Data Representation and Compression

Announcements

- □ The first lab exam is tonight, during the lab session.
 - You may use your own computer

PA last night?

Exam 1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Exam 1

Review:

Data Representation

You should be able to

- Count in unsigned binary0, 1, 10, 11, 100, ...
- Add in binary and know what overflow is
- Determine the sign and magnitude of an integer represented in two's complement binary
- Determine the two's complement binary representation of a positive or negative integer

Representing Data

External representation Internal representation External representation

Types interpret bits

- what this means depends on the machinery to interpret it, could be (explore with 0xED)

Туре	Interpretation
"Raw" bits	1100 1100 1011 0111 0000 0000 0000 0000
Floating point number	6.59339 X 10 ⁻⁴¹
String (Unicode UTF- 16)	첷
RGB pixel color	
Little-endian integer	47052

place-value syntax of numerals

representing non-negative integers (0, 1, 2, 3, ...)

Place-value numerals (base 10)

- □ The numeral we write: 15627
- What it means:

$$7 \times 10^{0} + 2 \times 10^{1} + 6 \times 10^{2} + 5 \times 10^{3} + 1 \times 10^{4}$$

- Problem: electronic circuitry for base-10 arithmetic is slow.
- Solution: use place-value numerals, but in base 2-binary notation

Place-value numerals in general

- Choose a number b for the base or radix
- Choose list of digits, there must be b of them
 - □ base 10 example: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - base 2 example: 0, 1
 - base 16 example: 0, 1, ..., 9, A, B, C, D, E, F
- To represent a quantity n in base b
 - integer divide n by b with remainder r (a digit)
 - repeat until the quotient is zero
 - the remainders are the digits in reverse order

Binary place-value example

Base two, digits 0 and 1

- To represent "six":
 - \blacksquare 6 // 2 = 3 remainder 0
 - 3 // 2 = 1 remainder 1
 - 1 // 2 = 0 remainder 1

Read the remainders from bottom to top to get bits from left to right

Binary numeral: 110

What it means: $0 \times 2^0 + 1 \times 2^1 + 1 \times 2^2 = \text{"six"}$

Information Capacity and Range

- \square Remember: k bits can represent 2^k different things
- \square So k-bit binary numerals represent 0...2^k-1

$$\square$$
 For $k = 3$,

000	001	010	011	100	101	110	111
0	1	2	3	4	5	6	7

Ranges for typical computer "word" sizes

<u>bits</u>	<u>minimum</u>	maxim	<u>Jm</u>
8	0	$2^8 - 1$	(255)
16	0	$2^{16} - 1$	(65,535)
32	0	$2^{32}-1$	(4,294,967,295)
64	0	$2^{64} - 1$	(18,446,744,073,709,551,615)

binary arithmetic

some familiar operations

Counting in binary

Binary numerals

- 0

Decimal equivalents

- 0

Binary Arithmetic

All the familiar methods work, but with only 1 and 0 for digits

$$\square$$
 1 + 1 = 10, 10 - 1 = 1, 10 + 1 = 11, ...

Example:

1		1		
	1	0	1	0
+	1	0	1	0
_	_	_	_	_
1	0	1	0	0

Notice: we need more bits for the answer than we did for the operands.

Overflow: the first difficulty

- Machine word only has k bits for some fixed k!
- \blacksquare If k is 4, then we have **overflow** in the following:

```
1 1
1010
+1010
----
10100
```

■ The machine retains only 0100 (the "least significant" bits), so (n+n) - n not always equal to n + (n-n)

Modular Arithmetic

- Dropping the overflow bit is **modular arithmetic**
- We can carry out any arithmetic operation modulo 2^k for the precision k. The example again for precision 4:

overflow can be ignored or signaled as an error

Representing negative integers

Two's complement is an approach for representing negative integers

- Define negative by addition: -x is value added to x to get 0
- Process:
 - 1. Write out the number in binary
 - 2. Invert the bits
 - 3. Add 1
- From and To two's complement use an identical process
- How does this work? Overflow...

