
Computer Organization
and Levels of Abstraction

Announcements

¤ Today:
¤ PS 7
¤ Lab 8: Sound Lab tonight – bring machines and

headphones!
¤ PA 7

¤ Tomorrow: Lab 9

¤ Friday: PS8

Today

¤ (Short) Floating point review

¤ Boolean logic

¤ Combinational Circuits

¤ Levels of Abstraction

Floating point

__ ________________ ______________________________________
+/- Exponent Mantissa
1 bit 8 bits 23 bits

¤ Sign is a 0 or 1

¤ Exponent is an binary integer

¤ Mantissa is a binary fraction

Floating point

1.0011101 x 201001011

__ ________________ ______________________________________
+/- Exponent Mantissa
1 bit 8 bits 23 bits

¤ Sign is a 0 or 1

¤ Exponent is an binary integer

¤ Mantissa is a binary fraction

Floating point Sign

1.0011101 x 201001011

0_ ________________ ______________________________________
+/- Exponent Mantissa
1 bit 8 bits 23 bits

¤ Sign is a 0 or 1

Exponent

1.0011101 x 201001011

¤Exponent 01001011

¤Is an unsigned integer

¤But exponent can be negative – how to distinguish?

¤IEEE-754 specifies a bias: 127

¤This gives us a range of -126 to +127

¤Makes comparison easier (for large and small values)

Floating point Mantissa

1.0011101 x 201001011

0_ 11001010 0011101_____________

+/- Exponent Mantissa
1 bit 8 bits 23 bits

¤ Pad the mantissa

Floating point Mantissa

1.0011101 x 201001011

0_ 11001010 00111010000000000000000

+/- Exponent Mantissa
1 bit 8 bits 23 bits

¤ Pad the mantissa

Floating point Mantissa

1.0011101 x 201001011

011001010 00111010000000000000000

You should be able to

¤ Identify basic gates

¤ Describe the behavior of a gate or circuit using Boolean
expressions, truth tables, and logic diagrams

¤ Transform one Boolean expression into another given the
laws of Boolean algebra

11

Conceptualizing bits and circuits

¤ ON or 1: true

¤ OFF or 0: false

¤ circuit behavior: expressed in Boolean logic or Boolean
algebra

12

Boolean Logic (Algebra)
¤ Computer circuitry works based on Boolean Logic

(Boolean Algebra) : operations on True (1) and False (0)
values.

13

A B A Λ B
(A AND B)
(conjunction)

A ν B
(A OR B)
(disjunction)

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

A ¬¬A
(NOT A)
(negation)

0 1
1 0

• A and B in the table are Boolean variables, AND
and OR are operations (also called functions).

Boolean Logic & Truth Tables
¤ Example: You can think of A Ù B below as 15110 is fun and

15110 is useful where A stands for the statement 15110 is fun, B
stands for the statement 15110 is useful.

14

A B A Λ B
(A AND B)
(conjunction)

A ν B
(A OR B)
(disjunction)

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1

A ¬¬A
(NOT A)
(negation)

0 1

1 0

Logic Gates

15

A
B

A
B

A Ú B
“OR”

¬ A
“NOT”

A Ù B
“AND”

¤A gate is a physical device that implements a
Boolean operator by performing basic
operations on electrical signals.

¤Nowadays, gates are built from transistors.

Physical behavior of circuits is
beyond the scope of our course.

Combinational Circuits

16

A Ù B

B Ú C

C Ù B

(B Ú C) Ù (C Ù B)

What is Q? (A Ù B) Ú ((B Ú C) Ù (C Ù B))

AND

AND

AND
OR

OR

The logic states of inputs at any given time determine the state of the outputs.

Truth Table of a Circuit

17

A B C Q
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

http://www.allaboutcircuits.com/vol_4/chpt_7/6.html

Q = (A Ù B) Ú ((B Ú C) Ù (C Ù B))

AND

AND

AND

OR

OR

How do I know that there should be
8 rows in the truth table?

Describes the relationship between
inputs and outputs of a device

Truth Table of a Circuit

18

A B C Q
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

http://www.allaboutcircuits.com/vol_4/chpt_7/6.html

Q = (A Ù B) Ú ((B Ú C) Ù (C Ù B))

AND

AND

AND

OR

OR

Describes the relationship between
inputs and outputs of a device

Describing Behavior of Circuits

¤ Boolean expressions

¤ Circuit diagrams

¤ Truth tables

19

Equivalent notations

Why manipulate circuits?

