
Concurrency

Concurrency

Concurrency in Real Life

¤Concurrency is the simultaneous occurrence of
events.

¤Most complex tasks that occur in the physical
world can be broken down into a set of simpler
activities
¤ Building a house: bricklaying, carpentry, plumbing,

electrical installation, roofing
¤ Some of them can overlap and take place

concurrently

Concurrency in Computing

¤ Computing on the Internet: independent, autonomous
agents trying to achieve individual and shared goals.

¤ Even on our local machines, we take it for granted that
we can do more than one thing at a time.
¤ We continue to work in a word processor, while other applications

download files, manage the print queue, and stream audio.

¤ Even a single application is often expected to do more than one
thing at a time.

Concurrent Programming

¤ The activity described by a computer program can
also be divided into simpler activities (subprograms)

¤ Sequential programs: Subprograms do not overlap in
time, they are executed one after another
¤ In 15-110 we have been writing sequential programs.

¤ Concurrent programs: Subprograms may overlap in
time, their executions proceed concurrently
¤ In 15-110 we will not write concurrent programs but we

will learn about what makes them tricky.

Why Do We Need It?
¤ Everything happens at once in the world. Inevitably,

computers must deal with that world.
¤ For example, traffic control, airline seat reservation, process

control, banking

¤ Performance gain from multiprocessing hardware
¤ For example, Google, Yahoo, divide each query into thousands of

little queries and use thousands of small computers.

¤ For example, a supercomputer with thousands of processors can
compute a weather prediction much faster than a single
processor.

¤ Increased application throughput for applications sharing
computational resources. Throughput is the amount of work
that a computer can do in a given time period.
¤ When one application is waiting for I/O another can continue its

execution.

Caution

¤ The advantages of concurrency may be offset by the
increased complexity of concurrent programs.
¤ We will be giving some examples of what may go wrong in

concurrent programming.

¤ Notorious cases of erroneous concurrent software:
¤ Therac-25 computerized radiation therapy machine

¤ Mars Rover “Spirit”

DIFFERENT FLAVORS OF
CONCURRENCY

A Useful Abstraction: Process

¤ Process: A program in execution
¤ Program along with its data in memory, open files, open

communication channels etc.

¤ Concurrency involves multiple processes running
simultaneously on multiple processors or on a single
processor time-sharing the processor.

Sharing a Processor

If only one processor (CPU) is available, the only way to run
multiple processes is by switching between them.

Only one process is using the CPU at a given time even though
they look like they are running in parallel to an observer.

Process 1:

Process 2:

run run run

run run

time

Scheduling

The order in which the steps are run is determined by a
scheduler. There are many possibilities.

Process 1:

Process 2:

run run run

run run

time

Process 1:

Process 2:

run run run

run run

Multiple Processors

If you have multiple CPUs, you may execute multiple
processes in parallel (simultaneously). Really!

Process 1:

Process 2:

run run run

run run run

on processor 1

on processor 2

time

Sharing Memory

• Processes may share
resources such as
memory

• For example, only one
processor at a time
may execute an
instruction that touches
the shared memory.
The memory hardware
makes the others wait.

Process 1

Private
memory1

Process 2

Shared Memory
BLO

CKED
Program1

Private
memory2

Program2

13

Shared memory
can be used for
communication
between processes

Distributed Computing

Processes may run on distributed systems
¤ For example, a cluster of workstations,

communicating via sockets

runProcess 1:

Process 2:

run

run runrun

communication
by message passing

Some steps are executed simultaneously but
some are dependent on another

CONCURRENT PROGRAMMING

“Thinking Parallel”
¤ Hardware supports parallelism. Nowadays, we have multiple processors

in most computing environments such as multicore machines, clusters.

¤ Programmers do not always support parallelism. Algorithms do not fully
utilize parallelism provided by hardware.

¤ Many programming languages offer “multithreading” libraries to support
concurrent programming:
¤ Structuring programs where there are logically separate, naturally

independent control flows.
¤ What is really needed is development of new languages that will enable

programmers to express parallel algorithm designs.

¤ We will not focus on parallel algorithms. We will focus on issues that
arise from concurrent execution of sequential processes that cooperate
to achieve a common goal.

