Lists
>>> names = ['Al', 'Jane', 'Jill', 'Mark']

>>> names[1] = "Kate"

>>> names

['Al', 'Kate', 'Jill', 'Mark']

>>> names[1:3] = ["Me",”You"]

>>> names

['Al', 'Me', 'You', 'Mark']

>>> names[1:3] = ["Me","Me","Me","Me"]

['Al', 'Me', 'Me', 'Me', 'Me', 'Mark']

The list grew in length, we could make it shrink as well.

19

20

source: docs.python.org

Aliasing

"NY" "MA"eastwest "CA" "OR"

all

>>> west = ["CA", "OR"]
>>> east = ["NY", "MA"]
>>> all = [west, east]
>>> all
[["CA", "OR"],["NY", "MA"]]

There are two paths to the list containing state names in the
West Coast.
• One through the variable west.
• The other through the variable all (namely, all[0]).
This is called aliasing.

Mutability Requires Caution

>>> west = ["CA", "OR"]
>>> east = ["NY", "MA"]
>>> all = [west, east]
>>> west.append("WA")
>>> all
[['CA', 'OR', 'WA'], ['NY', 'MA']]

All variables that are bound to the
modified object change in value.

"NY" "MA"eastwest "CA" "OR"

all

"WA"

Creating Copies

"NY" "MA"eastwest "CA" "OR"

all

>>> west = ["CA", "OR"]
>>> east = ["NY", "MA"]
>>> all2 = [west[:], east[:]]
>>> all2
>>> [["CA", "OR"], ["NY", "MA"]

"NY" "MA""CA" "OR"

all2

Creates a shallow copy.
If list items were mutable objects,
as opposed to strings as we have here,
we would have needed something
more.
Don’t worry about it now.

No matter how I modify west,
all2 will not see it.

Iterating over Lists

def print_colors(colors):
for i in range(0, len(colors)):

print(colors[i])

>>> print_colors([“red”, “blue”, “green”])
red
blue
green

24

Alternative Version

def print_colors(colors):
for c in colors:

print(c)

25

Python binds c to the first item in colors,
then execute the statement in the loop body,
binds c to the next item in the list colors etc.

def print_colors(colors):
for i in range(0, len(colors)):

print(colors[i])

Algorithm: Finding the maximum

Input: a non-empty list of integers.

1. Set max_so_far to the first number in list.
2. For each number n in list:

a. If n is greater than max_so_far,
then set max_so_far to n.

Output: max_so_far as the maximum of the list.

26

Loop

Finding the max using Python
def findmax(list):

max_so_far = list[0]

for i in range(1,len(list)):

if list[i] > max_so_far:

max_so_far = list[i]

return max_so_far

27

set max_so_far to the first item

#check all the following items

if you find a bigger value
update max_so_far

Alternative Version

def findmax(list):

max_so_far = list[0]

for item in list:

if item > max_so_far:

max_so_far = item

return max_so_far

28

“For each item
in the list...”

Summary

¤ The list data type (ordered and dynamic collections of
data)
¤ Creating lists
¤ Accessing elements
¤ Modifying lists

¤ Iterating over lists

Algorithmic Thinking:
Sieve of Erathosthenes

31

A 2000 year old algorithm
(procedure) for generating a table
of prime numbers.

2, 3, 5, 7, 11, 13, 17, 23, 29, 31, …

Prime Numbers

¤ An integer is “prime” if it is not divisible by any smaller integers
except 1.

¤ 10 is not prime because 10 = 2 × 5

¤ 11 is prime

¤ 12 is not prime because 12 = 2 × 6 = 2 × 2 × 3

¤ 13 is prime

¤ 15 is not prime because 15 = 3 × 5

32

Testing Divisibility in Python

¤ x is “divisible by” y if the remainder is 0 when we divide x by y

¤ 15 is divisible by 3 and 5, but not by 2:

>>> 15 % 3

0
>>> 15 % 5

0
>> 15 % 2

1

33

What Is a “Sieve” or “Sifter”?

Separates stuff you want from stuff you don’t:

We want to separate prime numbers.

34

The Sieve of Eratosthenes

35

Start with a table of
integers from 2 to N.

Cross out all the
entries that are
divisible by the primes
known so far.

The first value
remaining is the next
prime.

Finding Primes Between 2 and 50

2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

2 is the first prime

Finding Primes Between 2 and 50

2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

Filter out everything divisible by 2.
Now we see that 3 is the next prime.

Finding Primes Between 2 and 50

2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

Filter out everything divisible by 3.
Now we see that 5 is the next prime.

Finding Primes Between 2 and 50

2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

Filter out everything divisible by 5.
Now we see that 7 is the next prime.

Finding Primes Between 2 and 50

2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

Filter out everything divisible by 7.
Now we see that11 is the next prime.

Since 11 x 11 > 50, all remaining numbers must
be primes. Why?

Finding Primes Between 2 and 50

2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

An Algorithm for Sieve of Eratosthenes

Input: A number n:

1. Create a list numlist with every integer from 2 to n, in order.
(Assume n > 1.)

2. Create an empty list primes.

3. For each element in numlist

a. If element is not marked, copy it to the end of primes.

b. Mark every number that is a multiple of the most recently
discovered prime number.

Output: The list of all prime numbers less than or equal to n

42

Automating the Sieve

Use two lists: candidates, and confirmed primes.

