Iteration:

Searching

b . e~
% B T2 2
e o -) L .
4 v ts_,,‘.‘ o~ [.4‘ ‘,.‘-' j " o »
S ' mﬁ’-q; I o o, =
(4.' , : . ‘_‘\ X
i ! LA / S \
G B gk B RN

JUST KEEP
SWIMMING

(OMON

Announcements

Questions?

O Lab 3
O PA3
O OL

O PS3

Tonight
O Lab 4

Autograding:

Sieve of Erotosthenes (lists) review?e
Coding: Unicode
Algorithm: linear (sequential) search

Thinking about efficiency

Algorithm: insertion sort

Algorithmic Thinking:
Sieve of Erathosthenes

Do we need to review?

An integer is “prime” if it is not divisible by any smaller integers
except 1.

10 is not prime because 10=2 x5

111is prime

12 is not prime because 12=2%x6=2x2x3
13 is prime

15 is not prime because 15=3 x5

The Sieve of Eratosthenes

Start with a table of
infegers from 2 to N.

Cross out all the
entries that are
divisible by the primes
known so far.

The first value
remaining is the next

prime.

FInding Primes Between 2 and 50

2 3495 67 8 910
1121314151617 1819 20

1222324252627 28 29 30

1 3233 34 35 36 37 38 39 40
1 42 43 44 45 46 47 48 49 50

AN —

2 is the first prime

FInding Primes Between 2 and 50

2 3 S / 9
13 4151617 1219

23 420 0627 0529

33 °4 35 2637 20 39
43 1445 46 47 A0 49

LN

Filter out everything divisible by 2.
Now we see that 3 is the next prime.

FInding Primes Between 2 and 50

2 3) /

11 13 17 7519
23 2425 29

31 35 6 37

41 4 43 47 42 49

Filter out everything divisible by 3.
Now we see that § is the next prime.

FInding Primes Between 2 and 50

2 3 5 7

11 13 17 7519
23 29

31 37

41 4 43 47 42 49

Filter out everything divisible by 5.
Now we see that 7 is the next prime.

FInding Primes Between 2 and 50

2 3 5 7

11 13 17 7519
23 29

31 37

41 4 43 47

Filter out everything divisible by 7.
Now we see thatll is the next prime.

FInding Primes Between 2 and 50

2 3 5 7

11 13 17 7519
23 29

31 37

41 4 43 47

Since 11 x 11 > 580, all remaining numbers must
be primes. Whye

An Algorithm for Sieve of Eratosthenes

Input: A number n:

1. Create a list numlist with every integer from 2 to n, in order.
(Assume n > 1.)

2. Create an empty list primes.
3. For each element in numlist

a. If element is not marked, copy it to the end of primes.

b. Mark every number that is a multiple of the most recently
discovered prime number.

Output: The list of all prime numbers less than or equal 1o »

Automating the Sieve

numlist primes

Use two lists: candidates, and confirmed primes.

Steps 1 and 2

numlist primes

Step 3a

numlist primes

203 4 59

6 /7 8 9

1011 12 13

Append the gumrent number in numlist to the_epnd of primes.

Step 3b

numlist primes

Cross out all the multiples of the lgst number in primes.

Iferations

numlist primes

1011 412 13

Append the gurrent number in numlist to the_end of primes.

Iferations

numlist primes

2 3

Cross out all the multiples of the lgst number in primes.

Itferations

numlist primes

Append the guaent number in numlist to theend of primes.

Iferations

numlist primes

2 3 5

Cross out all the multiples of the lgst number in primes.

An Algorithm for Sieve of Eratosthenes

Input: A number n:

1. Create a list numlist with every integer from 2 to n, in order.
(Assume n > 1.)

2. Create an empty list primes.
3. For each element in numlist

a. If element is not marked, copy it to the end of primes.

b. Mark every number that is a multiple of the most recently
discovered prime number.

Output: The list of all prime numbers less than or equal 1o »

22

Implementation Decisions

How to implement numlist and primes?

O For numlist we will use a list in which crossed out
elements are marked with the special value None.

For example,
[None, 3, None, 5, None, 7, None]

Use a helper function to mark the multiples,
step 3.b. We will call it siff.

Relational Operators

If we want to compare two integers to determine their relationship,
we can use these relational operators:

< less than <= less than or equal to
> greater than >= greater than or equal to
== equalto |= not equal fo

We can also write compound expressions using the Boolean
operators and and or.

Xx>=1and x <=1

24

Siffing: Removing Multiples of a
Number

def sift(lst,k):
marks multiples of k with None

1 =0
while i < len(1lst):
1f 1lst[i] != None and lst[i] % k == O0:
lst[1] = None
i=1+1

return 1lst

Filters out the multiples of the number k from list by marking
them with the special value None (greyed out ones).