Threads

¤ What most programmers think of when they hear about
concurrent programming today.

¤ We will use Python threads to illustrate some challenges
with concurrent programming.

¤ Thread: a (somewhat) independent computation running
inside a program

¤ Shares resources with the main program (memory, files,
network connections etc.)

>>> python3 -i example.py

statement

statement

statement

Thread Basics

Python launches the “main” thread
of the program. Control flows from
one statement to another.

Thread Basics

>>> python3 -i example.py

statement

statement

create thread(foo)

def foo():
statement
statement
…

Assume that foo is a
function that has already
been defined.

>>> python3 -i example.py

statement

statement

create thread(foo) statement

statement statement

statement ... statement

... ...

Thread Basics

Concurrent execution of the “main”
thread and the function foo()

Statements from
the function foo

>>> python3 -i example.py

statement

statement

create thread(foo) statement

statement statement

statement statement

... ...

return/exit

Thread Basics

Thread is like a “process” that runs
independently inside a program

Functions as Threads

The Python module threading allows you to create
Thread objects or use functions as threads.

Below is a function that is used as a thread.

import threading

def countdown(count):
while count != 0:

count = count-1
return

t1= threading.Thread(target=countdown, args=(10,))
t1.start()
do your own thing
t1.join()

Joining a Thread

¤ Once you start a thread it runs independently.

¤ Use t.join() to wait for a thread t to exit

t.start() # launch a thread t

do other work
...

wait for thread t to finish and exit
t.join()

Access to Shared Data

¤ Threads share all of the data in your program.

¤We cannot assume anything about scheduling
(the order of steps in an execution).

¤Operations that we think of as a single step are
often non-atomic (take several steps and might
be interrupted).

Thread Scheduling

Thread 1:

Thread 2:

run run run

run run

time

Thread 1:

Thread 2:

run run run

run run

Thread 1 and Thread 2 are separate threads.

We cannot
assume anything
about when these
switches will occur.

The dashed lines
indicate the
points in time at
which a switch
occurs.

Threads Sharing Data

¤Consider a shared resource (variable x in
this example)

x = 0

Thread 1 Thread 2
... ...

x = x + 1 x = x - 1

... ...

Example
import threading
x = 0
def inc():

global x
for i in range(1000000):

x = x + 1

def dec():
global x
for i in range(1000000):

x = x - 1

t1 = threading.Thread(target = inc)
t2 = threading.Thread(target = dec)
t1.start()
t2.start()
t1.join()
t2.join()
print(x)

Example
import threading
x = 0
def inc():

global x
for i in range(1000000):

x = x + 1

def dec():
global x
for i in range(1000000):

x = x - 1

t1 = threading.Thread(target = inc)
t2 = threading.Thread(target = dec)
t1.start()
t2.start()
t1.join()
t2.join()
print(x)

Caution: Global variables should
be used sparingly. They can be
modified and read in a variety of
places in the code. They make it
hard to read, test and debug
code.

Example
import threading
x = 0
def inc():

global x
for i in range(1000000):

x = x + 1

def dec():
global x
for i in range(1000000):

x = x - 1

t1 = threading.Thread(target = inc)
t2 = threading.Thread(target = dec)
t1.start()
t2.start()
t1.join()
t2.join()
print(x)

Run it several times. It may produce
a different number each time.
Why?

Low-level Atomic Steps

Thread 1 Thread 2

... ...

x = x + 1 x = x - 1

... ...

Low-level interpreter execution:

Thread 1 Thread 2

Load_global x Load_global x

Load_const 1 Load_const 1

Add Subtract

Store_global x Store_global x

We thought of addition and
subtraction as one indivisible
step but Python divided
their execution into smaller steps

Thread 1 Thread 2

x = x + 1 x = x - 1

Thread 1 Thread 2

Load_global x

Load_const 1

switch Load_global x

Load_const 1

Subtract

Store_global x

Add

Store_global x

A Possible Interleaving of Steps

One of several possible
interleavings of steps actually
Took place

Think of starting execution at
a state with x = 0. Can you see
why the final value would be 1,
not 0?