All two's complement integers using 3 bits, arithmetic mod 8

positive integers and zero

Bit	Decimal
pattern	value
0 1 1	+ 3
0 1 0	+ 2
0 0 1	+ 1
0 0 0	0
1 1 1	- 1
1 1 0	- 2
1 0 1	- 3
1 0 0	- 4

Adding + n to – n gives 0 For example: 011 + 101 = 000

Great! but how do we "read" two's complement integers?

- □ Sign: look at leftmost bit
 - 1 means negative, 0 means positivee.g. with four bits 1010 represents a negative number
- Magnitude: if negative, compute the two's complement
 - flip each bit (one's complement)
 - e.g. flip 1010 to get 0101
 - then add 1

e.g.
$$0101 + 0001 = 0110$$
, or $0 \times 2^0 + 1 \times 2^1 + 1 \times 2^2 + 0 \times 2^3 = 6$

voilà! 1010 represents negative six

Another Example

What value is this ?-bit signed integer?

two's complement

So 11001100 represents -52

Range of Two's Complement Representations (for *k* bits)

Bit pattern	Decimal value
0000	0
0001	+1
•••	
0111	+2 ^{k-1} -1
1000	-2 ^{k-1}
•••	
1111	-1

From whole numbers to rational numbers

Real Numbers in the Machine?

- Real numbers measure **continuous** quantities; can we represent them exactly in the machine?
- Not possible with a fixed number of bits
- Can only approximate by rational numbers using floating point representations
- □ e.g. π ≈ 3.14159

Floating point is based on scientific notation

Idea: use same method, but with a binary number for each part (and remember, a fixed number of bits)

Binary and fractions

Decimal 5.75 can be represented in binary as follows, because $.75 = \frac{1}{2} + \frac{1}{4} = 2^{-1} + 2^{-2}$

$$5.75 = 5 + 0.75$$

= 101 + 0.11 (i.e. $2^{-1} + 2^{-2}$)
= 101.11 = 1.0111 × 10¹⁰

decimal

binary

In binary floating point the mantissa is a binary fraction, exponent is a binary integer, and the base of the exponent is always 2

101.11 has mantissa 1.0111 and exponent 10

Some Floating Point Anomalies

- Rounding error
 - remember, floating point with a fixed number of digits is an approximation, no matter what base is used!
 - in addition, there is no finite base two representation for 1/10
- Resolution

Accumulation of errors: repeated operations may get further and further from the "true" value

Rounding in binary

```
python prints a rounded value
>>> x = 1/10
>>> x
0.1
>>> y = 2/10
                   Ack!
>>> y
0.2
>>> x + y
                                      the actual value looks like
0.30000000000000000004^{\circ}
                                      this (in decimal)!
>>> from decimal import Decimal
>>> Decimal(x)
Decimal('0.100000000000000055511151231257827021181583404541015625')
>>> Decimal(y)
Decimal('0.2000000000000011102230246251565404236316680908203125')
>>> Decimal(x+y)
Decimal('0.300000000000000444089209850062616169452667236328125')
>>>
```

Why is 1/10 not exactly .1?

Let's compute 1/10 using binary long division:

Rounding in any base

Floating point works with a finite fixed number of digits

- No matter what the base, some numbers can only be approximated
 - \blacksquare π , e, other irrationals
 - but also rationals needing more digits than we have in a machine word

data compression

squeezing out redundancy

Data Compression: Why?

- ☐ Faster transmission
 - e.g. digital video impossible without compression
- Cheaper storage
 - e.g. OS X Mavericks compresses data in memory until it needs to be used

Compression and decompression

■ Reduce storage and for faster transfer of data over networks

■ Would like two easily computable functions:

```
compress(m)
decompress(m)
```

with len (compress (m)) < len (m)

Data Compression: choices

Data Compression: choices

Some Considerations

■ What types of files would you use a lossless algorithm on?

