
 Algorithmic Thinking:
 Loops and Conditionals

Announcements

¤  Programming Assignment 2 due tonight (July 8th) at 11:59
via GradeScope

¤  Review lab today!

¤  Tomorrow, Wednesday:
¤  OLI: Putting it Together due July 9th, 11:59PM

¤  Lab 3

¤  Programming Assignment 3 due July 9th, 11:59PM

Today
¤  Review from last time

¤  A control flow structure

¤  for loop

¤  While loop

¤  Nesting control structures

¤  The notion of an algorithm

¤  Moving from algorithm to code

¤  Python control structures: Conditionals

Review from last time

For	
 Loop	
 Syntax	

 for loopvariable	
 in range(start,end,step):
☐☐☐☐	
 loop_body

5

for is	
 a	
 reserved	
 word	
 and	
 	

cannot	
 be	
 used	
 as	
 a	
 variable	
 name

Indenta1on	
 is	
 cri1cal.	
 	

Use	
 spaces	
 only,	
 not	
 tabs!	

loop	
 variable	
 is	
 	

a	
 new	
 variable	
 name	

declares	
 the	
 start	
 	

of	
 an	
 indented	
 block

One	
 or	
 more	
 instruc=ons	

that	
 you	
 want	
 to	
 repeat

gives	
 the	
 range	
 	

start,	
 start+step ...	
 	
 end-­‐1	

Iteration with for loops

def test1():  
 for i in range(1,6):  
 print("Woof")

Iteration with for loops

def test1():  
 for i in range(1,6):  
 print("Woof")

>>> test1()
Woof
Woof
Woof
Woof
Woof

Iteration with for loops

def test1():  
 for i in range(1,6):  
 print("Woof")

>>> test1()
Woof
Woof
Woof
Woof
Woof

What determines how
many times “Woof” is
printed is the number of
elements in the range.

Any expression that gives 5
elements in the range
would give the same
output.

For example, range(5),
range(0,5), …

Iteration with for loops

def test2():
 for i in range(3,13,2):  
 print(i)

Iteration with for loops

>>> test2()
3
5
7
9
11

def test2():
 for i in range(3,13,2):  
 print(i)

Iteration with for loops

Range(7) ?
range(0, 7) ?
 

range(1, 10, 2) ?
range(2, 10, 2) ?
 

range(10, 1, -1) ?
range(10, 1, 2) ?

def test2():
 for i in range(3,13,2):  
 print(i)

>>> test2()
3
5
7
9
11

Iteration with for loops

def test3():
 print("Woof" * 3)

Iteration with for loops

>>> test3()
WoofWoofWoof

This expression creates a string
that concatenates 3 number
of "Woof"s.

Analogy:
3 * 4 is equivalent to 4+4+4
3 * "a" is equivalent to
 "a" + "a" + "a"

def test3():
 print("Woof" * 3)

Iteration with for loops

def test4():
 for i in range(1,6):  
 print("Woof" * i)

Iteration with for loops

def test4():
 for i in range(1,6):  
 print("Woof" * i)

>>> test4()
Woof
WoofWoof
WoofWoofWoof
WoofWoofWoofWoof
WoofWoofWoofWoofWoof

This expression creates a string
that concatenates i number
of "Woof"s.

Analogy:
3 * 4 is equivalent to 4+4+4
3 * "a" is equivalent to
 "a" + "a" + "a"

An epidemic

16

Each newly infected person infects 2 people the next day.
The function returns the number of sick people after n days.

An epidemic

17

Each newly infected person infects 2 people the next day.
The function returns the number of sick people after n days.

While	
 Loop	
 Syntax	

 while condi1on:
☐☐☐☐	
 loop_body

18

while is	
 a	
 reserved	
 word	
 and	
 	

cannot	
 be	
 used	
 as	
 a	
 variable	
 name

Indenta1on	
 is	
 cri1cal.	
 	

Use	
 spaces	
 only,	
 not	
 tabs!	