Thread 1 Thread 2

x = x + 1 x = x - 1

Thread 1 Thread 2

Load_global x

Load_const 1

switch Load_global x

Load_const 1

Subtract

Store_global x

Add

Store_global x

Not what the programmer intended

Operations performed on a stale value of x (i.e. 0)
after x has been updated to -1 by Thread 1

¤Knock, Knock
¤Race Condition!

¤Who’s There?

Thread 1 Thread 2

x = x + 1 x = x - 1

Thread 1 Thread 2

Load_global x

Load_const 1

switch Load_global x

Load_const 1

Subtract

Store_global x

Add

Store_global x

Race Condition

Race condition: two or more
threads operating on the same
data object without proper
synchronization

The output is dependent on the
timing of uncontrollable events
such as scheduling decisions of
the underlying system

Concurrent programming is hard.

¤ Only a tiny percentage of practicing programmers can do it.

¤ It requires art and mathematics.
¤ It’s like digital hardware design.
¤ It needs proofs.

¤ Conventional debugging doesn’t work.
¤ If you stop the program to observe, you change the

behavior.
¤ Testing is futile because the number of possible execution

sequences for the same input explodes.

35

Summary

¤ Sequential vs. concurrent programming paradigms
¤ Advantages of using concurrency: utilizing resources more

efficiently, dealing with concurrent events in the
computational environment

¤ Challenges in concurrent programming
¤ Synchronization between different tasks and access to shared

data is a major source of complexity
¤ Need to consider all possible executions
¤ Difficulty of replicating errors

¤We will NOT do any programming with threads. We
looked at it only to illustrate the concepts of process
scheduling, interleaving of actions, and race
conditions.

Concurrency is hard…

Recap
¤ Process: program in execution. Unit of sequential

execution.

¤ We can structure programs so that they can be
executed as a set of concurrent processes
¤ On a single processor

¤ On multiple processors

¤ Processes may coordinate their actions using
¤ Shared memory

¤ Message passing

¤ A race condition is a situation in which multiple
processes read and write a shared data item and the
final result depends on the order of execution.

38

There are many ways to execute two
processes concurrently.

39

S1
S2
S3

S1
S2
S3

S1
S2
S3

S1
S2
S3

S1
S2

S1
S3

S2
S3

S1
S1

S2
S3

S2
S3

S1
S1

S2
S2

S3
S3

S1
S2

S1
S2
S3

S3

S1
S2

S1
S2

S3
S3

S1
S1
S2

S2
S3

S3

S1
S1
S2

S2
S3

S3

S1
S1
S2
S3

S2
S3

S1
S1
S2
S3

S2
S3

S1
S1
S2

S2
S3

S3

S1
S2
S3

S1
S2
S3

S1
S1

S2
S2
S3

S3

S1
S1
S2

S2
S3

S3

S1
S1

S2
S2
S3

S3

S1
S1

S2
S2

S3
S3

S1
S1

S2
S3

S2
S3

S1
S2

S1
S2
S3

S3

S1
S2

S1
S2

S3
S3

S1
S2

S1
S3

S2
S3

Several possible
interleavings of steps.

The green process executes steps
S1 S2 S3 in the given order.
The blue process executes steps
S1 S2 S3 in the given order.

Assumption

¤ In the rest of the lecture we will use some programs to
illustrate concepts such as race conditions, interference,
and deadlock. For the purposes of this lecture we
assume that a single line of program is executed
atomically: you can think of one line of code as
corresponding to one step in the previous slide whose
execution cannot be broken down into smaller steps.

Critical Sections

¤ Often, a process really needs exclusive access to some
data.

¤ A critical section is a sequence of steps that have exclusive
access to the shared resource

¤ If multiple processes are sharing a resource only one should be
executing its critical region

¤ Real Life Examples where critical sections are needed
¤ Crossing a traffic intersection
¤ A bank with many ATMs

41

Critical Section Example
¤Consider a bank with multiple ATM�s.

¤At one, Mr. J requests a withdrawal of $10.

¤At another, Ms. J requests a withdrawal of
$10 from the same account.

