
Computer Organization
and Levels of Abstraction



Announcements

¤ Today:
¤ PS 7
¤ Lab 8: Sound Lab tonight – bring machines and 

headphones!
¤ PA 7

¤ Tomorrow: Lab 9

¤ Friday: PS8



Today

¤ (Short) Floating point review

¤ Boolean logic 

¤ Combinational Circuits

¤ Levels of Abstraction



Floating point

__   ________________ ______________________________________
+/- Exponent              Mantissa
1 bit          8 bits                      23 bits

¤ Sign is a 0 or 1

¤ Exponent is an binary integer

¤ Mantissa is a binary fraction     



Floating point

1.0011101 x 201001011

__   ________________ ______________________________________
+/- Exponent              Mantissa
1 bit          8 bits                      23 bits

¤ Sign is a 0 or 1

¤ Exponent is an binary integer

¤ Mantissa is a binary fraction     



Floating point Sign

1.0011101 x 201001011

0_   ________________ ______________________________________
+/- Exponent              Mantissa
1 bit          8 bits                      23 bits

¤ Sign is a 0 or 1



Exponent

1.0011101 x 201001011

¤Exponent 01001011

¤Is an unsigned integer

¤But exponent can be negative – how to distinguish?

¤IEEE-754 specifies a bias:  127

¤This gives us a range of -126 to +127 

¤Makes comparison easier (for large and small values)



Floating point Mantissa

1.0011101 x 201001011

0_ 11001010 0011101_____________   

+/- Exponent              Mantissa
1 bit          8 bits                      23 bits

¤ Pad the mantissa



Floating point Mantissa

1.0011101 x 201001011

0_ 11001010 00111010000000000000000

+/- Exponent              Mantissa
1 bit          8 bits                      23 bits

¤ Pad the mantissa



Floating point Mantissa

1.0011101 x 201001011

011001010 00111010000000000000000



You should be able to

¤ Identify basic gates 

¤ Describe the behavior of a gate or circuit using Boolean 
expressions, truth tables, and logic diagrams 

¤ Transform one Boolean expression into another given the 
laws of Boolean algebra
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Conceptualizing bits and circuits

¤ ON or 1: true

¤ OFF or 0: false

¤ circuit behavior: expressed in Boolean logic or Boolean 
algebra
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Boolean Logic (Algebra)
¤ Computer circuitry  works based on Boolean Logic 

(Boolean Algebra) : operations on True (1) and False (0) 
values. 
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A B A Λ B
(A AND B)
(conjunction)

A ν B
(A OR B)
(disjunction)

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

A ¬¬A
(NOT A)
(negation)

0 1
1 0

• A and B in the table are Boolean variables, AND 
and OR are operations (also called functions).                                                         



Boolean Logic & Truth Tables
¤ Example: You can think of A Ù B below as 15110 is fun and

15110 is useful where A stands for the statement 15110 is fun, B  
stands for the statement 15110 is useful.
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A B A Λ B
(A AND B)
(conjunction)

A ν B
(A OR B)
(disjunction)

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1

A ¬¬A
(NOT A)
(negation)

0 1

1 0



Logic Gates
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A
B

A
B

A Ú B
“OR”

¬ A
“NOT”

A  Ù B
“AND”

¤A gate is a physical device that implements a 
Boolean operator by performing basic 
operations on electrical signals.

¤Nowadays, gates are built from transistors.

Physical behavior of circuits is 
beyond the scope of our course.



Combinational Circuits
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A Ù B

B Ú C

C Ù B

(B Ú C) Ù (C Ù B)

What is Q?   (A Ù B) Ú ((B Ú C) Ù (C Ù B))

AND

AND

AND
OR

OR

The logic states of inputs at any given time determine the state of the outputs.



Truth Table of a Circuit
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A B C Q
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

http://www.allaboutcircuits.com/vol_4/chpt_7/6.html

Q = (A Ù B) Ú ((B Ú C) Ù (C Ù B))

AND

AND

AND

OR

OR

How do I know that there should be 
8 rows in the truth table? 

Describes the relationship between 
inputs and outputs of a device



Truth Table of a Circuit
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A B C Q
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

http://www.allaboutcircuits.com/vol_4/chpt_7/6.html

Q = (A Ù B) Ú ((B Ú C) Ù (C Ù B))

AND

AND

AND

OR

OR

Describes the relationship between 
inputs and outputs of a device



Describing Behavior of Circuits

¤ Boolean expressions

¤ Circuit diagrams

¤ Truth tables
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Equivalent notations



Why manipulate circuits?