¤The design process
¤simplify a complex design for easier

manufacturing, faster or cooler
operation, …

¤Boolean algebra helps us find another
design guaranteed to have same
behavior

20

Logical Equivalence

21

A B C Q
0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Q = (A Ù B) Ú ((B Ú C) Ù (C Ù B))

Q = B Ù (A Ú C)

AND

AND

AND

OR

OR

OR
AND

This smaller circuit is logically equivalent
to the one above: they have the same truth table.
By using laws of Boolean Algebra we convert a
circuit to another equivalent circuit.

Laws for the Logical Operators Ù and Ú
(Similar to � and +)

¤ Commutative: A Ù B = B Ù A A Ú B = B Ú A

¤ Associative: A Ù B Ù C = (A Ù B) Ù C = A Ù (B Ù C)
A Ú B Ú C = (A Ú B) Ú C = A Ú (B Ú C)

¤ Distributive: A Ù (B Ú B) = (A Ù B) Ú (A Ù C)
A Ú (B Ù C) = (A Ú B) Ù (A Ú C)

¤ Identity: A Ù 1 = A A Ú 0 = A

¤ Dominance: A Ù 0 = 0 A Ú 1 = 1

¤ Idempotence: A Ù A = A A Ú A = A

¤ Complementation: A Ù ¬A = 0 A Ú ¬A = 1

¤ Double Negation: ¬ ¬ A = A

22

¤ Commutative: A Ù B = B Ù A A Ú B = B Ú A

¤ Associative: A Ù B Ù C = (A Ù B) Ù C = A Ù (B Ù C)
A Ú B Ú C = (A Ú B) Ú C = A Ú (B Ú C)

¤ Distributive: A Ù (B Ú C) = (A Ù B) Ú (A Ù C)
A Ú (B Ù C) = (A Ú B) Ù (A Ú C)

¤ Identity: A Ù 1 = A A Ú 0 = A

……The A’s and B’s here are schematic variables! You can instantiate them with
any expression that has a Boolean value:

(x Ú y) Ù z = z Ù (x Ú y) (by commutativity)

A Ù B = B Ù A

Not true for
+ and �

Laws for the Logical Operators Ù and Ú
(Similar to � and +)

Showing (x Ù y) Ú ((y Ú z) Ù (z Ù y)) = y Ù (x or z)
Commutativity A Ù B = B Ù A

(x Ù y) Ú ((z Ù y) Ù (y Ú z))
Distributivity A Ù (B Ú C) = (A Ù B) Ú (A Ù C)

(x Ù y) Ú (z Ù y Ù y) Ú(z Ù y Ù z)
Associativity, Commutativity, Idempotence

(x Ù y) Ú ((z Ù y) Ú (y Ù z))
Commutativity, idempotence A Ù A = A

(y Ù x) Ú (y Ù z)
Distributivity (backwards) (A Ù B) Ú (A Ù C) = A Ù (B Ú C)

y Ù (x Ú z)
Conclusion:

(x Ù y) Ú ((y Ú z) Ù (z Ù y)) = y Ù (x Ú z)

Applying Properties for Ù and Ú

Extending the system
more gates and DeMorgan’s laws

25

More gates (NAND, NOR, XOR)

26

A B A nand
B

A nor B A xor B

0 0 1 1 0
0 1 1 0 1
1 0 1 0 1
1 1 0 0 0

¤ nand (“not and”): A nand B = not (A and B)

¤ nor (“not or”): A nor B = not (A or B)

¤ xor (“exclusive or”):
A xor B = (A and not B) or (B and not A)

A
B

A
B

A
B

¬(A Ù B)

¬(A Ú B)

A Å B

A curious fact

¤Functional Completeness of NAND and NOR
¤Any logical circuit can be implemented using

NAND gates only

¤Same applies to NOR

DeMorgan’s Law

Nand: ¬(A Ù B) = ¬A Ú ¬B

Nor: ¬(A Ú B) = ¬A Ù ¬B

28

DeMorgan’s Law

Nand: ¬(A Ù B) = ¬A Ú ¬B
if not (x > 15 and x < 110): ...
is logically equivalent to
if (not x > 15) or (not x < 110): ...