¤The bank�s computer executes:
1. For Mr. J, verify that the balance is big enough.
2. For Ms. J, verify that the balance is big enough.
3. Subtract 10 from the balance for Mr. J.
4. Subtract 10 from the balance for Ms. J.

¤ The balance went negative if it was less than $20!
42

Vocabulary Reminder

• Race condition: A behavior in concurrent processing
where proper functioning depends on the timing of other
uncontrollable events

• A critical section is a piece of code that accesses a
shared resource that must not be concurrently accessed
by more than one process

43

Critical Sections in a Program

What can we do to prevent one processor from entering
the critical section while another is in it?

Critical
Section

Locate the J�s account data
containing the balance

if balance < 10:
error

else:
balance = balance – 10

Dispense $10 from ATM

44

Process
executed
for each
concurrent
request

Careful Driver Method:
Don�t enter the
intersection unless it’s
empty.

free = True #initially unlockedIn shared memory:

Process 1
while True :

Non-Critical_Section
while not free:

pass
free = False
Critical_Section
free = True

45

Process 2
while True :

Non-Critical_Section
while not free:
pass

free = False
Critical_Section
free = True

Interference is possible!

code that does
not touch
shared memory

code that
touches
shared
memory

free = True #initially unlockedIn shared memory:

Process 1
while True :

Non-Critical_Section
while not free :

pass
free = False
Critical_Section
free = True

46

Process 2
while True :

Non-Critical_Section
while not free :

pass
free = False
Critical_Section
free = True

If these two processes leave their non-critical sections
at precisely the same time, then strictly alternate lines,
they will both end up in the Critical_Section.

Careful Driver Method:
Don�t enter the
intersection unless it�s
empty.

Computers vs. Real Life

¤ The careful driver method works in real life because
¤ The number of times in your life you cross the intersection is low.

Twice a day for forty years is about 29,000.
¤ The chance of two drivers arriving at the intersection

simultaneously is low.
¤ Cars move slowly enough that if you don�t see anyone coming,

you’ll get across before anyone comes.

47

The Stop Sign Method

1. Signal your intention (by stopping).
2. Wait until cross road has no one waiting or
crossing.
3. Cross intersection.
4. Renounce intention (by leaving intersection).

48

Process 0
while True :

Non-Critical_Section
free0 = False
while not free1 :

pass
Critical_Section
free0 = True

Shared Memory
free0 = True # P0 is not stopped at sign
free1 = True # P1 is not stopped at sign

The Stop and Look Method

Process 1
while True :

Non-Critical_Section
free1 = False
while not free0:

pass
Critical_Section
free1 = True

49

This version of the code does not suffer from interference. Does it now
guarantee safe execution of the critical section?

Process 0
while True :

Non-Critical_Section
free0 = False
while not free1:

pass
Critical_Section
free0 = True

Shared Memory
free0 = True # P0 is not stopped at sign
free1 = True # P1 is not stopped at sign

The Stop and Look Method

Process 1
while True :

Non-Critical_Section
free1 = False
while not free0:

pass
Critical_Section
free1 = True

50

Once again, if the two processes exit the non-critical section at the
same time and strictly alternate lines they will end up stuck in their
while loops. This is called Deadlock.

Deadlock

¤ Deadlock is the condition when two or more processes are
all waiting for some shared resource, but no process
actually has it to release, so all processes to wait forever
without proceeding.

¤ It�s like gridlock in real traffic.

51

The Stop Sign Method with Tie Breaking

1. Signal your intention (by stopping).
2. Wait until cross road has no one else waiting or crossing.
3. If two of you are both waiting, yield to the car to your

right.
4. Cross intersection.
5. Renounce intention (by leaving intersection).

52

Peterson’s algorithm avoids all
bugs!

53

free0 = True
free1 = True
priority = 0

Process 0
while True :
Non-Critical_Section0
free0 = False
priority = 1
while not free1 and

priority==1:
pass

Critical_Section0
free0 = True

Process 1
while True :
Non-Critical_Section1
free1 = False
priority = 0
while not free0 and

priority==0:
pass

Critical_Section1
free1 = True

Peterson’s algorithm avoids all
bugs!

