Computer Organization:
Boolean Logic

CMON



Representing and Manipulating Dato

Last Unit This Unit
How to represent data as o How sequences of bifs are
sequence of bits implemented using

electrical signals, and

How fo interpret bit manipulated by circuits

representations

Use of levels of abstraction Use of levels of abstraction

in representing more iNn designing more complex
complex information computer component s
(music, pictures) using from simpler components
simpler building blocks

(numbers)



Foundations

Boolean logic is the logic of digital circuits



Implementing Bits

Computers compute by manipulating electricity
according to specific rules.

We associate electrical signals inside the machine with
bits. Any electrical device with two distinct states (e.g.
on/off switch, two distinct voltage or current levels) could
implement our bits.

The rules are implemented by electrical circuits.



Conceptualizing bits and circuifs

ON or 1: true

OFF or 0: false

circuit behavior: expressed in Boolean logic or Boolean
algebra



Boolean Logic (Algebra)

Computer circuitry works based on Boolean Logic

(Boolean Algebra) : operations on True (1) and False (0)
values.

0 0
0 1
1 0
1 1

— O O O

0
1 1 0
1
1

« A and B in the table are Boolean variables, AND
and OR are operations (also called functions).



Foundations of Digital Compuiing

Boolean Algebra was invented by George Boole in 1854
(before digital computers)

O Variables and functions take on only one of two possible values:
True (1) or False (0).

The correspondence between Boolean Logic and circuits
was not discovered until 1930s

O Shannon’s thesis: A Symbolic Analysis of Relay and Switching

Circuits argued that electrical applications of Boolean Algebra
could construct any logical, numerical relationship.

O We forget about the logical (truth and falsehood) aspect of
Boolean logic and just manipulate symbols.



Boolean Logic & Truth Tables

Example: You can think of A A B below as

where A stands for the statement
stands for the statement

— O — O
— O O O
_|_|_|o

and



Logic gates

the basic elements of digital circuits



Logic Gates

A gate is a physical device that implements a
Boolean operator by performing basic
operations on electrical signals.

Nowadays, gates are built from transistors.

NMOS OR gate NOT gate Physical behavior of circuits is
beyond the scope of our course.

B —

D28 AD-AE oA

“OR” ‘NOT” =

10



A Mechanical

Implementation
Push-pull logic AND gate

O For an input pushed-in lever represents 1

O For an output pushed-in lever represents O

Source:
randomwraith.com
by Martin Howard




Combinational circults

combinations of logic gates

12



The logic states of inputs at any given time determine the state of the outputs.

A ™~ AAB
AND ‘RN
T Jor
BvC
c ! OR | (Bv C)A(CAB)
i L AND
AND H c . B

What is Q? (AAB)v ((BvC)Aa(CAB))



Truth Table of a Circuit

A ——
BE—e—9 / @7(2

AND

AND

Q=(AAB)v((BvC)A(CAB))

R = = =, O O O O
_ =, O O = B O O
- O O —» O = O

Describes the relationship between
How do | know that there should be inputs and outputs of a device

8 rows in the fruth table?

http://www.allaboutcircuits.com/vol_4/chpt_7/6.html

14



Truth Table of a Circuit

A ——
BE—e—9 / @7(2

AND

AND

Q=(AAB)v((BvC)A(CAB))

R = = =, O O O O
_ =, O O = B O O
- O O —» O = O

Describes the relationship between
inputs and outputs of a device

http://www.allaboutcircuits.com/vol_4/chpt_7/6.html

15



Truth Table of a Circuit

A— \
AND
0

AND

AND

Q=(AAB)v((BvC)A(CAB))

R = = =, O O O O
_ =, O O = B O O
- O O —» O = O

Describes the relationship between
inputs and outputs of a device

http://www.allaboutcircuits.com/vol_4/chpt_7/6.html

16



Truth Table of a Circuit

& AND }
B —Q—O—_J @7 0 0
0
c 0
AND

AND

Q=(AAB)v((BvC)A(CAB))

R = = =, O O O O
_ =, O O = B O O
- O O —» O = O

Describes the relationship between
inputs and outputs of a device

http://www.allaboutcircuits.com/vol_4/chpt_7/6.html

17



Truth Table of a Circuit

A ——
BE—e—9 / @7(2

AND

L O O O

AND

Q=(AAB)v((BvC)A(CAB))

R = = =, O O O O
_ =, O O = B O O
- O O —» O = O

Describes the relationship between
inputs and outputs of a device

http://www.allaboutcircuits.com/vol_4/chpt_7/6.html

18



Truth Table of a Circuit

A ——
BE—e—9 / @7(2

AND

©c r O O O

AND

Q=(AAB)v((BvC)A(CAB))

R = = =, O O O O
_ =, O O = B O O
- O O —» O = O

Describes the relationship between
inputs and outputs of a device

http://www.allaboutcircuits.com/vol_4/chpt_7/6.html

19



Truth Table of a Circuit

A ——
BE—e—9 / @7(2

AND

AND

o O »r O O O

Q=(AAB)v((BvC)A(CAB))

R = = =, O O O O
_ =, O O = B O O
- O O —» O = O

Describes the relationship between
inputs and outputs of a device

http://www.allaboutcircuits.com/vol_4/chpt_7/6.html

20



Truth Table of a Circuit

A ——
BE—e—9 / @7(2

AND

AND

b O O »r O O O

Q=(AAB)v((BvC)A(CAB))

R = = =, O O O O
_ =, O O = B O O
- O O —» O = O

Describes the relationship between
inputs and outputs of a device

http://www.allaboutcircuits.com/vol_4/chpt_7/6.html

21



Truth Table of a Circuit

A ——
BE—e—9 / @7(2

AND

AND

Q=(AAB)v((BvC)A(CAB))

) B Bk, P O O O O
~ B O O P B O O
~ O P O B O + O
B P, O O »r O O O

Describes the relationship between
inputs and outputs of a device

http://www.allaboutcircuits.com/vol_4/chpt_7/6.html

22



Describing Behavior ot Circuits

Boolean expressions
Circuit diagrams Equivalent notations

Truth tables



Manipulating circuits

Boolean algebra and logical equivalence

24



Why manipulate circuitse

The design process

Osimplify a complex design for easier
manufacturing, faster or cooler
operation, ...