■ What types of files would you use a lossy algorithm on?

Data compression

- Types of compression
 - Lossless encodes the original information exactly.

today

Lossy – approximates the original information.

tomorrow

Measuring information

What is information?

- □ information(n): knowledge communicated or received, or the act or fact of informing
 - Implicitly: a message, a sender, and a receiver
- How can we quantify how much information a message contains?

Which has more information?

Information

- More Digits = More Information
- □Right?

Memorizing

Volunteer to memorize 10 digits

2737761413

Volunteer to memorize 100 digits

Memorizing

10-digit volunteer: What was the 8th digit?

100-digit volunteer: What was the 78th digit?

Which is easier to memorize?

Which contains more information?

Memorizing

Another volunteer to memorize 100 digits

48599377668248052998391790815047514509135243 67800673622844553973169223820421306174607612 086978543115

Is that harder to memorize than:

Why?

Which contains more information?

A key observation: redundancy

- Not all messages are equal
 - Some messages convey more information than others
 - Some messages are more likely to occur than others
- Our goal: encode messages so that each bit conveys as much information as possible

Idea 1: Algorithmic information theory

The amount of information

in a sequence of digits

is equal to

the length of the shortest program that prints those digits.

Write a statement to print

```
for i in range(100):
    print("4", end="")
```

Write a statement to print

print("4859937766824805299839179081 50475145091352436780067362284455 39731692238204213061746076120869 78543115")

Therefore

48599377668248052998391790815047514 50913524367800673622844553973169223 820421306174607612086978543115

contains more information than

Pi and information

How much information is stored in the digits of pi?

□In case they slipped your mind...

Pi 10000

pi_tiny.c

This C program is just 143 characters long! long a[35014],b,c=35014,d,e,f=1e4,g,h; main() {for(;b=c-=14;h=printf("%041d",e+d/f)) for(e=d%=f;g=--b*2;d/=g) d=d*b+f*(h?a[b]:f/5), a[b]=d%--g;}

□ And it "decompresses" into the first 10,000 digits of Pi.

Program-size complexity

- There is an interesting idea here:
 - Find the shortest program that computes a certain output.
 - A very important idea in theoretical computer science. Can be used to define *incompressible data* (no shorter program will produce these data).

Idea 2: Shannon information theory

- We measure information content in bits
 - This is related to the fact that we can represent 2^k different symbols with k bits.
 - Turn the idea around and if we want to represent *M* different symbols, we need log₂ *M* bits

■ **But** this is only true if the *M* symbols all have the same probability

The founder of information theory

Claude Shannon juggling sometime in the 1970s

Information content and bits

- ☐ Think of a file or network message as a symbol source
 - each symbol has a certain probability of occurring

"information content" in Shannon's sense is the same as the number of bits needed to represent the symbols in a symbol source

Probability and information content

- Low probability events have high information content; when you learn of them you get a lot of new information
 - Barack Obama called me today!!!
- High probability events have low information content.
 - The sun rose in the east this morning. meh
- Low probability events need more bits than high:

 $log_2(1/p)$ bits of information

Entropy the definition

$$H = \sum_{i=1}^{M} p_i \log_2 \frac{1}{p_i}$$

- Suppose a source of M different symbols with probabilities $p_1, p_2, ..., p_M$
- H is the **entropy of the source** (average number of bits/symbol)
 - For each probability p_i we multiply p_i times $\log 1/p_i$, and we add up the results

 flips of an unfair

• **Example:** two symbols, **H** with probability 0.75 and **T** with probability 0.25;

 $H = 0.75 * log (1/0.75) + 0.25 * log (1/0.25) \approx 0.75 * .415 + 0.25 * 2 = .81125$

 Roughly speaking this says each flip of our unfair coin carries less than one bit of information.