¤The design process
¤simplify a complex design for easier 

manufacturing, faster or cooler 
operation, …

¤Boolean algebra helps us find another 
design guaranteed to have same 
behavior
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Logical Equivalence
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A B C Q
0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Q = (A Ù B) Ú ((B Ú C) Ù (C Ù B))

Q = B Ù (A Ú C)

AND

AND

AND

OR

OR

OR
AND

This smaller circuit is logically equivalent
to the one above: they have the same truth table.
By using laws of Boolean Algebra we convert a 
circuit to another equivalent circuit.



Laws for the Logical Operators Ù and Ú
(Similar to � and +)

¤ Commutative: A Ù B = B Ù A A Ú B = B Ú A

¤ Associative: A Ù B Ù C = (A Ù B) Ù C = A Ù (B Ù C)
A Ú B Ú C = (A Ú B) Ú C = A Ú (B Ú C)

¤ Distributive: A Ù (B Ú B) = (A Ù B) Ú (A Ù C)
A Ú (B Ù C) = (A Ú B) Ù (A Ú C)

¤ Identity: A Ù 1 = A A Ú 0 = A

¤ Dominance: A Ù 0 = 0 A Ú 1 = 1

¤ Idempotence: A Ù A = A A Ú A = A

¤ Complementation: A Ù ¬A = 0 A Ú ¬A = 1

¤ Double Negation: ¬ ¬ A = A
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¤ Commutative: A Ù B = B Ù A A Ú B = B Ú A

¤ Associative: A Ù B Ù C = (A Ù B) Ù C = A Ù (B Ù C)
A Ú B Ú C = (A Ú B) Ú C = A Ú (B Ú C)

¤ Distributive: A Ù (B Ú C) = (A Ù B) Ú (A Ù C)
A Ú (B Ù C) = (A Ú B) Ù (A Ú C)

¤ Identity: A Ù 1 = A A Ú 0 = A

……The A’s and B’s here are schematic variables! You can instantiate them with 
any expression that has a Boolean value:

(x Ú y) Ù z = z Ù (x Ú y) (by commutativity)

A     Ù B = B Ù A

Not true for
+ and �

Laws for the Logical Operators Ù and Ú
(Similar to � and +)



Showing (x Ù y) Ú ((y Ú z) Ù (z Ù y)) = y Ù (x or z)
Commutativity A Ù B = B Ù A

(x Ù y) Ú ((z Ù y) Ù (y Ú z)) 
Distributivity A Ù (B Ú C) = (A Ù B) Ú (A Ù C)     

(x Ù y) Ú (z Ù y Ù y) Ú(z Ù y Ù z)
Associativity,  Commutativity, Idempotence

(x Ù y) Ú ((z Ù y) Ú (y Ù z))
Commutativity,  idempotence A Ù A = A

( y Ù x) Ú (y   Ù z)
Distributivity (backwards) (A Ù B) Ú (A Ù C) = A Ù (B Ú C)

y Ù (x Ú z)
Conclusion:

(x Ù y) Ú ((y Ú z) Ù (z Ù y)) = y Ù (x Ú z)

Applying Properties for Ù and Ú



Extending the system
more gates and DeMorgan’s laws

25



More gates (NAND, NOR, XOR)
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A B A nand
B

A nor B A xor B

0 0 1 1 0
0 1 1 0 1
1 0 1 0 1
1 1 0 0 0

¤ nand (“not and”): A nand B = not (A and B)

¤ nor (“not or”): A nor B = not (A or B)

¤ xor (“exclusive or”): 
A xor B = (A and not B) or (B and not A)

A
B

A
B

A
B

¬(A Ù B)

¬(A Ú B)

A Å B



A curious fact

¤Functional Completeness of NAND and NOR
¤Any logical circuit can be implemented using 

NAND gates only

¤Same applies to NOR



DeMorgan’s Law

Nand:    ¬(A Ù B) = ¬A Ú ¬B

Nor:       ¬(A Ú B) = ¬A Ù ¬B
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DeMorgan’s Law

Nand:    ¬(A Ù B) = ¬A Ú ¬B
if not (x > 15 and x < 110):  ...
is logically equivalent to
if (not x > 15) or (not x < 110): ...