Boolean algebra helps us find another
design guaranteed to have same
behavior

25



Logical Equivalence

A — N\
AND
B ——e—e— / @’ Q

AND

AND

Q=(AAB)v((BvC)A(CAB))

!
—_ O —- O — O — O
- — O O — O O O

Can we come up with a simpler circuit implementing the same truth table?
Simpler circuits are typically cheaper to produce, consume less energy etc.

26



Logical Equivalence

A — N\
AND
B ——e—e— / @’ Q

AND

AND

Q=(AAB)v((BvC)A(CAB))

!
—_ O —- O — O — O
- — O O — O O O

AND - Q=B A (AvC)

This smaller circuit is logically equivalent

ki

to the one above: they have the same truth table.

By using laws of Boolean Algebra we convert a
circuit to another equivalent circuit.

27



Laws for the Logical Operators A and v

(Similar to X and +)

Commutative: AAB=BAA AvB=BVA
Associative: AABAC=(AAB)AC=AA(BAC)
AvBvC=(AvB)vC=Av (BvC)
Distributive: AA(BvB)=(AAB)v(AAC)
Av(BAC)=(AVvB)A(AVvC)
ldentity: AAnl=A AvO0=A
Dominance: AAO0=0 Avil=
ldempotence: AAA=A Av A=A
Complementation: AA -A =0 Av —A =

Double Negation: ——A=A



Laws for the Logical Operators A and v

(Similar to X and +)
Commutative: AAB=BAA AvB=BVvA

Associative: AABAC=(AAB)AC=AA(BAC)
AvBvC=(AvB)vC=Av(BvC)

Distributive: AABvC)=(AAB)v (AAC) Not troe for
€
Av (BAC)=(AvB)aA(AvC) +and x
ldentity: AAnl=A AvO0=A

The A’s and B’s here are schematic variables! You can instantiate them with
any expression that has a Boolean value:

(xvy)Az=z A (xvy) (by commutativity)

A AB=BaA A




Applying Properties for A and v

Showing (x Ay)v(lyvz)A(zAy))=y A (xorz)
Commutativity AAB=B A
(XAy)VvI(ZAY) ALY V2

)]
Distributivity A A (B v C) = (A /\_bj ) \¢ (A C)
(XA y) v (Z/\V/\j\/( /\y/\Aj

Associativity, Commutativity, [Idempotence
(A )V Ay b (v A2)
Commutativity, | otence AAA=A
(@/\ X) v @ A Z
Distributivity (backwards) @/\ ) v @/\ C) =@/\ (B v C)
A (X Vv 2)
Conclusion:
(xAy)Vlyvz)a(zay))=yA(lxvaz)




Extending the system

more gates and DeMorgan’s laws

31



More gates (NAND, NOR, XOR)

0 0 1
0 1 1
1 0 1
1 1 0

1
0
0
0
nand (“not and”): A nand B =not (A and B

)

nor (“not or”): A nor B = not (A or B)

xor (“exclusive or”):
A xor B = (A and not B) or (B and not A)

o — — O

A®B

32



A curious fact

Functional Completeness of NAND and NOR

D Any logical circuit can be implemented using
NAND gates only

Same applies to NOR



DeMorgan’s Law

Nand: _I(A/\B) =—Av —-B

Nor: —l(A\/ B) =—AA—B

34



DeMorgan’s Law

Nand: —l(A/\B) =—Av —-B

if not (x > 15 and x < 110):
is logically equivalent to

if (not x > 15) or (not x < 110):

Nor: —l(A\/ B) =—AA—B

if not (x < 15 or x > 110):
is logically equivalent to

if (not x < 15) and (not x > 110):

35



A circuit for parity checking

Boolean expressions and circuits

36



A Boolean expression that checks parity

3-bit odd parity checker F: an expression that should be true when the
count of 1 bits is odd: when 1 or 3 of the bits are 1s.

P=(~AA—-BAC)v(-AABA—=C)Vv(AA—-BA—=C)v(AABAC)

- — O 0O — — O O

- oo —- O — O — O

There are specific methods for obtaining
canonical Boolean expressions from a

truth table, such as writing it as a disjunction of
conjunctions or as a conjunction of
disjunctions.

Note we have four subexpressions above

each of them corresponding to exactly one
row of the truth table where P is 1.

37



The circuit

3-bit odd parity checker

P=(—-AA—-BAC)V(-AABA-=C)V(AA—-BA—-C)Vv(AABACQC)

\
e

-

P=(A®B)®C

—_ O —- O — O — O
w >

= Dol

38



You should be able to:

ldentify basic gates

Describe the behavior of a gate or circuit using Boolean
expressions, truth tables, and logic diagrams

Transform one Boolean expression into another given the
laws of Boolean algebra

39



How circuits are combined to form a
computer

VVon Neumann architecture revisited- \
D Fetch — Decode - Execute Cycle

— e e e e

ST -

40