Nor: ¬(A Ú B) = ¬A Ù ¬B
if not (x < 15 or x > 110): ...
is logically equivalent to
if (not x < 15) and (not x > 110): ...

29

A circuit for parity checking
Boolean expressions and circuits

30

The circuit

3-bit odd parity checker
P = (¬A Ù ¬BÙ C) Ú (¬A Ù B Ù ¬C) Ú (A Ù ¬BÙ ¬C) Ú (A Ù B Ù C)

A B C P
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

The circuit

3-bit odd parity checker
P = (¬A Ù ¬BÙ C) Ú (¬A Ù B Ù ¬C) Ú (A Ù ¬BÙ ¬C) Ú (A Ù B Ù C)

A B C P
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

There are specific methods for obtaining
canonical Boolean expressions from a
truth table, such as writing it as a disjunction of
conjunctions or as a conjunction of
disjunctions.

Note we have four subexpressions above
each of them corresponding to exactly one
row of the truth table where P is 1.

The circuit

3-bit odd parity checker
P = (¬A Ù ¬BÙ C) Ú (¬A Ù B Ù ¬C) Ú (A Ù ¬BÙ ¬C) Ú (A Ù B Ù C)

33

A B C P
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

A

B

C
P

P = (A Å B) Å C

Circuits for arithmetic

Adding Binary Numbers

A: 0 0 1 1

B: 0 1 0 1

--- --- --- ---

0 1 1 1 0

36

A
B Sum

Adding two 1-bit numbers
without taking the carry into
account

How can we handle the carry?

Sum = A Å B

Adding Binary Numbers

A: 0 0 1 1

B: 0 1 0 1

--- --- --- ---

0 1 1 1 0

37

A
B Sum

Carry

Half Adder: adds
two single digits

A Full Adder

A

B

SCout

Cin A B Cin Cout S

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0
1 1 1

A Full Adder
A B Cin Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0
1 1 1 1 1

A

B

SCout

S = A Å B Å Cin
Cout = ((A Å B) Ù Cin) Ú (A Ù B)

Cin

A Full Adder

A

B

SCout

S = A Å B Å Cin
Cout = ((A Å B) Ù Cin) Ú (A Ù B)

S: 1 when there is an odd
number of bits that are 1

C out : 1 if both A and B are 1 or,
one of the bits and the carry in
are 1.

Cin A B Cin Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Full Adder (FA)

1-bit
Full

Adder

A B

CinCout

S

S = A Å B Å Cin
Cout = ((A Å B) Ù Cin) Ú (A Ù B)

More abstract
representation
of the above circuit.
Hides details of the
circuit above.

8-bit Full Adder

1-bit
Full

Adder

A0 B0

Cin

S0

1-bit
Full

Adder

A1 B1

S1

1-bit
Full

Adder

A7 B7

Cout

S7

1-bit
Full

Adder

A2 B2

S2

...

8-bit
FA

A B

CinCout

S

8 ⁄ ⁄ 8

⁄ 8

More abstract
representation
of the above circuit.
Hides details of the
circuit above.

Control Circuits

¤In addition to circuits for basic logical and
arithmetic operations, there are also circuits
that determine the order in which operations
are carried out and to select the correct data
values to be processed.

Multiplexer (MUX)

44

http://www.cise.ufl.edu/~mssz/CompOrg/CDAintro.html

¤ A multiplexer chooses one of its inputs.

2n input lines, n selector lines, and 1 output line

A B F
0 0 D1
0 1 D2
1 0 D3
1 1 D4

D3
MUX

A B

F
D1
D2

D4

hides details of the
circuit on the left

Arithmetic Logic Unit (ALU)

45

OP1OP0

http://cs-alb-pc3.massey.ac.nz/notes/59304/l4.html

OP0 OP1 F

0 0 A Ù B

0 1 A Ú B

1 0 A

1 1 A + B

Carry In & OP

Depending on the OP code Mux chooses
the result of one of the functions (and, or, identity, addition)

Building A Complete Computer
from Parts

46

Computing Machines

¤An instruction is a single arithmetic or logical
operation.

¤A program is a sequence of instructions that causes
the desired function to be calculated.

¤A computing system is a combination of program
and machine (computer).

¤How can we build a computing system that calculates
the desired function specified by a program?