Nor:       ¬(A Ú B) = ¬A Ù ¬B
if not (x < 15 or x > 110): ...
is logically equivalent to
if (not x < 15) and (not x > 110): ...
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A circuit for parity checking
Boolean expressions and circuits

30



The circuit

3-bit odd parity checker
P = (¬A Ù ¬BÙ C) Ú (¬A Ù B Ù ¬C) Ú (A Ù ¬BÙ ¬C) Ú (A Ù B Ù C)

A B C P
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1



The circuit

3-bit odd parity checker
P = (¬A Ù ¬BÙ C) Ú (¬A Ù B Ù ¬C) Ú (A Ù ¬BÙ ¬C) Ú (A Ù B Ù C)

A B C P
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

There are specific methods for obtaining 
canonical Boolean expressions from a 
truth table, such as writing it as a disjunction of 
conjunctions or as a conjunction of 
disjunctions.  

Note we have four subexpressions above 
each of them corresponding to exactly one 
row of the  truth table where P is 1.



The circuit

3-bit odd parity checker
P = (¬A Ù ¬BÙ C) Ú (¬A Ù B Ù ¬C) Ú (A Ù ¬BÙ ¬C) Ú (A Ù B Ù C)
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A B C P
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

A

B

C
P

P = (A Å B) Å C



Circuits for arithmetic



Adding Binary Numbers

A:       0 0 1 1

B:       0 1             0 1

--- --- --- ---

0 1              1 1 0
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A
B Sum

Adding two 1-bit numbers 
without taking the carry into 
account 

How can we handle the carry?

Sum = A Å B



Adding Binary Numbers

A:       0 0 1 1

B:       0 1             0 1

--- --- --- ---

0 1             1 1 0
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A
B Sum

Carry

Half Adder: adds 
two single digits



A Full Adder

A

B

SCout

Cin A B Cin Cout S

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0
1 1 1



A Full Adder
A B Cin Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0
1 1 1 1 1

A

B

SCout

S = A Å B Å Cin
Cout = ((A Å B) Ù Cin) Ú (A Ù B) 

Cin



A Full Adder

A

B

SCout

S = A Å B Å Cin
Cout = ((A Å B) Ù Cin) Ú (A Ù B) 

S: 1 when there is an odd 
number of  bits that are 1

C out : 1 if  both A and B are 1 or, 
one of  the bits and the carry in 
are 1.

Cin A B Cin Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1



Full Adder (FA)

1-bit
Full

Adder

A B

CinCout

S

S = A Å B Å Cin
Cout = ((A Å B) Ù Cin) Ú (A Ù B) 

More abstract 
representation 
of the above circuit. 
Hides details of the 
circuit above.



8-bit Full Adder

1-bit
Full

Adder

A0 B0

Cin

S0

1-bit
Full

Adder

A1 B1

S1

1-bit
Full

Adder

A7 B7

Cout

S7

1-bit
Full

Adder

A2 B2

S2

...

8-bit
FA

A B

CinCout

S

8  ⁄ ⁄ 8

⁄ 8

More abstract 
representation 
of the above circuit. 
Hides details of the 
circuit above.



Control Circuits

¤In addition to circuits for basic logical and 
arithmetic operations, there are also circuits 
that determine the order in which operations 
are carried out and to select the correct data 
values to be processed.



Multiplexer (MUX)

44

http://www.cise.ufl.edu/~mssz/CompOrg/CDAintro.html

¤ A multiplexer chooses one of  its inputs.

2n input lines, n selector lines,  and 1 output line 

A B F
0 0 D1
0 1 D2
1 0 D3
1 1 D4

D3
MUX

A B

F
D1
D2

D4

hides details of the
circuit on the left



Arithmetic Logic Unit (ALU)
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OP1OP0

http://cs-alb-pc3.massey.ac.nz/notes/59304/l4.html

OP0 OP1 F

0 0 A Ù B

0 1 A Ú B

1 0 A

1 1 A + B

Carry In & OP

Depending on the OP code Mux chooses 
the result of  one of  the functions (and, or, identity, addition)



Building A Complete Computer 
from Parts
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Computing Machines

¤An instruction is a single arithmetic or logical 
operation. 

¤A program is a sequence of  instructions that causes 
the desired function to be calculated.

¤A computing system is a combination of  program 
and machine (computer). 

¤How can we build a computing system that calculates 
the desired function specified by a program?



Stored Program Computer
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http://cse.iitkgp.ac.in/pds/notes/intro.html

A stored program computer is electronic hardware 
that implements an instruction set.   