coin

Encode / decode

squeezing out redundancy

2 common compression strategies:

- Exploit character-by-character nonuniformity
 - \blacksquare e.g., in English Pr['a'] = 0.0817 but Pr['b'] = 0.0149

- Exploit patterns between multiple characters
 - e.g. 'q' is almost always followed by 'u'

Character-by-character coding

- Suppose each message m is a sequence of characters in some alphabet $A = \{a_1, a_2, ..., a_k\}$
 - □e.g., A = the English alphabet,or A = all 7-bit ASCII characters

Character-by-character coding

- encode (m) outputs:
 - 1. An optional header containing any extra information needed for decode
 - 2. A sequence of bits encoding each character of m
 - □ i.e., codetable (m)

$$code(m_0) code(m_1) ... code(m_n)$$

■ An example code table:

\boldsymbol{x}	code(x)
a	000
b	001
\mathbf{c}	010
d	011
e	100
f	101

Fixed length codes

```
code(x)
encode("deadbeef")
                                              000
                                          \mathbf{a}
                                              001
    011100000011001100100101
                                              010
                                              011
                                              100
                                          \mathbf{e}
What is decode (
                                              101
     "001000011010100011100")?
```

- Example: ASCII, Unicode
- Easy, but no compression

Codes

- A codeword is simply a binary string and a code is a set of codewords and their meanings.
- Must each codeword in a code necessarily have the same length? I.e. is every code a fixed length code?

(E.g., Morse code - not binary)

A non-code example

- Code words don't all need to be the same length
- But not all codes have a unique decoding:

\boldsymbol{x}	code(x)
a	0
b	01
\mathbf{c}	10

Better, but more annoying...

 This code is fine in principle (everything is uniquely decodable).

\boldsymbol{x}	code(x)
a	00
b	01
\mathbf{c}	001
\mathbf{d}	011
e	11

 But decode is too hard. Try to decode 00001011010011

Better, but more annoying...

What is decode (

```
"00001011010011")?
a c d b a e
```

\boldsymbol{x}	code(x)
a	00
b	01
\mathbf{c}	001
d	011
e	11

- How do you decode?
- By trial and error, looking past the current the current, back and forth, hoping everything will work out in the end.
- This look-ahead approach is too cumbersome.

What makes a code good?

- Uniquely decodable
- ■Easy to decode (no lookahead)
- Encoded messages are short

Prefix (a.k.a. *prefix-free*) codes

A code is a prefix code if code (x) is not a prefix of code (y) for any x≠y

e.g.,
$$\begin{array}{c|c} x & code(x) \\ \hline a & 000 \\ b & 001 \\ c & 010 \\ d & 011 \\ e & 100 \\ f & 101 \\ \end{array}$$

(in fact, any fixed-length code is a prefix code)

Bad and annoying, revisited

- Is this a Prefix code?
- □ No: code ('a') is a prefix of code ('b').

\boldsymbol{x}	code(x)
a	0
b	01
\mathbf{c}	10

Bad and annoying, revisited

- Is this a Prefix code?
- □ No: code ('a') is a prefix of code ('b').

x	code(x)
a	0
b	01
\mathbf{c}	10

■ Is this a Prefix code?

No: code ('a') is a prefix of code ('c').
Also, code ('b') is a prefix of code ('d').

\boldsymbol{x}	code(x)
a	00
b	01
\mathbf{c}	001
d	011
e	11

Another Example:

- Is this a Prefix code?
- Yes!

\boldsymbol{x}	code(x)
a	0
b	11
\mathbf{c}	10

Prefix codes are uniquely decodable

Let $b_0b_1...b_n$ be the bits of a coded message.

Read off the bits from left to right until $b_0b_1...b_k = code(x)$ for some x.

Note that k and x are both uniquely determined; otherwise we'd have found a prefix.

Repeat from b_{k+1} until done.

■ Note: Prefix codes require no lookahead.