Stored Program Computer

48

http://cse.iitkgp.ac.in/pds/notes/intro.html

A stored program computer is electronic hardware
that implements an instruction set.

Von Neumann Architecture

¤Big idea: Data and instructions to manipulate
the data are both bit sequences

¤Modern computers built according to the Von
Neumann Architecture includes separate units
¤To process information (CPU): reads and executes

instructions of a program in the order prescribed by
the program

¤To store information (memory)

49

Stored Program Computer

50

http://cse.iitkgp.ac.in/pds/notes/intro.html

adder, multiplier,
multiplexor, etc.

small amount
of memory in
the CPU

Central Processing Unit (CPU)

¤A CPU contains:
¤ Arithmetic Logic Unit to perform computation
¤ Registers to hold information

¤ Instruction register (current instruction being executed)
¤ Program counter (to hold location of next instruction in memory)
¤ Accumulator (to hold computation result from ALU)
¤ Data register(s) (to hold other important data for future use)

¤ Control unit to regulate flow of information and operations
that are performed at each instruction step

51

Memory

¤The simplest unit of storage is a bit (1 or 0). Bits are
grouped into bytes (8 bits).

¤Memory is a collection of cells each with a unique
physical address.
¤ We use the generic term cell rather than byte or word because

the number of bits in each addressable location varies from
machine one machine to another.

¤ A machine that can generate, for example, 32-bit addresses,
can utilize a memory that contains up to 232 memory cells.

52

Memory Layout

53

Content

50
42
85
71
99

104:
108:

100:

112:
116:

Address

We saw this picture in Unit 6.
It hid the bit representation
for readability. Assumes that
memory is byte addressable
and each integer occupies 4
bytes .

Content
… 01100100
… 01010100
… 01010101
… 01000111
… 01100011

01101000:
01101100:

01100100:

01110000:
01110100:

Address

In this picture and in reality,
addresses and memory
contents are sequences of bits.

Stored Program Computer

adder, multiplier,
multiplexor, Etc.

instruction fetch,
decode,
execute

program counter,
instruction register,

Etc.

Two specialized registers: the instruction register holds the current instruction to
be executed and the program counter contains the address of the next
instruction to be executed.

Processing Instructions

¤Both data and instructions are stored in memory as bit
patterns
¤ Instructions stored in contiguous memory locations
¤ Data stored in a different part of memory

¤The address of the first instruction is loaded into
the program counter and and the processing cycle
starts.

55

Fetch-Decode-Execute Cycle

¤Modern computers include control logic that
implements the fetch-decode-execute cycle
introduced by John von Neumann:
¤ Fetch next instruction from memory into the instruction

register.
¤ Decode instruction to a control signal and get any data it

needs (possibly from memory).
¤ Execute instruction with data in ALU and store results

(possibly into memory).
¤ Repeat.

56

Note that all of these steps are implemented with circuits of the kind we have seen in this unit.

Power of abstraction

Using Abstraction in Computer Design
¤ We can use layers of abstraction to hide details of the computer

design.

¤ We can work in any layer, not needing to know how the lower
layers work or how the current layer fits into the larger system.

transistors
gates
circuits (adders, multiplexors …)
central processing units (ALU, registers …)
computer

¤ A component at a higher abstraction layer uses components from a
lower abstraction layer without having to know the details of how it is
built. It only needs to know what it does.

58

Low

High

Abstraction in Programming

¤ The set of all operations that can be executed by a processor is
called its instruction set.

¤ Instructions are built into hardware: electronics of the CPU
recognize binary representations of the specific instructions. That
means each CPU has its own machine language that it understands.

¤ But we can write programs without thinking about on what
machine our program will run. This is because we can write
programs in high-level languages that are abstractions of machine
level instructions.

59

A High-Level Program

This programs displays “Hello,
World!”

print(“Hello world!”)

A Low-Level Program

Obtaining Machine Language
Instructions

¤Programs are typically written in higher-level
languages and then translated into machine
language (executable code).

¤A compiler is a program that translates code
written in one language into another language.

¤An interpreter translates the instructions one line
at a time into something that can be executed by
the computer’s hardware.

62

Summary

¤A computing system is a combination of
program and machine (computer). In this
lecture, we focused on how a machine can be
designed using levels of abstraction:

gates à circuits for elementary operations à
basic processing units à computer