Von Neumann Architecture

¤Big idea: Data and instructions to manipulate 
the data are both bit sequences

¤Modern computers built according to the Von 
Neumann Architecture includes separate units
¤To process information (CPU): reads and executes 

instructions of  a program in the order prescribed by 
the program

¤To store information  (memory)  
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Stored Program Computer
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http://cse.iitkgp.ac.in/pds/notes/intro.html

adder, multiplier, 
multiplexor, etc.

small amount 
of memory in 
the CPU



Central Processing Unit (CPU)

¤A CPU contains:
¤ Arithmetic Logic Unit to perform computation
¤ Registers to hold information

¤ Instruction register (current instruction being executed)
¤ Program counter (to hold location of  next instruction in memory)
¤ Accumulator (to hold computation result from ALU)
¤ Data register(s) (to hold other important data for future use)

¤ Control unit to regulate flow of  information and operations 
that are performed at each instruction step
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Memory

¤The simplest unit of  storage is a bit (1 or 0). Bits are 
grouped into bytes (8 bits).

¤Memory is a collection of  cells each with a unique 
physical address.
¤ We use the generic term cell rather than byte or word because 

the number of  bits in each addressable location varies from 
machine one machine to another.  

¤ A machine that can generate, for example, 32-bit addresses, 
can utilize a memory that contains up to 232 memory cells.
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Memory Layout
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Content

50
42
85
71
99

104:
108:

100:

112:
116:

Address

We saw this picture in Unit 6. 
It hid the bit representation 
for readability. Assumes that 
memory is  byte  addressable 
and each integer occupies 4 
bytes .

Content
… 01100100
… 01010100
… 01010101
… 01000111
… 01100011

01101000:
01101100:

01100100:

01110000:
01110100:

Address

In this picture and in reality, 
addresses  and memory 
contents are sequences of bits.   



Stored Program Computer

adder, multiplier, 
multiplexor, Etc.

instruction fetch, 
decode,
execute

program counter,
instruction register, 

Etc.

Two specialized registers: the instruction register holds the current instruction to 
be  executed and the program counter contains the address of the next 
instruction to be executed.



Processing Instructions

¤Both data and instructions are stored in memory as bit 
patterns
¤ Instructions stored in contiguous memory locations
¤ Data stored in a different part of  memory

¤The address of  the first instruction is loaded into 
the program counter and and the processing cycle 
starts.
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Fetch-Decode-Execute Cycle

¤Modern computers include control logic that 
implements the fetch-decode-execute cycle 
introduced by John von Neumann:
¤ Fetch next instruction from memory into the instruction 

register.
¤ Decode instruction to a control signal and get any data it 

needs (possibly from memory).
¤ Execute instruction with data in ALU and store results 

(possibly into memory).
¤ Repeat.
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Note that all of  these steps are implemented with circuits of  the kind we have seen in this unit.



Power of abstraction



Using Abstraction in Computer Design
¤ We can use layers of  abstraction to hide details of  the computer 

design.

¤ We can work in any layer, not needing to know how the lower 
layers work or how the current layer fits into the larger system.

transistors 
gates 
circuits (adders, multiplexors … )
central processing units (ALU, registers …)
computer

¤ A component at a higher abstraction  layer uses components from a 
lower abstraction  layer without having to know the details of  how it is 
built. It only needs to know what  it does.
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Low

High



Abstraction in Programming

¤ The set of  all operations that can be executed by a processor is 
called its instruction set.

¤ Instructions are built into hardware: electronics of  the CPU 
recognize binary representations of  the specific instructions. That 
means each CPU has its own machine language that it understands.

¤ But we can write programs without thinking about on what 
machine our program will run.  This is because we can write 
programs in high-level languages that are abstractions of  machine 
level instructions.
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A High-Level Program

# This programs displays “Hello, 
World!”

print(“Hello world!”)



A Low-Level Program



Obtaining Machine Language 
Instructions

¤Programs are typically written in higher-level 
languages and then translated into machine 
language (executable code).  

¤A compiler is a program that translates code 
written in one language  into another language.

¤An interpreter translates the instructions one line 
at a time into something that can be executed by 
the computer’s hardware.
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Summary

¤A computing system is a combination of  
program and machine (computer).  In this 
lecture, we focused on how a machine can be 
designed using levels of  abstraction:

gates à circuits for elementary operations à
basic processing units à computer