Siffing: Removing Multiples of a

Number (Alternative version

def sift2(1lst,k):
1 =0
while i < len(lst):
if 1st[1i] & k ==
lst.remove(lst[1])
else:
i=1+1

return 1lst

A Working Sieve

Use the first version of siff
in this function, which does

def sieve (n) . the filtering using Nones.

numlist = list(range(2, n+l))
primes = []
for i in range(0, len(numlist)):
if numlist[i] != None:
primes.append(numlist[i])
sift(numlist, numlist[i])
return prires

We could ha
primes[len(primes)-1] instead.

Helper function that we defined before

Observation for a Better Sieve

We stopped af 11 because all the
remaining entries must e prime since

11 x 11> 50.
2 3 5 7
11 213 17 219
23 29
31 37

41 43 47

A Beftter Sieve

def sieve(n):
numlist = list(range(2, n + 1))
primes = []
1 =0 # index 0 contains number 2
while (i+2) <= math.sqrt(n):
if numlist[i] != None:
primes.append(numlist[1i])
sift(numlist, numlist[i])
i=1i+4+1
return primes + numlist

Strings and Unicode

Strings and Unicode

You can use relational operators to compare strings: <, <=, >,

>= == =
How can that be¢ Characters are coded as numbers.

Strings of characters are coded as sequences of numbers

Sequences are compared using rules of alphabetical order
(“lexicographical order”)

String comparisons

>>> 'A' < 'af

>>> 1" < TA'!

>>> 1 < 2!

>>> 11" < 27

>>> 12" < '112°

>>> Tabc' < "D

>>> 'alpha' < 'alphabet'

|

>>> 'awkward' < 'Table'

>>2>

Codes 48...57: digits O through 9
Codes 65...91: A through Z
Codes 97...122: a through z

Other numbers: various special characters

33

Unicode in hexadecimal: 00 - 7F,,

0o 1 2 3 4 5 6 7 Some non-printing characters:
O NUL DLE space 0 @ P ‘ p
1/sH & ' |1 AQ a g 08 - back space
2 B & | AR He8 o F 09 — horizontal tab
3 EX 2% # |3 |C|S c|s . .
4 0T b4 § 4 D T d ¢ OA - newline character (in Python)
$§ ENQ NAK % § E U e wu
6 AK SN & (B F V f v These are only the first 128 codes in
7 6L E® ' 7 G W g w the Unicode standard.
8 BS caN (| B H X h x
: :’: ::a)_ |88 J' ; LY Chosen to correspond to the
s z . .
: entire set of codes in the older
B VI ESC + K [K {
D ¢R 6 - =M] m }
E SO0 RS N ~ n -~
F| St us | ¢ 0 0 de

34

..but many others!

1FO 1F1 1F2 1F3 tF4 1F5 FE F7 P& 79 A 1FB

Roman olphobe’r

§

WFC 1FD FE

=0

\A Sk

12542 F

b L

(L

e

le] .1», e

E=N .m.w., S

=
B« TR . Ol
- U RS

TR

- m o F

0 w‘, ol

R

S

£« b [

S

35

U+19E5

a unicode video: nilp//vimeo.com /48858287 109, 242

characters/codes in 2 hours, 31 mintes, and 25 seconds
Amazingly, everything after around 14:00 seems to be
(Chinese) ideographs!

http://vimeo.com/48858289

Onward to search

more later on encodings, now

Searching, we use it

/ N\
'»A_Q' Search in Presentatior '

Google

Bullt-in Search in Python

>>> movies = ["The Wolf of Wall Street", "American Hustle",
"Frozen", "Her", "Lone Survivor", "12 Years a Slave",
"Nosferatu”, "Arnacoeur", "Sullivan's Travels", "Last Jedi"]

>>> "American Hustle" 1in movies

True

>>> "American" 1n movies

False
>>> movies.index ("Frozen")

2

>>> movies.index ("Lone")

ValueError: 'Lone' is not 1n list

Let’'s Write Our Own Search

Method contains(items, key)

Input: items to be searched (could be strings or numbers
or...)

Input: key to search for

QOutput: True Or False

Approach: think linearly

40

Not thinking linearly...

Not thinking linearly...

42

Thinking linearly...

Thinking linearly...

Thinking linearly...