The	
 loop_body	
 executes	
 	

while	
 the	
 condi1on	
 holds	
 true	

declares	
 the	
 start	
 	

of	
 an	
 indented	
 block One	
 or	
 more	
 instruc=ons	

that	
 you	
 want	
 to	
 repeat

while loop

condition

LOOP
BODY

 false

 true
NOTE: If the loop condition becomes
false during the loop body, the loop
body still runs to completion before we
exit the loop and go on with the next
step.

19

Variation on the Epidemic Example

20

Variation on the Epidemic Example

21

Variation on the Epidemic Example

22

While vs. For Loops
Prints first 10 positive integers

 i = 1  
while i < 11:  
 print(i)  
 i = i + 1

Prints first 10 positive integers

for i in range(1,11):  
 print(i)

23

Prints first 5 even integers

 i = 2  
while i < 11:  
 print(i)  
 i = i + 2

Prints first 5 even integers

for i in range(2,11,2):  
 print(i)

When to use for or while loops

¤  If you know in advance how many times you want to run
a loop use a for loop.

¤  When you don’t know the number of repetition needed,
use a while loop.

Try:

¤  Calculating interest on a savings account at 6% interest
for 3 years with a starting balance of $1000.

¤  Generalize the above – let the user indicate the interest
rate and length of time.

¤  Parable: grains of rice on a chessboard, (1 grain on
square one, 2 grains on square 2, 4 grains on square 3 ….
through square 64)

25

Try:

26

Try:

¤  Saving money to buy a new car – how long will it take to
save for a new Tesla Model X @ $80,000. (5000.00 in a
savings account)

¤  Saving for retirement – for different retirement targets,
and calculate how long it will take to reach that target.
Identify your variables and pre-assign values.

¤  Can you generalize the above to accommodate
different user input?

27

Try:

28

Nesting

Nesting

for i in range(5):  
 #body of the loop

Body of the loop is
executed 5 times

Nesting

for i in range(5):  
 #body of the loop

for j in range(3):  
 #body of the loop

Body of the loop is
executed 5 times

Body of the loop is
executed 3 times

Nesting

for i in range(5):  
 #body of the loop

for j in range(3):  
 #body of the loop

for i in range(5):  

for j in range(3):  
 #body of the loop

Body of the loop is
executed 5 times

Body of the loop is
executed 3 times

Nesting

for i in range(5):  
 #body of the loop

for j in range(3):  
 #body of the loop

for i in range(5):  

for j in range(3):  
 #body of the loop

Body of the loop is
executed 5 times

Body of the loop is
executed 3 times

Body of the loop is
executed 5*3 times

Nesting

for i in range(5):
 

for j in range(3):  
 #body of the loop

Body of the loop is
executed 5*3 times

Outer loop

Inner (nested)
loop

Nesting

Nesting

Algorithms

Algorithms

•  An algorithm is “a precise rule (or set of rules)
specifying how to solve some
problem.” (thefreedictionary.com)

•  The study of algorithms is one of the

foundations of computer science.

¤  New concept: algorithm

¤  New control structures
¤  While loops

¤  Conditionals

15110 Principles of Computing, Carnegie
Mellon University 39

image: AL-KHWARIZMI
historyoflinearalgebra.weebly.com

Mohammed al-Khwarizmi (äl-khōwärēz´mē)
 Persian mathematician of the court of Mamun in Baghdad…the
word algorithm is said to have been derived from his name. Much of
the mathematical knowledge of medieval Europe was derived from
Latin translations of his works. (encyclopedia.com)

An algorithm is like a function

40

ALGORITHM INPUT OUTPUT

F(x) è y

Input

•  Input specification

•  Recipes: ingredients, cooking utensils, …

•  Knitting: size of garment, length of yarn, needles …

•  Tax Code: wages, interest, tax withheld, …

•  Input specification for computational algorithms:

•  What kind of data is required?

•  In what form will this data be received by the algorithm?

41

Computation

•  An algorithm requires clear and precisely stated
steps that express how to perform the operations to
yield the desired results.