Decoding a prefix code message

- ■Use a binary "prefix" tree
 - Start at root, walk left for each "0", walk right for each "1" until you reach a leaf
 - Return to root after you decode a character

x	code(x)
a	000
b	001
\mathbf{c}	010
\mathbf{d}	011
\mathbf{e}	100
f	101

Decoding a prefix code message

- ■Use a binary "prefix" tree
 - Start at root, walk left for each "0", walk right for each "1" until you reach a leaf
 - Return to root after you decode a character

An optimal prefix tree is Full

- □*Full*: every node
 - Is a leaf, or
 - Has *exactly* 2 children.

$$a=1$$
, $b=001$, $c=000$, $d=01$

Why a full binary tree?

□ A node with no sibling can be moved up 1 level, improving the code.

■ An *optimal* prefix code for a string can *always* be represented by a full binary tree.

Today: Huffman Codes

- Compression:
 - Input: fixed-width character codes (e.g. 7-bit ASCII codes)
 - Output: Huffman codes (variable number of bits per character)
- Decompression:
 - Huffman codes to fixed-length codes
- Idea: squeeze out redundancy indicated by character probabilities

The Hawaiian Alphabet

- ☐ The Hawaiian alphabet consists of 13 characters.
 - ' is the okina which sometimes occurs between vowels (e.g. KAMA'AINA)

•

A

E

H

Ι

K

L

M

N

0

P

U

W

Specialized fixed-width encodings

- Suppose our text file is entirely in Hawaiian
- How many bits do we need for our 13 characters?
 - Are 3 bits enough? 000, 001, ..., 111?
 - Are 4 bits enough? 0000, 0001, ..., 1111?
- In general, for k equally probable characters we need $\lceil \log_2 k \rceil$ bits
- \square So for Hawaiian we need $\lceil \log_2 13 \rceil = 4$ bits

alternatively, figure it out using entropy

not exactly 4 because some codes won't be used

Cost of Fixed-Width Encoding

- With a fixed-width encoding scheme of *n* bits and a file with *m* characters, need *mn* bits to store the entire file.
 - Example: to store 1000 characters of Hawaiian we would need 4000 bits
- Can we do better? Idea: some characters are used much more often than others.
 - If we assign fewer bits to more frequent characters, and more bits to less frequent characters, then the overall length of the message might be shorter.

Use a method known as Huffman encoding named after David Huffman

Frequency counts as probabilities

image: Wikipedia

Hawaiian Alphabet Frequencies

- The table to the right shows each character along with its relative frequency in Hawaiian words.
- Smaller numbers mean less common characters
- Frequencies add up to 1.00 and can be viewed as probabilities

,	0.068
A	0.262
E	0.072
H	0.045
I	0.084
K	0.106
L	0.044
M	0.032
N	0.083
0	0.106
P	0.030
U	0.059
W	0.009

Entropy of the Hawaiian alphabet

Using the probabilities we get

```
>>> a = [0.068, 0.262, 0.072, 0.045, 0.084, 0.106, 0.044, 0.032, 0.083, 0.106, 0.03, 0.059, 0.009]
>>> entropy(a)
3.3402829489193353
```

- □ Using Huffman's method we can get close to an average of 3.34 bits per character!
 - **example:** *ALOHA* can be encoded in 15 bits, only 3 bits per character

Huffman Coding: the process

- 1. Assign character codes
 - a. Obtain character frequencies
 - b. Use frequencies to build a *Huffman tree*
 - c. Use tree to assign variable-length codes to characters (store them in a table)
- 2. Use table to encode (compress) ASCII source file to variable-length codes
- 3. Use tree to decode (decompress) to ASCII

Key Idea

Intuitively, place frequent characters near root (i.e., give them short codes)

- Build the prefix tree bottom up:
 - Consider leaves at maximum depth first

- We use a tree structure to develop the unique binary code for each letter.
- Start with each letter/frequency as its own singlenode tree
- Find the two lowest-frequency trees

 Combine two lowest-frequency trees into a tree with a new root with the sum of their frequencies.