A contfains() method

def contains(items, key):

for index 1in range(len(items)){

1f items[index] [== key:
return True

return False

46

Another contains() method

def contains(items, key):

for item in items:‘

if item‘== key:
return True

return False

Getting More Information

Method search(items, key)

Input: list to be searched (could be strings or numbers or

o)

Input: key to search for

Output: index of the first member of the list that matches

the key, or None if the key isn't in the list (instead of True or
False)

48

Search using a for-loop

def search(items, key):

E@asRGlaxesIn Rl claisla Sk ar) Sas) F

if items[indexj == key:
return

return

49

Alternatively?

def search(items, |key):

for item \in items:

if item == key:

return — Why (;CJI’]’T we
return None do thise

50

Ok, but...

def search(items, key):
for item in items:
if item == key:

return items. :
~—__ What's undesirabl
return None about this@e

Be aware of the cost of the things Python does for
you “behind the scenes’|

51

Problems, Algorithms and Programs

One problem : potentially many algorithms

One algorithm : potentially many programs

We can compare how efficient different programs are
both analyfically and empirically

52

Analytically: Which One is Fastere

def containsl(items, key): def contains2(items, key):

ln = len(items)

index = 0 .
index = 0

while index < len(items): while index < 1n:

if items[index] == key:
if items[index] == key:

return True
return True

index = index + 1
index = index + 1

return False
return False

len (items) Is executed each len (items) is executed only
time loop condition is checked

once and its value is stored in 1n

s a for-loop faster than a while-loop?e

*Add the following function to our collection of
contains functions from the previous page:

def contains3(items, key):
for index in range(len(items)):

1f items[index] == key:
return True
return False

54

Empirical Measurement

Three programs for the same algorithm; let’'s measure which is faster:

Define time2 and time3 similarly to call contains2 and contains

import time
def timel (1tems, key)
start = time.time ()
containsl (items, key)
runtime = time.time () - start
print ("containsl:", runtime)

55

Doing the measurement

>>> items = [None] * 1000000

>>> timel (itemsl, 1) —mmmmeE

containsl: 0.1731700897216797

>>> time? (itemsl, 1) P wh d::::::>
\\¥_

contains?2: 0.1145467758178711

>>> time3 (itemsl, 1)

contains3: 0.07184195518493652

Conclusion: using for and range () Is faster than using
while and addition when doing an unsuccessful
search Whye

56

A Different Measurement

What if we want to know how the different loops perform when the
key matches the first element?

>>> timel (itemsl, None) "

containsl: 4.0531158447265625e-06

"
>>> time2 (itemsl, None) — ‘::::::>
\\¥_

contains?2: 4.291534423828125e-06

>>> time3 (itemsl, None)

contains3: 1.0013580322265625e-05

Now the relationship is different; contains3 IS
slowest! Whye

Nelgilgle

IN-place Insertion Sort

Idea: during sorting, a prefix of the list is already sorted. (This
prefix might contain one, two, or more elements.)

Each element that we process is inserted into the correct
place in the sorted prefix of the list.

Result: sorted part of the list gets bigger until the whole
thing is sorted.

IN-place Insertion Sort

IN-place Insertion Sort

IN-place Insertion Sort

sorted part

15110 Principles of Computing 6
Carnegie Mellon University 2

IN-place Insertion Sort

sorted part

IN-place Insertion Sort

sorted part

IN-place Insertion Sort

15110 Principles of Computing 6
Carnegie Mellon University 5

IN-place Insertion Sort

sorted part

15110 Principles of Computing 6
Carnegie Mellon University 6

IN-place Insertion Sort

sorted part

IN-place Insertion Sort

sorted part

IN-place Insertion Sort

sorted part

IN-place Insertion Sort

sorted part

INn-plac = Insertion Sort

part

15110 Principles of Computing 7
Carnegie Mellon University

IN-place Insertion Sort

IN-place Insertion Sort

sorted part

IN-place Insertion Sort

sorTeSporT

In-place Insertion Sort Algorithm

Given a list a of length n, n > 0.
Seti=1.
While i is not equal to n, do the following:

a. Insert ali] into its correct position in a[0] to ali] (inclusive).

b. Add 1 to .

3. Return the list a (which is now sorted).

a = [53, 26, 76, 30, 14, 91, 68, 42]

1 = 1

Insert a[1] into its correct position in a[0..1]
and thgh add 1 to i:

53 moveq to the right,
26 1s iInsgiged into the list at position O
a = [26, 53, 76, 30, 14, 91, 68, 42]

1 = 2

Writing the Python code

def isort(items):
i=1
while i < len(items):

move left(items, 1) . o ,
— insert ali] into af0..1]
i=4i+1 in its correct sorted

position
return items

But now we have 1o write the
move |left function!

Moving left using search

To move the element x at index i “left” to its
correct position, remove it, start at position i-
1, and search from right to left unfil we find the
first element that is less than or equal to x.

Then insert x back into the list to the right of
that element.