54

free0 = True
free1 = True
priority = 0

Process 0
while True :
Non-Critical_Section0
free0 = False
priority = 1
while not free1 and

priority==1 :
pass

Critical_Section0
free0 = True

Process 1
while True :
Non-Critical_Section1
free1 = False
priority = 0
while not free0 and

priority==0 :
pass

Critical_Section1
free1 = True

Entrance to the critical section is granted for process P0 if P1
does not want to enter its critical section (free1 == True) or if P1
has given priority to P0 by setting priority to 0 (priority == 0).

A Probabilistic Approach

¤ There is a conceptually easier way to solve
synchronization problem by embracing probable
thinking. We just use the stop sign approach but wait for
a random amount of time when a conflict occurs.

Types of HeisenBugs*
In decreasing order of seriousness:

1. Interference: multiple process in critical section.
2. Deadlock: two processes idle forever, neither entering their

critical or non-critical sections.

3. Starvation: one process needlessly idles forever while the other
stays in its non-critical section.

4. Unfairness: a process has lower priority for no reason.

56

Note: We did not discuss 3 and 4 in detail. You can learn
more about them in the future.

* In computer programming jargon, a heisenbug is a software bug that
seems to disappear or alter its behavior when one attempts to study it.
Source: Wikipedia

Dining Philosophers’ Problem

57

Aristotle Plato

Socrates

Homer

The Dining Philosophers

• Each philosopher thinks for a while, then picks up
his left fork, then picks up his right fork, then eats,
then puts down his left fork, then puts down his
right fork, thinks for a while...
– We assume here that each philosopher thinks and

eats for random times, and a philosopher cannot
be interrupted while he picks up or puts down a
single fork.

• Each fork models a "resource" on a computer
controlled by an OS.

• Original problem was proposed by Edsgar Dijkstra.

58

Dining Philosophers’ Problem

• There are N philosophers.

• Philosopher i does the following:
1. THINK
2. Pick up fork i.
3. Pick up fork (i+1) modulo N.
4. EAT
5. Put down fork i.
6. Put down fork (i+1) modulo N.
7. Go to step 1.

59

Fork 0 Fork 1

Fork 2Fork 3

0
1

2
3

NOTE: (i+1) modulo N = i+1 , if 0 < i < N-1
(i+1) modulo N = 0, if i = N-1

N=4

Dining Philosophers’ Problem
• There are N philosophers.

• Philosopher i does the following:
1. THINK
2. Pick up fork i.
3. Pick up fork (i+1) modulo N.
4. EAT
5. Put down fork i.
6. Put down fork (i+1) modulo N.
7. Go to step 1.

60

Fork 0 Fork 1

Fork 2Fork 3

0
1

2
3

How can deadlock occur here?

N=4

Removing the Deadlock

61

¤ Philosopher i does the following:
1. THINK
2. If i is not equal to N-1:

a. Pick up fork i
b. Pick up fork i + 1

3. If i is equal to N-1:
a. Pick up fork 0
b. Pick up fork N - 1

4. EAT
5. If i is not equal to N-1:

a. Put down fork i
b. Put down fork i + 1

6. If i is equal to N-1:
a. Put down fork 0
b. Put down fork N – 1

7. Go to step 1

This philosopher picks up the right fork first

This philosopher picks up the right fork first

Afterthoughts

62

Some counter-intuitive ideas about bugs and
risks.

This man removed all the traffic lights
and signs!

63

It reduced accidents by 50% and reduced congestion. Pedestrian and driver
anxiety increased.

Why did Jared Diamond sleep under a tree
when his aborigine companion wouldn�t?

There is only a 1/10,000 chance of a particular tree falling on any given night. But
aborigines sleep in the woods every night so if they tempted fate every night for
40 years there is only a 23% chance of not dying that way, i.e. (1-1/10,000)^(40*365) = 0.23.

Why is a 1% chance of a bug biting better
than a 0.1% chance?

¤ If there is a 1% chance of error, the bug will show up during
100 days of testing.

¤ If there is a 0. 1% chance, the bug will show up after three
years when the system is deployed.

65