Do it again

...and again, as many times as possible

Using the Tree to Assign Codes

☐ The path from the root to each character determines the code

Fixed Width vs. Huffman Coding

•	0000	,	0111						
A	0001	A	10	3 T 0113					
E	0010	E	1101	<u>ALOHA</u>					
Н	0011	Н	0001						
I	0100	I	1111	Fixed Width:					
K	0101	K	001	0001 0110 1001 0011 0001					
L	0110	L	0000						
М	0111	M	11000	20 bits					
N	1000	N	1110						
0	1001	0	010	Huffman Code:					
P	1010	P	110011	10 0000 010 0001 10					
υ	1011	U	0110	15 bits					
W	1100	W	110010	TO DICS					

How about...

- humuhumunukunukuapua 'a (the reef triggerfish)
- $\square 4454445444344434264242 = 84$
- \Box vs 22*4 = 88

How close did we get to minimum bits?

- We calculated the entropy as about 3.34 bits per character
- ☐ The average Huffman code length, weighted by the probabilities:

```
>>> ps = [.068, .262, .072, .045, .084, .106, .044, .032, .083, .106, .030, .059, .009]
>>> code_lengths = [4, 2, 4, 4, 4, 3, 4, 5, 4, 3, 6, 4, 6]
>>> weighted_avg(ps, code_lengths)
3.374
```

pretty close!

Decoding

100000010000110

To find the character use the bits to determine path from root

parity bits

error correction

Noisy Communication Channels

- Suppose we're sending ASCII characters over the network
- Network communications may erroneously alter bits of a message
- □ Simple error detection method: **the parity bit**

Reminder: ASCII table

Code	Char	Code	Char	Code	Char	Code	Char	Code	Char	Code	Char
32	[space]	48	0	64	@	80	Р	96	,	112	р
33	!	49	1	65	Α	81	Q	97	a	113	q
34	"	50	2	66	В	82	R	98	b	114	r
35	#	51	3	67	С	83	S	99	С	115	s
36	\$	52	4	68	D	84	T	100	d	116	l t
37	%	53	5	69	E	85	U	101	e	117	u
38	&	54	6	70	F	86	V	102	f	118	v
39	'	55	7	71	G	87	W	103	g	119	w
40	(56	8	72	Н	88	X	104	h	120	x
41)	57	9	73	ı	89	Υ	105	i	121	у
42	*	58	:	74	J	90	Z	106	j	122	z
43	+	59	;	75	K	91	[107	k	123	{
44	,	60	<	76	L	92	Ň	108		124	l í l
45	-	61	=	77	M	93]	109	m	125	}
46	.	62	>	78	N	94	Ā	110	n	126	~
47	/	63	?	79	0	95		111	0	127	[backspace]

- \square 2⁷ (128) characters
- 7 bits needed for binary representation
- □ (Not shown: control characters like tab and newline, values 0...31)

Parity

□ Idea: for each character (sequence of 7 bits), count the number of bits that are 1

- Sender and receiver agree to use even parity (or odd parity); sender sends extra leftmost bit
 - Even parity: Set the leftmost bit so that the number of 1's in the byte is even.

Parity Example

- "M" is transmitted using even parity.
- "M" in ASCII is 77₁₀, or 100 1101 in binary
 - four of these bits are 1
- Transmit 0 100 1101 to make the number of 1-bits even.
- Receiver counts the number of 1-bits in character received
 - if odd, something went wrong, request retransmission
 - if even, proceed normally
 - Two bits could have been flipped, giving the illusion of correctness. **But** the probability of 2 or more bits in error is low.

Parity Example

Parity and redundancy

An ASCII character with a correct parity bit contains redundant information

...because the parity bit is *predictable* from the other bits

This idea leads into the basics of information theory