(The Python insert operation does not
overwrite. Think of it as “squeezing into the

list”.)

move left via linear search

sorted part

move left via linear search

sorted part

move left via linear search

sorted part

move left via linear search

sorted part

IN-place Insertion Sort

Moving left (humbers)

76:
a = [26, 53,!, 30, 14, 91, 68, 42]

Searching from right to left starting with 53, the first element less than 76 is 53.
Insert /76 to the right of 53 (where it was before).

14:
a = [26, 30, 53, 76, 14, 91, 68, 42]

Searching from right to left starting with 76, all elements left of 14 are greater
than 14. Insert 14 into position 0.

68:
a = [14, 26, 30, 53, 76, 91, 88, 42]
Searching from right to left starting with 91, the first element less than 68 is 53.

Insert 68 to the right of 53.

The move left algorithm

Given a list a of length n, n > 0 and a value at
iIndex | to be moved left in the list.
Remove ali] from the list and store in x.
Set|=I-1.
While j >= 0 and a[j] > x, subtract 1 from|.

(At this point, what do we know? Eitherjis ...,
or afj] is ...) Insert x info position afj+1].

From algorithm to code

Our algorithm says to “remove” and “insert” elements of
a list.

But how do we do thate

Fortunately there are built-in Python operations for that.

Removing a list element: pop

>>> a = ["Wednesday", "Monday", "Tuesday"]
>>> day = a.pop(l)

>>> a

['Wednesday', 'Tuesday']
>>> day

'Monday'’

>>> day = a.pop(0)

>>> day

'Wednesday'

>>> a

[' Tuesday']

Inserting an element: insert

>> a = [10, 20, 30]

=> [10, 20, 30]

>> a.insert (0, "foo")

=> ["foo", 10, 20, 30]

>> a.lnsert(2, "bar")

=> ["foo", 10, "bar", 20, 30]

>> a.linsert (5, "baz")
4

=> ["foo", 10, "bar", 20, 30, "baz"]

move leftin Python

def move left(items, 1i):

X = items.pop (i)
j=1i-1

while j >= 0 and items[]] > x:

J=3-1

items.insert(j + 1, x)

Insertion sort with a bug

def move left(items, 1):
Insert the element at items[i] into its

place
X = items.pop(1i)
j=1-1
while j > 0 and items[]] > x:

J=3-1
items.insert(j + 1, Xx)

def isort(items):
In-place insertion sort
1 =1
while 1 < len(items):
move left(items, 1)
i=1i+1
return items

Why should we believe our code

workse

We can test it:

>>> data = [13, 78, 18, 25, 100, 89, 12]
>>> isort(data)

[13, 12, 18, 25, 78, 89, 100]

>>>

HmMmmmm. What went wronge¢

Using assert to debug

What do we know has to be true for
move_left o do the right thing?

We have a loop that decreases | and
checks for an element at index j smaller
than or equal to x. When should it stop
looping?

O When the value of jis -1,

O orwhen the item atindexjis <= X

Oj == -1 or items[]j] <= X

So add an assertion to the code

def move left(items, 1i):

Insert the element at items[i] into its
place

X = 1ltems.pop(1)

j=1i-1

while j > 0 and items[]] > x:
J=3-1

assert(] == -1 or items[]] <= X)

items.insert(j + 1, X)

def isort(items):
In-place insertion sort

i=1

while 1 < len(items):
move left(items, 1)
i=1i+1

return items

Run the same test again

>>> data = [13, 78, 18, 25, 100, 89, 12]
>>> isort(data)
[13, 12, 18, 25, 78, 89, 100]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "isort.py", line 16, in isort
move left(items, 1)

File "isort.py", line 7, in move left
assert(j == -1 or items[]] <= X)
AssertionError

This tells us we did something wrong with the loop!

Where's the buge

def move left(items, 1i):

Insert the element at items[i] into its
place

X = 1ltems.pop(1)

j=1i-1

while j > 0 and items[]] > x:
J=3-1

assert(] == -1 or items[]] <= X)

items.insert(j + 1, X)

def isort(items):
In-place insertion sort

i=1

while 1 < len(items):
move left(items, 1)
i=1i+1

return items

The fix

def move left(items, 1i):
Insert the element at items[i] into its place
X = items.pop(i)

j=1i-1

while j >= 0 and items[]] > x:
j=31-1

assert(j == -1 or items[]] <= X)

items.insert(j + 1, Xx)

def isort(items):
In-place insertion sort
i=1
while i < len(items):
move left(items, 1)
i=1i+1
return items

Run the same fest again

>>> data = [13, 78, 18, 25, 100, 89, 12]
>>> isort(data)
[12, 13, 18, 25, 78, 89, 100]

Hurray!

Do we know for sure that the program will always do the right
thing now?e