•  Algorithms assume a basic set of primitive operations

that are assumed to be understood by the executor
of the algorithm.
•  Recipes: beat, stir, blend, bake, …
•  Knitting: casting on, slip loop, draw yarn through, ...
•  Tax code: deduct, look up, check box, …
•  Computational: add, set, modulo, output, …

42

Output

•  Output specification

•  Recipes: number of servings, how to serve

•  Knitting: final garment shape

•  Tax Code: tax due or tax refund, where to pay

•  Output specification for computational algorithms:

•  What results are required?

•  How should these results be reported?

•  What happens if no results can be computed due to an error in

the input? What do we output to indicate this?

43

Is this a “good” algorithm?

¤ Input: slices of bread, jar of peanut butter, jar of jam

1. Pick up some bread.
2. Put peanut butter on the bread.
3. Pick up some more bread.
4. Open the jar of jam.
5. Spread the jam on the bread.
6. Put the bread together to make your sandwich.

¤ Output?

44

What makes a “good” algorithm?

A good algorithm should :

1.  produce the correct outputs for any set of legal
inputs.

2.  execute efficiently with the fewest number of steps as
possible and should always stop.

3.  be designed in such a way that others will be able to
understand it and modify it to specify solutions to
additional problems.

45

A Simple Algorithm

Input numerical score between 0 and 100 and
Output “Pass” or “Fail”

Algorithm:
1.  If score >= 60

a.  Set grade to “Pass”
b.  Print “Pass”

2.  Otherwise,
a.  Set grade to “Fail”
b.  Print “Fail”

3.  Print “See you in class”
4.  Return grade

Exactly one of step 1 or step 2
is executed, but step 3 and
step 4 are always executed.

Control Flow

47

false
score >= 60

true

set grade to “Pass”
print “Pass”

set grade to “Fail”
print “ Fail”

print(“See you in class”)
return grade

Coding the Grader in Python

Algorithm:
1.  If score >= 60

a.  Set grade to “Pass”
b.  Print “ Pass”

2.  Otherwise,
a.  Set grade to “Fail”
b.  Print “Fai”

3.  Print “See you in class ”
4.  Return grade

def grader(score):
 if score >= 60:
 grade = "Pass"
 print("Pass")
 else:
 grade = "Fail"
 print("Fail")
 print("See you in class")
 return grade

If conditions

Flow chart: if statement

 if condition:

 ☐☐☐☐statement_list

50

Flow chart: if statement

 if condition:

 ☐☐☐☐statement_list

51

if is	
 a	
 reserved	
 word

Indenta1on	
 is	
 cri1cal	

declares	
 the	
 start	
 	

of	
 an	
 indented	
 block

Statements	
 that	
 execute	

if	
 condi=on	
 is	
 true

If	
 the	
 condi1on	
 holds	
 true	
 	

then	
 the	
 statements	
 execute	

Flow chart: if statement

 if condition:

 ☐☐☐☐statement_list

52

statement_list

false
condition

true

Flow chart: if statement

 if condition:

 ☐☐☐☐statement_list

53

statement_list

false
condition

true

Print statement gets
executed

 grade = 75  
if grade > 60:  
 print(“You pass!”)

Print statement does not get
executed

grade = 50  
if grade > 60:  
 print(“You pass!”)

Flow chart:
if/else statement

 if condition:

 ☐☐☐☐	
 statement_list1

 else:

 ☐☐☐☐	
 statement_list2

54

Flow chart:
if/else statement

 if condition:

 ☐☐☐☐	
 statement_list1

 else:

 ☐☐☐☐	
 statement_list2

55

else is	
 a	
 reserved	
 word

If	
 the	
 condi1on	
 holds	
 true	
 	

then	
 these	
 statements	
 execute	

If	
 the	
 condi1on	
 is	
 false	

then	
 these	
 statements	
 execute	

Flow chart:
if/else statement

 if condition:

 ☐☐☐☐	
 statement_list1

 else:

 ☐☐☐☐	
 statement_list2

56

statement_list1

false
condition

true

statement_list2

Flow chart:
if/else statement

 if condition:

 ☐☐☐☐	
 statement_list1

 else:

 ☐☐☐☐	
 statement_list2

57

statement_list1

false
condition

true

statement_list2

You pass gets executed

 grade = 75  
if grade > 60:  
 print(“You pass!”)

 else:  
 print(“You fail :(”)

You fail gets executed

 grade = 50  
if grade > 60:  
 print(“You pass!”)

 else:  
 print(“You fail :(”)

Flow chart:
if/elif/else statement

58

 if condition1:

 ☐☐☐☐	
 statement_list1

 elif condition2:

 ☐☐☐☐	
 statement_list2

 else:

 ☐☐☐☐	
 statement_list3

Flow chart:
if/elif/else statement

59

 if condition1:

 ☐☐☐☐	
 statement_list1

 elif condition2:

 ☐☐☐☐	
 statement_list2

 else:

 ☐☐☐☐	
 statement_list3

elif is	
 a	
 reserved	
 word

You	
 can	
 have	
 as	
 many	

as	
 you	
 need!

Flow chart:
if/elif/else statement

60

statement_list1

false
condition1

true

statement_list3

condition2

statement_list2

true false

 if condition1:

 ☐☐☐☐	
 statement_list1

 elif condition2:

 ☐☐☐☐	
 statement_list2

 else:

 ☐☐☐☐	
 statement_list3

What is going to get printed?

61

What is going to get printed?

62

What is going to get printed?

63

What is going to get printed?

64

What is going to get printed?

65

Grader for Letter Grades

66

score >= 90

set grade to “A”
print “you got an A”

score >= 80

score >= 70 set grade to “B”
print “you got a B”

set grade to “C”
print “you got a C”

set grade to “D or lower”
print “your grade is less
 than C”

true

true

true

false

false

false

Letter grade program in Python

67

def grader3(score):
 if score >= 90:
 grade = "A"
 print("You got an A")
 elif score >= 80:
 grade = "B"
 print("You got a B")
 elif score >= 70:
 grade = "C"
 print("You got a C")
 else:
 grade = "D or lower"
 print("Your grade is less than C")
 return grade

Nested if statements

Nested if statements

69

def grader2(score):
 if score >= 90:
 grade = "A"
 print("You got an A")
 else: # score less than 90
 if score >= 80:
 grade = "B"
 print("You got a B")
 else: # score less than 80
 if score >= 70:
 grade = "C"
 print("You got a C")
 else: #score less than 70
 grade = "D or lower"
 print("Your grade is less than C")
 return grade

Nested if statements

70

def grader2(score):
 if score >= 90:
 grade = "A"
 print("You got an A")
 else: # score less than 90
 if score >= 80:
 grade = "B"
 print("You got a B")
 else: # score less than 80
 if score >= 70:
 grade = "C"
 print("You got a C")
 else: #score less than 70
 grade = "D or lower"
 print("Your grade is less than C")
 return grade

Nested if statements

71

def grader2(score):
 if score >= 90:
 grade = "A"
 print("You got an A")
 else: # score less than 90
 if score >= 80:
 grade = "B"
 print("You got a B")
 else: # score less than 80
 if score >= 70:
 grade = "C"
 print("You got a C")
 else: #score less than 70
 grade = "D or lower"
 print("Your grade is less than C")
 return grade

Summary

¤  Notion of an algorithm:
¤  Kinds of instructions needed to express algorithms

¤  What makes an algorithm a good one

¤  Instructions for specifying control flow (for loop, while loop, if/
then/else)
¤  Flow charts to express control flow in a language-independent

way

¤  Coding these control flow structures in Python

72

Exercise

Write a function that prints whether die1 and die2 are
doubles, cat’s eyes (two 1’s) or neither of these.

73

def print_doubles(die1, die2):

Exercise

Write a function that returns how many of the three integers
n1, n2, and n3 are odd:

74

def num_odd(n1, n2, n3):