43

numlist primes

2 3 4 5
6 7 8 9
10 11 12 13
…

Steps 1 and 2

44

numlist primes

2 3 4 5
6 7 8 9
10 11 12 13
…

Step 3a

45

numlist primes

2 3 4 5
6 7 8 9
10 11 12 13
…

2

Append the current number in numlist to the end of primes.

Step 3b

46

numlist primes

2 3 4 5
6 7 8 9
10 11 12 13
…

2

Cross out all the multiples of the last number in primes.

Iterations

47

numlist primes

2 3 4 5
6 7 8 9
10 11 12 13
…

2 3

Append the current number in numlist to the end of primes.

48

numlist primes

2 3 4 5
6 7 8 9
10 11 12 13
…

2 3

Cross out all the multiples of the last number in primes.

Iterations

Iterations

49

numlist primes

2 3 4 5
6 7 8 9
10 11 12 13
…

2 3 5

Append the current number in numlist to the end of primes.

Iterations

50

numlist primes

2 3 4 5
6 7 8 9
10 11 12 13
…

2 3 5

Cross out all the multiples of the last number in primes.

An Algorithm for Sieve of Eratosthenes

Input: A number n:

1. Create a list numlist with every integer from 2 to n, in order.
(Assume n > 1.)

2. Create an empty list primes.

3. For each element in numlist

a. If element is not marked, copy it to the end of primes.

b. Mark every number that is a multiple of the most recently
discovered prime number.

Output: The list of all prime numbers less than or equal to n

51

Implementation Decisions

¤ How to implement numlist and primes?
¤ For numlistwe will use a list in which crossed out

elements are marked with the special value None.
For example,

[None, 3, None, 5, None, 7, None]

¤ Use a helper function to mark the multiples,
step 3.b. We will call it sift.

Relational Operators

¤ If we want to compare two integers to determine their relationship,
we can use these relational operators:

< less than <= less than or equal to
> greater than >= greater than or equal to
== equal to != not equal to

¤ We can also write compound expressions using the Boolean
operators and and or.

x >= 1 and x <= 1

53

Sifting: Removing Multiples of a
Number

Filters out the multiples of the number k from list by marking
them with the special value None (greyed out ones).

def sift(lst,k):
marks multiples of k with None
i = 0
while i < len(lst):

if lst[i] != None and lst[i] % k == 0:
lst[i] = None

i = i + 1
return lst

Sifting: Removing Multiples of a
Number (Alternative version)

def sift2(lst,k):
i = 0
while i < len(lst):

if lst[i] % k == 0:
lst.remove(lst[i])

else:
i = i + 1

return lst

Filters out the multiples of the number k from list
by modifying the list. Be careful in handling indices.

def sieve(n):
numlist = list(range(2, n+1))
primes = []
for i in range(0, len(numlist)):

if numlist[i] != None:
primes.append(numlist[i])
sift(numlist, numlist[i])

return primes

A Working Sieve

Helper function that we defined before

We could have used
primes[len(primes)-1] instead.

Use the first version of sift
in this function, which does
the filtering using Nones.

Observation for a Better Sieve

57

We stopped at 11 because all the
remaining entries must be prime since
11 × 11 > 50.

2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

A Better Sieve

def sieve(n):
numlist = list(range(2, n + 1))
primes = []
i = 0 # index 0 contains number 2
while (i+2) <= math.sqrt(n):

if numlist[i] != None:
primes.append(numlist[i])
sift2(numlist, numlist[i])
i = i + 1

return primes + numlist

Algorithm-Inspired Sculpture

59

The Sieve of Eratosthenes,
1999 sculpture by Mark di
Suvero. Displayed at
Stanford University.

Otto’s Farm

Otto’s new farm

Otto has found a new passion: growing heritage variety,
organic cabbage. He saves his money and is finally able to
purchase a small, narrow 37 x 1 track of land just outside the
city—now he can devote himself full time to farming! So he
packs up his skinniest overalls, mounts his trusty fixie and
leaves his native homeland of Lawrenceville-- off to begin a
new career as a farmer.

Otto quickly discovers that farming’s tough work – especially
in tight overalls. So he decides to program a simple robot to
plant his cabbage for him…

def plant_cabbage():
print("@")

¤ Why a function planting
individual cabbage?

¤ What does the rest of the
problem require?

¤ Keeping count?

A little more space.

Otto’s first crop is successful, although a little stunted. He
reminds himself to leave some space between his cabbage
next time. After carefully grooming his beard, he heads to
the farmer’s market and sells his cabbage; he’s able to buy
a little more land, expanding his track to 37 x 20.

Success!

Otto’s cabbages grow well
and become the hit of the
farm to table circuit, and his
labor-saving robot allows him
to devote more of his time to
listening to bands you’ve
probably never heard of.

With the extra income, he’s
managed to increase his
patch of land again. Time to
add more functionality to the
robot to accommodate the
new field

length

length/2

width

width/2

New varieties of cabbage

Otto buys some new heritage varieties of green, purple,
rainbow and yellow cabbage from the Picture and Thief
Seed Co of Williamsburg. He plants an early row of the
seeds to better understand how they grow: ["G", "G", "G",
"G", "G", "G", "G", "G", "G", "P", "R", "R", "R", "R", "R", "R", "Y", "Y",
"Y", "Y", "Y", "Y"]

